-
gps_subgroup_search • Show schema
Hide schema
{'Agroup': True, 'Zgroup': True, 'abelian': True, 'ambient': '960.10364', 'ambient_counter': 10364, 'ambient_order': 960, 'ambient_tex': 'C_2\\times C_{60}.D_4', 'central': False, 'central_factor': False, 'centralizer_order': 480, 'characteristic': True, 'core_order': 6, 'counter': 185, 'cyclic': True, 'direct': False, 'hall': 0, 'label': '960.10364.160.b1', 'maximal': False, 'maximal_normal': False, 'metabelian': True, 'metacyclic': True, 'minimal': False, 'minimal_normal': False, 'nilpotent': True, 'normal': True, 'old_label': '160.b1', 'outer_equivalence': True, 'perfect': False, 'proper': True, 'quotient': '160.229', 'quotient_Agroup': False, 'quotient_abelian': False, 'quotient_cyclic': False, 'quotient_hash': 229, 'quotient_metabelian': True, 'quotient_nilpotent': True, 'quotient_order': 160, 'quotient_simple': False, 'quotient_solvable': True, 'quotient_supersolvable': True, 'quotient_tex': 'C_{20}:C_2^3', 'simple': False, 'solvable': True, 'special_labels': [], 'split': False, 'standard_generators': False, 'stem': False, 'subgroup': '6.2', 'subgroup_hash': 2, 'subgroup_order': 6, 'subgroup_tex': 'C_6', 'supersolvable': True, 'sylow': 0}
-
gps_subgroup_data • Show schema
Hide schema
{'ambient': '960.10364', 'aut_centralizer_order': None, 'aut_label': '160.b1', 'aut_quo_index': None, 'aut_stab_index': None, 'aut_weyl_group': None, 'aut_weyl_index': None, 'centralizer': '2.a1', 'complements': [], 'conjugacy_class_count': 1, 'contained_in': ['32.b1', '80.a1', '80.c1', '80.d1', '80.i1', '80.j1', '80.k1'], 'contains': ['320.a1', '480.b1'], 'core': '160.b1', 'coset_action_label': None, 'count': 1, 'diagramx': None, 'generators': [480, 640], 'label': '960.10364.160.b1', 'mobius_quo': None, 'mobius_sub': None, 'normal_closure': '160.b1', 'normal_contained_in': ['32.b1', '80.a1', '80.c1', '80.d1'], 'normal_contains': ['320.a1', '480.b1'], 'normalizer': '1.a1', 'old_label': '160.b1', 'projective_image': None, 'quotient_action_image': None, 'quotient_action_kernel': None, 'quotient_action_kernel_order': None, 'quotient_fusion': None, 'short_label': '160.b1', 'subgroup_fusion': None, 'weyl_group': None}
-
gps_groups • Show schema
Hide schema
{'Agroup': True, 'Zgroup': True, 'abelian': True, 'abelian_quotient': '6.2', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': True, 'aut_cyclic': True, 'aut_derived_length': 1, 'aut_exponent': 2, 'aut_gen_orders': [2], 'aut_gens': [[1], [5]], 'aut_group': '2.1', 'aut_hash': 1, 'aut_nilpotency_class': 1, 'aut_nilpotent': True, 'aut_order': 2, 'aut_permdeg': 2, 'aut_perms': [1], 'aut_phi_ratio': 1.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [3, 1, 2, 1], [6, 1, 2, 1]], 'aut_supersolvable': True, 'aut_tex': 'C_2', 'autcent_abelian': True, 'autcent_cyclic': True, 'autcent_exponent': 2, 'autcent_group': '2.1', 'autcent_hash': 1, 'autcent_nilpotent': True, 'autcent_order': 2, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': True, 'autcent_tex': 'C_2', 'autcentquo_abelian': True, 'autcentquo_cyclic': True, 'autcentquo_exponent': 1, 'autcentquo_group': '1.1', 'autcentquo_hash': 1, 'autcentquo_nilpotent': True, 'autcentquo_order': 1, 'autcentquo_solvable': True, 'autcentquo_supersolvable': True, 'autcentquo_tex': 'C_1', 'cc_stats': [[1, 1, 1], [2, 1, 1], [3, 1, 2], [6, 1, 2]], 'center_label': '6.2', 'center_order': 6, 'central_product': True, 'central_quotient': '1.1', 'commutator_count': 0, 'commutator_label': '1.1', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1', '3.1'], 'composition_length': 2, 'conjugacy_classes_known': True, 'counter': 2, 'cyclic': True, 'derived_length': 1, 'dihedral': False, 'direct_factorization': [['2.1', 1], ['3.1', 1]], 'direct_product': True, 