-
gps_subgroup_search • Show schema
Hide schema
{'Agroup': False, 'Zgroup': False, 'abelian': False, 'ambient': '7776.jv', 'ambient_counter': 256, 'ambient_order': 7776, 'ambient_tex': 'C_6^3:S_3^2', 'central': False, 'central_factor': True, 'centralizer_order': 48, 'characteristic': False, 'core_order': 162, 'counter': 301, 'cyclic': False, 'direct': True, 'hall': 0, 'label': '7776.jv.48.b1', 'maximal': False, 'maximal_normal': False, 'metabelian': False, 'metacyclic': False, 'minimal': False, 'minimal_normal': False, 'nilpotent': False, 'normal': True, 'old_label': '48.b1', 'outer_equivalence': True, 'perfect': False, 'proper': True, 'quotient': '48.48', 'quotient_Agroup': False, 'quotient_abelian': False, 'quotient_cyclic': False, 'quotient_hash': 48, 'quotient_metabelian': False, 'quotient_nilpotent': False, 'quotient_order': 48, 'quotient_simple': False, 'quotient_solvable': True, 'quotient_supersolvable': False, 'quotient_tex': 'C_2\\times S_4', 'simple': False, 'solvable': True, 'special_labels': [], 'split': True, 'standard_generators': False, 'stem': False, 'subgroup': '162.19', 'subgroup_hash': 19, 'subgroup_order': 162, 'subgroup_tex': 'C_3^3:S_3', 'supersolvable': True, 'sylow': 0}
-
gps_subgroup_data • Show schema
Hide schema
{'ambient': '7776.jv', 'aut_centralizer_order': None, 'aut_label': '48.b1', 'aut_quo_index': None, 'aut_stab_index': None, 'aut_weyl_group': None, 'aut_weyl_index': None, 'centralizer': '162.a1', 'complements': ['162.a1', '162.be1', '162.bf1', '162.bi1', '162.bh1', '162.br1'], 'conjugacy_class_count': 2, 'contained_in': ['16.c1', '24.a1', '24.w1', '24.bb1', '24.bj1'], 'contains': ['96.a1', '144.bf1', '144.bg1', '144.bh1'], 'core': '48.b1', 'coset_action_label': None, 'count': 2, 'diagramx': [3415, 7666, 3694, 7777], 'generators': [42, 2592, 2760, 6048, 144], 'label': '7776.jv.48.b1', 'mobius_quo': 0, 'mobius_sub': 24, 'normal_closure': '48.b1', 'normal_contained_in': ['12.h1', '24.a1'], 'normal_contains': ['96.a1'], 'normalizer': '1.a1', 'old_label': '48.b1', 'projective_image': '7776.jv', 'quotient_action_image': '1.1', 'quotient_action_kernel': '48.48', 'quotient_action_kernel_order': 48, 'quotient_fusion': None, 'short_label': '48.b1', 'subgroup_fusion': None, 'weyl_group': '162.19'}
-
gps_groups • Show schema
Hide schema
{'Agroup': False, 'Zgroup': False, 'abelian': False, 'abelian_quotient': '2.1', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 3, 'aut_exponent': 18, 'aut_gen_orders': [2, 3, 3, 3, 3, 3, 2], 'aut_gens': [[5833, 1027, 2923, 1291], [5833, 1243, 2923, 985], [5860, 1027, 2923, 1237], [6103, 1027, 2923, 3448], [5833, 1027, 2923, 1264], [5833, 1000, 2923, 1264], [3955, 5377, 2977, 5641], [5833, 1243, 5107, 5179]], 'aut_group': '972.445', 'aut_hash': 445, 'aut_nilpotency_class': -1, 'aut_nilpotent': False, 'aut_order': 972, 'aut_permdeg': 27, 'aut_perms': [50463413417535149069841485, 1301945555688420392059656992, 1619628849395203514698414746, 14298162886127572439862988, 262513999348652233736611272, 10827855490466235951255646445, 48601813148859558553094350], 'aut_phi_ratio': 18.