'div_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [3, 1, 2, 1], [6, 1, 2, 1]], 'element_repr_type': 'PC', 'elementary': 6, 'eulerian_function': 1, 'exponent': 6, 'exponents_of_order': [1, 1], 'factors_of_aut_order': [2], 'factors_of_order': [2, 3], 'faithful_reps': [[1, 0, 2]], 'familial': True, 'frattini_label': '1.1', 'frattini_quotient': '6.2', 'hash': 2, 'hyperelementary': 6, 'inner_abelian': True, 'inner_cyclic': True, 'inner_exponent': 1, 'inner_gen_orders': [1], 'inner_gens': [[1]], 'inner_hash': 1, 'inner_nilpotent': True, 'inner_order': 1, 'inner_split': True, 'inner_tex': 'C_1', 'inner_used': [], 'irrC_degree': 1, 'irrQ_degree': 2, 'irrQ_dim': 2, 'irrR_degree': 2, 'irrep_stats': [[1, 6]], 'label': '6.2', 'linC_count': 2, 'linC_degree': 1, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': 2, 'linQ_degree_count': 1, 'linQ_dim': 2, 'linQ_dim_count': 1, 'linR_count': 1, 'linR_degree': 2, 'maximal_subgroups_known': True, 'metabelian': True, 'metacyclic': True, 'monomial': True, 'name': 'C6', 'ngens': 2, 'nilpotency_class': 1, 'nilpotent': True, 'normal_counts': [0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 4, 'number_characteristic_subgroups': 4, 'number_conjugacy_classes': 6, 'number_divisions': 4, 'number_normal_subgroups': 4, 'number_subgroup_autclasses': 4, 'number_subgroup_classes': 4, 'number_subgroups': 4, 'old_label': None, 'order': 6, 'order_factorization_type': 11, 'order_stats': [[1, 1], [2, 1], [3, 2], [6, 2]], 'outer_abelian': True, 'outer_cyclic': True, 'outer_equivalence': False, 'outer_exponent': 2, 'outer_gen_orders': [2], 'outer_gen_pows': [0], 'outer_gens': [[5]], 'outer_group': '2.1', 'outer_hash': 1, 'outer_nilpotent': True, 'outer_order': 2, 'outer_permdeg': 2, 'outer_perms': [1], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'C_2', 'pc_rank': 1, 'perfect': False, 'permutation_degree': 5, 'pgroup': 0, 'primary_abelian_invariants': [2, 3], 'quasisimple': False, 'rank': 1, 'rational': False, 'rational_characters_known': True, 'ratrep_stats': [[1, 2], [2, 2]], 'representations': {'PC': {'code': 21, 'gens': [1], 'pres': [2, -2, -3, 4]}, 'GLZ': {'b': 3, 'd': 2, 'gens': [73]}, 'GLFp': {'d': 2, 'p': 3, 'gens': [31, 56]}, 'Perm': {'d': 5, 'gens': [24, 4]}}, 'schur_multiplier': [], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [6], 'solvability_type': 0, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': True, 'sylow_subgroups_known': True, 'tex_name': 'C_6', 'transitive_degree': 6, 'wreath_data': None, 'wreath_product': False}
-
gps_groups • Show schema
Hide schema
{'Agroup': False, 'Zgroup': False, 'abelian': False, 'abelian_quotient': '80.52', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 2, 'aut_exponent': 12, 'aut_gen_orders': [4, 4, 4, 4, 12, 4, 4, 12], 'aut_gens': [[1, 2, 4, 16], [491, 10, 574, 656], [489, 490, 4, 26], [1, 10, 572, 664], [491, 10, 84, 946], [9, 2, 84, 114], [489, 482, 726, 664], [491, 10, 492, 314], [491, 482, 566, 304]], 'aut_group': None, 'aut_hash': 526058571217868515, 'aut_nilpotency_class': -1, 'aut_nilpotent': False, 'aut_order': 98304, 'aut_permdeg': 60, 'aut_perms': [8061907519963328151205901553250721314368949384202116624833577734870965159111241326, 7192827024824797495945707408572059055548323085806953083153442466049935959280601734, 132636148939086731139605411516641779336973925607258352585792438609839939278806835, 8056081067283654852692496953872646901238193209099187155161245072936163257159303730, 2128904952344570160537146992247576970905357010132153679099525253965236668881131770, 7203879860802815087806749572838296740489798086820701908801255933564270128148386999, 8066333655416413530459768765922329960407171501838370359955462189599736950412450140, 8093759267372091911533256045457148836658822476566996833061460007215273240338700371], 'aut_phi_ratio': 384.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 1, 1, 3], [2, 1, 4, 1], [2, 2, 4, 1], [3, 2, 1, 1], [4, 2, 4, 2], [4, 12, 4, 2], [5, 1, 4, 1], [6, 2, 1, 3], [6, 2, 4, 1], [6, 2, 8, 1], [10, 1, 4, 3], [10, 1, 16, 1], [10, 2, 16, 1], [12, 2, 8, 2], [15, 2, 4, 1], [20, 2, 16, 2], [20, 12, 16, 2], [30, 2, 4, 3], [30, 2, 16, 1], [30, 2, 32, 1], [60, 2, 32, 2]], 'aut_supersolvable': True, 'aut_tex': 'C_3:(C_2^9.C_2^6)', 'autcent_abelian': False, 'autcent_cyclic': False, 'autcent_exponent': 4, 'autcent_group': None, 'autcent_hash': 7903657167058653875, 'autcent_nilpotent': True, 'autcent_order': 8192, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': True, 'autcent_tex': 'C_2^7.C_2^6', 'autcentquo_abelian': False, 'autcentquo_cyclic': False, 'autcentquo_exponent': 6, 'autcentquo_group': '12.4', 'autcentquo_hash': 4, 'autcentquo_nilpotent': False, 'autcentquo_order': 12, 'autcentquo_solvable': True, 'autcentquo_supersolvable': True, 'autcentquo_tex': 'D_6', 'cc_stats': [[1, 1, 1], [2, 1, 7], [2, 2, 4], [3, 2, 1], [4, 2, 8], [4, 12, 8], [5, 1, 4], [6, 2, 15], [10, 1, 28], [10, 2, 16], [12, 2, 16], [15, 2, 4], [20, 2, 32], [20, 12, 32], [30, 2, 60], [60, 2, 64]], 'center_label': '40.14', 'center_order': 40, 'central_product': True, 'central_quotient': '24.14', 'commutator_count': 1, 'commutator_label': '12.5', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1', '2.1', '2.1', '2.1', '2.1', '2.1', '3.1', '5.1'], 'composition_length': 8, 'conjugacy_classes_known': True, 'counter': 10364, 'cyclic': False, 'derived_length': 2, 'dihedral': False, 'direct_factorization': [['2.1', 1], ['5.1', 1], ['96.131', 1]], 'direct_product': True, 'div_stats': [[1, 1, 1, 1], [2, 1, 1, 7], [2, 2, 1, 4], [3, 2, 1, 1], [4, 2, 1, 4], [4, 2, 2, 2], [4, 12, 1, 8], [5, 1, 4, 1], [6, 2, 1, 7], [6, 2, 2, 4], [10, 1, 4, 7], [10, 2, 4, 4], [12, 2, 2, 4], [12, 2, 4, 2], [15, 2, 4, 1], [20, 2, 4, 4], [20, 2, 8, 2], [20, 12, 4, 8], [30, 2, 4, 7], [30, 2, 8, 4], [60, 2, 8, 4], [60, 2, 16, 2]], 'element_repr_type': 'PC', 'elementary': 1, 'eulerian_function': 2555280, 'exponent': 60, 'exponents_of_order': [6, 1, 1], 'factors_of_aut_order': [2, 3], 'factors_of_order': [2, 3, 5], 'faithful_reps': [], 'familial': False, 'frattini_label': '4.2', 'frattini_quotient': '240.206', 'hash': 10364, 'hyperelementary': 2, 'inner_abelian': False, 'inner_cyclic': False, 'inner_exponent': 6, 'inner_gen_orders': [2, 1, 2, 6], 'inner_gens': [[1, 2, 492, 16], [1, 2, 4, 16], [489, 2, 4, 176], [1, 2, 804, 16]], 'inner_hash': 14, 'inner_nilpotent': False, 'inner_order': 24, 'inner_split': False, 'inner_tex': 'C_2\\times D_6', 'inner_used': [1, 3, 4], 'irrC_degree': -1, 'irrQ_degree': -1, 'irrQ_dim': -1, 'irrR_degree': -1, 'irrep_stats': [[1, 80], [2, 220]], 'label': '960.10364', 'linC_count': None, 'linC_degree': None, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': None, 'linQ_degree_count': None, 'linQ_dim': None, 'linQ_dim_count': None, 'linR_count': None, 'linR_degree': None, 'maximal_subgroups_known': True, 'metabelian': True, 'metacyclic': False, 'monomial': True, 'name': 'C2*C60.D4', 'ngens': 8, 'nilpotency_class': -1, 'nilpotent': False, 'normal_counts': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 36, 'number_characteristic_subgroups': 46, 'number_conjugacy_classes': 300, 'number_divisions': 88, 'number_normal_subgroups': 286, 'number_subgroup_autclasses': 208, 'number_subgroup_classes': 644, 'number_subgroups': 1328, 'old_label': None, 'order': 960, 'order_factorization_type': 311, 'order_stats': [[1, 1], [2, 15], [3, 2], [4, 112], [5, 4], [6, 30], [10, 60], [12, 32], [15, 8], [20, 448], [30, 120], [60, 128]], 'outer_abelian': False, 'outer_cyclic': False, 'outer_equivalence': True, 