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 27, 1, 1], [3, 2, 1, 1], [3, 3, 2, 1], [3, 6, 3, 1], [3, 18, 1, 1], [6, 27, 2, 1], [9, 18, 2, 1]], 'aut_supersolvable': True, 'aut_tex': 'C_3^3.S_3^2', 'autcent_abelian': True, 'autcent_cyclic': True, 'autcent_exponent': 1, 'autcent_group': '1.1', 'autcent_hash': 1, 'autcent_nilpotent': True, 'autcent_order': 1, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': True, 'autcent_tex': 'C_1', 'autcentquo_abelian': False, 'autcentquo_cyclic': False, 'autcentquo_exponent': 18, 'autcentquo_group': '972.445', 'autcentquo_hash': 445, 'autcentquo_nilpotent': False, 'autcentquo_order': 972, 'autcentquo_solvable': True, 'autcentquo_supersolvable': True, 'autcentquo_tex': 'C_3^3.S_3^2', 'cc_stats': [[1, 1, 1], [2, 27, 1], [3, 2, 1], [3, 3, 2], [3, 6, 3], [3, 18, 1], [6, 27, 2], [9, 18, 2]], 'center_label': '1.1', 'center_order': 1, 'central_product': False, 'central_quotient': '162.19', 'commutator_count': 1, 'commutator_label': '81.7', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1', '3.1', '3.1', '3.1', '3.1'], 'composition_length': 5, 'conjugacy_classes_known': True, 'counter': 19, 'cyclic': False, 'derived_length': 3, 'dihedral': False, 'direct_factorization': [], 'direct_product': False, 'div_stats': [[1, 1, 1, 1], [2, 27, 1, 1], [3, 2, 1, 1], [3, 3, 2, 1], [3, 6, 1, 3], [3, 18, 1, 1], [6, 27, 2, 1], [9, 18, 1, 2]], 'element_repr_type': 'GLZq', 'elementary': 1, 'eulerian_function': 2268, 'exponent': 18, 'exponents_of_order': [4, 1], 'factors_of_aut_order': [2, 3], 'factors_of_order': [2, 3], 'faithful_reps': [[6, 1, 3]], 'familial': False, 'frattini_label': '9.2', 'frattini_quotient': '18.4', 'hash': 19, 'hyperelementary': 1, 'inner_abelian': False, 'inner_cyclic': False, 'inner_exponent': 18, 'inner_gen_orders': [2, 3, 3, 9], 'inner_gens': [[5833, 1243, 2923, 985], [6103, 1027, 2923, 3475], [5833, 1027, 2923, 1237], [2014, 5377, 2977, 1291]], 'inner_hash': 19, 'inner_nilpotent': False, 'inner_order': 162, 'inner_split': True, 'inner_tex': 'C_3^3:S_3', 'inner_used': [1, 2, 3, 4], 'irrC_degree': 6, 'irrQ_degree': 6, 'irrQ_dim': 6, 'irrR_degree': 6, 'irrep_stats': [[1, 2], [2, 4], [3, 4], [6, 3]], 'label': '162.19', 'linC_count': 3, 'linC_degree': 6, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': 6, 'linQ_degree_count': 3, 'linQ_dim': 6, 'linQ_dim_count': 3, 'linR_count': 3, 'linR_degree': 6, 'maximal_subgroups_known': True, 'metabelian': False, 'metacyclic': False, 'monomial': True, 'name': 'C3^3:S3', 'ngens': 5, 'nilpotency_class': -1, 'nilpotent': False, 'normal_counts': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 8, 'number_characteristic_subgroups': 7, 'number_conjugacy_classes': 13, 'number_divisions': 11, 'number_normal_subgroups': 9, 'number_subgroup_autclasses': 28, 'number_subgroup_classes': 40, 'number_subgroups': 228, 'old_label': None, 'order': 162, 'order_factorization_type': 31, 'order_stats': [[1, 1], [2, 27], [3, 44], [6, 54], [9, 36]], 'outer_abelian': True, 'outer_cyclic': True, 'outer_equivalence': False, 'outer_exponent': 6, 'outer_gen_orders': [6], 'outer_gen_pows': [730], 'outer_gens': [[5833, 1000, 5107, 5143]], 'outer_group': '6.2', 'outer_hash': 2, 'outer_nilpotent': True, 'outer_order': 6, 'outer_permdeg': 5, 'outer_perms': [28], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'C_6', 'pc_rank': 4, 'perfect': False, 'permutation_degree': 9, 'pgroup': 0, 'primary_abelian_invariants': [2], 'quasisimple': False, 'rank': 3, 'rational': False, 'rational_characters_known': True, 'ratrep_stats': [[1, 2], [2, 4], [6, 5]], 'representations': {'PC': {'code': 62112103508040463, 'gens': [1, 2, 3, 4], 'pres': [5, -2, -3, -3, 3, -3, 41, 2043, 1328, 253, 78, 2704]}, 'GLZ': {'b': 3, 'd': 6, 'gens': [76907964209087038, 73199318300045728, 41624320394585264]}, 'GLFp': {'d': 4, 'p': 3, 'gens': [11444201, 11495158, 22274384, 7357854, 32319731]}, 'GLZq': {'d': 2, 'q': 9, 'gens': [739, 757, 3220, 5833, 2923]}, 'Perm': {'d': 9, 'gens': [5515, 276480, 147, 45364, 80884]}}, 'schur_multiplier': [], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [2], 'solvability_type': 10, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': True, 'sylow_subgroups_known': True, 'tex_name': 'C_3^3:S_3', 'transitive_degree': 9, 'wreath_data': None, 'wreath_product': False}