'outer_exponent': 4, 'outer_gen_orders': [4, 4, 4, 4, 4, 4, 4], 'outer_gen_pows': [0, 0, 0, 0, 0, 640, 320], 'outer_gens': [[491, 490, 4, 754], [9, 10, 324, 760], [489, 482, 732, 122], [3, 490, 414, 664], [483, 490, 724, 466], [1, 10, 564, 114], [11, 2, 644, 592]], 'outer_group': '1024.dis', 'outer_hash': 3264063356326401077, 'outer_nilpotent': True, 'outer_order': 4096, 'outer_permdeg': 512, 'outer_perms': [47800026879232836750951840468486215567741159088082559820548947498557848988724325714982328045672410949788531310692357303819403427480755615629887918405560579557116225230902876999316577922876183933429072103772390527810414360555467604720874074127090295644932306530815658873787056191539302990759629509290188685729743097084622228395750599188368630305110460944606003539792964116781315950873861057462900175291391615498674980844156486873606889891355089470206213679162442351306090015996293708970412213553913226890626064579644433288506157009319049906623670236317087699506511688088485383304413046082144073626422814949401674046237012037558236211367516862626209896994792298590430074819638434468057140948925930001610562409913645378804540029549584754399351482064303066093615434907570806953443772132724047616829860078196809993615262125780300149863584299175011010405557617203772065737148394018966539827594550610029495853931487048702057030695445106575271884798355730881434962265865382501406362055880210713589252793469138702521222901429535543323115327356628798605946105722065892771890747308651614730602413399671710634518511807580217463016984522258232465143363050827529480778084783040974, 230039352764355623895945773942083874016979313900070361558334510847518244499765148332048677869569975646464860186897573636472873845244878903946685154958213750700127134060800493244368666675383322912651823182626189351448557408184855888715476557117585157039009644839255451299009325542854090909498902582090219874019366332063263028351117979499030409462399388228319864252589272173824443981434537426622098524028089364384552884018914957877191019144359577121781401768801558288795370484417221300862134981142059369500232213508188965579280057798505900778927632322122575681729319200067050352144711177488824133276316281313546144371466387251254506587169435258143008063072496996005696041686727440114419479819960321266517619935964084315900159471150931784060677839910615483547260817357277516782342135527729989385869512972431811546590799020598284155226892457035345358003803463497920509937917362565395724657289971223748291652652729687695536483184051964453407073583194283646187878138601361748619888011495832917906324673650866036993612659522083574642020231435233711734209966927669453799268479112650396661293638898826626682523298353683697838877018691613409583186256326029900503160463911803245, 240884868528073652937943540259342251553111463498607136029331640596537060060062726404096226121430328851450424298634018498636708159353000152325301268523833771531543568850293540797341306653362025752975752658923601947810974129579375726761297958950010561813812541171662361380483087280444262896993731648190512428622355005051961847231973156509006147763902616079964109320271618511981503846007476465801562245464928549468704813996645706207052226404387671138874817473229819051482210700658994563638500614217997548621465343127665492826109388788030682254079700811393996886621175599570048258653414168769632721860618861572150135282500700976092609838021426217392780587857211477869050268939984561750754897340546872352673888859682087857947225518759643410149264470225818356658832197085776706157443073830628973227779314913288974009861849632899497478181946983300970577971337536446436312184791525422941252207226646542502603886827307045482332228785004357011855245274877817218411222438262643621843829613670308520806062464473229671316129651242321342566702637166349217395454739871799721988448686255523333531968312111606232927041575057711749801567638869449569672217135609168164587514687221062847, 322251917754782501663566864180746921767909146617756747267107255360729992606429933271542046158597502112276972445575154136548758385055402238997752292098539776604410251537966369352220895999791226359287010778172044896529596623152178534668926467531943133682047580332810607872467294023803786523440003478659304168377270697770037018011739594617190209499679478405181404876197539169326337370450276654339937500850816611481741085565530428210369920388980712123176541496077605934567559936440714654230175692649966918320001117813493701123156999647375114797344782268630289424422680818475836251484687216213083357697247000150396641111581915984393523270820742595856370067630728617080347737555861225505747828319938355075048034291605793769987804846999915931123179714239699066018279612168312831070406760827685289598473401823708053595433655372057264561751137513955719466967170510274439948707262424541082645903409370407418276969093832077577231485796658370930369069578738112113667225938632824841993754605359655992779903951056964257021089176840484684860513018567847583576043296768077050917987674344225078949510193819584709493646782362498230981489328291684943435956337258092954042970117349102784, 304039864167316890805114199755848091925951634154822172608366025758894446897917795935303431451428396880959241873086160247757860070748925899711074968343180153783531518616129451516477748687708963100433550664348607030927585573671801927432338854532902895080029879157054785341706586974567721622348220778458525261544429817880333869306535852902457342150155843429417070075268291207915269852942021945476829194800471204694672443212789756673981794047831593786368627203835644327917636896140294871589357053950902615052227456912954755086858035390928347296246178179816967358351495215319258076211186059060216063561453483933632883070098778401130574430536728550933286905489159819384735981451816817333785322136671207978140420789239855138689986277339422408682438547947873827905903024674112972249866587077123516613920558113510900765372284417636967993962128666356113298083045629687704800333713585323349978062925768167511444046857822900376284740757398402580191330599014041620829470679554640288285170898550955822225999220431112005049349726441966096747686746530812352021130731291957713227363016872470811509683502912219066847738481770456827233380097657854143282678981575876630158070531237240494, 100323588634779668339568177506201115074856520258114131775351787364712490452993209197322252473946644479611947656781778198673564102670683078966805290962335779748321422753680390876384993391403592847409070134380477876253309018803763028161861183784998352120982658447139466290547251165596181443922307501885570286533941866403848872500694066215022038598914736890793310686514898661144698386479132465142566142913853630373247308404960965567396864765704140303949616716814326545138335180820138463545152577421389975834201255472794125518318992742287565719710416762282544363464200107181212016801270163096951176616361267463066228685374515318245797612374970577360197495136436256427931321131197737394484048861047249803962722327339683674237058106614478750633843628144549057395991063316716263525197050545542255805210716359912939490075853645168442805216381123237489739206495330872036437867324052390755827241552285424337700901529681922387943656604579872892087090956556200383859187131141992486402253320235403234329252559932320868207906058288171026088323230586148142274301628725390619215445176861095100303471851471134737973482508047709768053344647909678257243608054219542306715383571479061317, 82569709223128406329474429925096921589633060717407968154110993155123439456030727654825397204683116793127497373827407393685859651513063818840908326878948893235601732615302510711063088619644968736050727751126240868262440309545635549163795701982984029202781255891492480522980863281071891878386695618448614804791289814953373930607119045226214302022139465918293402829492192431921979523190233240969502764924043224091958079469229741921017152399049687758529622332533947336799857644699924121417982838607692992586120853435087477334602904298250771492056762806366234824563560729680924000979476799397479203309111935310862843886098501475350050967409713975367803311972558571368753533157313461689187334413128947533804838037140006115862010708089679296520978669797305572440672241079665138998397530562845649264719318586861187735811086080784181615986428080819509319444847727023954539947811635090279106325134597888796800997994940333477735376625488488816216802967486166183464156025631210158756759507060964371936566179930265161249466533505529996768695128466117446719536919321350142527438159064262474747824329805137432972498076234257177936438288480082609005641630440009055501218913467356533], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': '(C_2^2\\wr C_2)^2', 'pc_rank': 4, 'perfect': False, 'permutation_degree': 22, 'pgroup': 0, 'primary_abelian_invariants': [2, 2, 2, 2, 5], 'quasisimple': False, 'rank': 4, 'rational': False, 'rational_characters_known': True, 'ratrep_stats': [[1, 16], [2, 16], [4, 26], [8, 18], [16, 10], [32, 2]], 'representations': {'PC': {'code': 13556309140114619774992784073275211783, 'gens': [1, 2, 3, 5], 'pres': [8, -2, -2, -2, -2, -2, -2, -3, -5, 11810, 66, 1780, 116, 4245, 141, 9878, 222]}, 'GLZN': {'d': 2, 'p': 44, 'gens': [2486917, 1959255, 1832467, 766665, 1487589, 1788885, 86153, 1190539]}, 'Perm': {'d': 22, 'gens': [2432925914192122320, 6402373705728000, 45968909052240, 68436399316320, 33, 41040, 68436399225600, 53523844179886080000]}}, 'schur_multiplier': [2, 2, 2, 2, 2], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [2, 2, 2, 10], 'solvability_type': 7, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': True, 'sylow_subgroups_known': True, 'tex_name': 'C_2\\times C_{60}.D_4', 'transitive_degree': 480, 'wreath_data': None, 'wreath_product': False}
-
gps_groups • Show schema
Hide schema
{'Agroup': False, 'Zgroup': False, 'abelian': False, 'abelian_quotient': '80.52', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 4, 'aut_exponent': 24, 'aut_gen_orders': [2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4], 'aut_gens': [[1, 2, 4, 8], [81, 2, 86, 8], [1, 2, 4, 90], [1, 2, 4, 89], [1, 2, 84, 88], [2, 1, 84, 72], [1, 2, 85, 89], [1, 2, 4, 88], [1, 2, 86, 90], [1, 83, 5, 72], [1, 82, 85, 8], [1, 2, 124, 152], [1, 2, 4, 136]], 'aut_group': '12288.bmk', 'aut_hash': 8451711693706374875, 'aut_nilpotency_class': -1, 'aut_nilpotent': False, 'aut_order': 12288, 'aut_permdeg': 20, 'aut_perms': [43153337611560, 3223512404392320, 2867824310572800, 121689561337349040, 21010008458880, 628175426837414400, 1800761097139320, 756381783387686400, 10593219611520, 2702534652840, 864832218064835880, 17], 'aut_phi_ratio': 192.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [2, 1, 6, 1], [2, 2, 8, 1], [4, 2, 4, 1], [5, 1, 4, 1], [10, 1, 4, 1], [10, 1, 24, 1], [10, 2, 32, 1], [20, 2, 16, 1]], 'aut_supersolvable': False, 'aut_tex': 'C_2^7.(C_2^2\\times S_4)', 'autcent_abelian': False, 'autcent_cyclic': False, 'autcent_exponent': 12, 'autcent_group': None, 'autcent_hash': 83612722323396385, 'autcent_nilpotent': False, 'autcent_order': 6144, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': False, 'autcent_tex': 'C_2^4.C_2^4.D_6.C_2', 'autcentquo_abelian': True, 'autcentquo_cyclic': True, 'autcentquo_exponent': 2, 'autcentquo_group': '2.1', 'autcentquo_hash': 1, 'autcentquo_nilpotent': True, 'autcentquo_order': 2, 'autcentquo_solvable': True, 'autcentquo_supersolvable': True, 'autcentquo_tex': 'C_2', 'cc_stats': [[1, 1, 1], [2, 1, 7], [2, 2, 8], [4, 2, 4], [5, 1, 4], [10, 1, 28], [10, 2, 32], [20, 2, 16]], 'center_label': '40.14', 'center_order': 40, 'central_product': True, 'central_quotient': '4.2', 'commutator_count': 1, 'commutator_label': '2.1', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1', '2.1', '2.1', '2.1', '2.1', '5.1'], 'composition_length': 6, 'conjugacy_classes_known': True, 'counter': 229, 'cyclic': False, 'derived_length': 2, 'dihedral': False, 'direct_factorization': [['2.1', 2], ['5.1', 1], ['8.3', 1]], 'direct_product': True, 'div_stats': [[1, 1, 1, 1], [2, 1, 1, 7], [2, 2, 1, 8], [4, 2, 1, 4], [5, 1, 4, 1], [10, 1, 4, 7], [10, 2, 4, 8], [20, 2, 4, 4]], 'element_repr_type': 'PC', 'elementary': 2, 'eulerian_function': 16380, 'exponent': 20, 'exponents_of_order': [5, 1], 'factors_of_aut_order': [2, 3], 'factors_of_order': [2, 5], 'faithful_reps': [], 'familial': False, 'frattini_label': '2.1', 'frattini_quotient': '80.52', 'hash': 229, 'hyperelementary': 2, 'inner_abelian': True, 'inner_cyclic': False, 'inner_exponent': 2, 'inner_gen_orders': [1, 1, 2, 2], 'inner_gens': [[1, 2, 4, 8], [1, 2, 4, 8], [1, 2, 4, 88], [1, 2, 84, 8]], 'inner_hash': 2, 'inner_nilpotent': True, 'inner_order': 4, 'inner_split': False, 'inner_tex': 'C_2^2', 'inner_used': [3, 4], 'irrC_degree': -1, 'irrQ_degree': -1, 'irrQ_dim': -1, 'irrR_degree': -1, 'irrep_stats': [[1, 80], [2, 20]], 'label': '160.229', 'linC_count': None, 'linC_degree': None, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': None, 'linQ_degree_count': None, 'linQ_dim': None, 'linQ_dim_count': None, 'linR_count': None, 'linR_degree': None, 'maximal_subgroups_known': True, 'metabelian': True, 'metacyclic': False, 'monomial': True, 'name': 'C20:C2^3', 'ngens': 6, 'nilpotency_class': 2, 'nilpotent': True, 'normal_counts': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 10, 'number_characteristic_subgroups': 10, 'number_conjugacy_classes': 100, 'number_divisions': 40, 'number_normal_subgroups': 156, 'number_subgroup_autclasses': 36, 'number_subgroup_classes': 236, 'number_subgroups': 316, 'old_label': None, 'order': 160, 'order_factorization_type': 51, 'order_stats': [[1, 1], [2, 23], [4, 8], [5, 4], [10, 92], [20, 32]], 'outer_abelian': False, 'outer_cyclic': False, 'outer_equivalence': True, 'outer_exponent': 12, 'outer_gen_orders': [4, 4, 6, 2], 'outer_gen_pows': [8, 0, 8, 0], 'outer_gens': [[2, 81, 127, 25], [82, 1, 126, 104], [83, 81, 127, 155], [82, 81, 7, 72]], 'outer_group': None, 'outer_hash': 1803395619856610067, 'outer_nilpotent': False, 'outer_order': 3072, 'outer_permdeg': 16, 'outer_perms': [4459987889422, 5672899790662, 2897125434120, 8221627008120], 'outer_solvable': True, 'outer_supersolvable': False, 'outer_tex': 'C_4\\times C_2^6.D_6', 'pc_rank': 4, 'perfect': False, 'permutation_degree': 13, 'pgroup': 0, 'primary_abelian_invariants': [2, 2, 2, 2, 5], 'quasisimple': False, 'rank': 4, 'rational': False, 'rational_characters_known': True, 'ratrep_stats': [[1, 16], [2, 4], [4, 16], [8, 4]], 'representations': {'PC': {'code': 770366876254211, 'gens': [1, 2, 3, 4], 'pres': [6, -2, -2, -2, -2, -2, -5, 543, 69, 88]}, 'GLZN': {'d': 2, 'p': 20, 'gens': [156209, 8201, 72009, 76219, 8081, 92301]}, 'Perm': {'d': 13, 'gens': [83503440, 482630400, 1037927520, 131760, 96, 1037836800]}}, 'schur_multiplier': [2, 2, 2, 2, 2, 2], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [2, 2, 2, 10], 'solvability_type': 4, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': True, 'sylow_subgroups_known': True, 'tex_name': 'C_{20}:C_2^3', 'transitive_degree': 80, 'wreath_data': None, 'wreath_product': False}