-
gps_groups • Show schema
Hide schema
{'Agroup': False, 'Zgroup': False, 'abelian': False, 'abelian_quotient': '8.5', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 3, 'aut_exponent': 36, 'aut_gen_orders': [6, 12, 6, 6, 6, 6], 'aut_gens': [[1, 2, 12, 72, 432], [6261, 6082, 12, 360, 5124], [4081, 3166, 5532, 6840, 5928], [6233, 3182, 204, 3960, 1260], [309, 7082, 5532, 6660, 3156], [337, 1114, 204, 4248, 3192], [297, 4630, 5340, 72, 540]], 'aut_group': None, 'aut_hash': 7651468306769606931, 'aut_nilpotency_class': -1, 'aut_nilpotent': False, 'aut_order': 93312, 'aut_permdeg': 66, 'aut_perms': [282804845978339080447998836825540887372657346871730082974886972680973889057140642325878049121, 121007795160202893854916703756924213043111554533086731800184928167121612400955120387519332501, 482673924725391725892073720652976040729861930707244985926982058857702993190847837304357246138, 287733258868832890448205721610029257170397525207526725260783315324962278005891463301356307587, 5826757683221887958303106948850469750647768838114094101892796506040493455277639575507162434, 8370540617792243106604347529685743369225487857597954444505455729057124583241602701341988181], 'aut_phi_ratio': 36.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [2, 3, 1, 2], [2, 6, 2, 1], [2, 27, 2, 1], [2, 81, 2, 1], [2, 162, 2, 1], [3, 2, 1, 1], [3, 3, 2, 1], [3, 6, 3, 1], [3, 8, 1, 1], [3, 16, 1, 1], [3, 18, 1, 1], [3, 24, 2, 1], [3, 48, 3, 1], [3, 144, 1, 1], [4, 6, 2, 1], [4, 162, 2, 1], [6, 2, 1, 1], [6, 3, 2, 1], [6, 6, 1, 2], [6, 6, 3, 1], [6, 8, 1, 1], [6, 9, 2, 2], [6, 12, 2, 1], [6, 16, 1, 1], [6, 18, 1, 1], [6, 18, 3, 2], [6, 18, 4, 1], [6, 24, 2, 1], [6, 27, 4, 1], [6, 36, 6, 1], [6, 48, 3, 1], [6, 54, 1, 2], [6, 81, 4, 1], [6, 108, 2, 1], [6, 144, 1, 1], [6, 162, 4, 1], [6, 216, 2, 1], [6, 216, 4, 1], [9, 18, 2, 1], [9, 144, 2, 1], [12, 12, 2, 1], [12, 18, 4, 1], [12, 36, 6, 1], [12, 108, 2, 1], [12, 162, 4, 1], [18, 18, 2, 1], [18, 54, 2, 2], [18, 108, 4, 1], [18, 144, 2, 1], [36, 108, 4, 1]], 'aut_supersolvable': False, 'aut_tex': 'C_6^2.C_3^4.C_2^5', 'autcent_abelian': True, 'autcent_cyclic': False, 'autcent_exponent': 2, 'autcent_group': '4.2', 'autcent_hash': 2, 'autcent_nilpotent': True, 'autcent_order': 4, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': True, 'autcent_tex': 'C_2^2', 'autcentquo_abelian': False, 'autcentquo_cyclic': False, 'autcentquo_exponent': 36, 'autcentquo_group': None, 'autcentquo_hash': 6340318746942157276, 'autcentquo_nilpotent': False, 'autcentquo_order': 23328, 'autcentquo_solvable': True, 'autcentquo_supersolvable': False, 'autcentquo_tex': 'C_6^2.C_3^4.C_2^3', 'cc_stats': [[1, 1, 1], [2, 1, 1], [2, 3, 2], [2, 6, 2], [2, 27, 2], [2, 81, 2], [2, 162, 2], [3, 2, 1], [3, 3, 2], [3, 6, 3], [3, 8, 1], [3, 16, 1], [3, 18, 1], [3, 24, 2], [3, 48, 3], [3, 144, 1], [4, 6, 2], [4, 162, 2], [6, 2, 1], [6, 3, 2], [6, 6, 5], [6, 8, 1], [6, 9, 4], [6, 12, 2], [6, 16, 1], [6, 18, 11], [6, 24, 2], [6, 27, 4], [6, 36, 6], [6, 48, 3], [6, 54, 2], [6, 81, 4], [6, 108, 2], [6, 144, 1], [6, 162, 4], [6, 216, 6], [9, 18, 2], [9, 144, 2], [12, 12, 2], [12, 18, 4], [12, 36, 6], [12, 108, 2], [12, 162, 4], [18, 18, 2], [18, 54, 4], [18, 108, 4], [18, 144, 2], [36, 108, 4]], 'center_label': '2.1', 'center_order': 2, 'central_product': True, 'central_quotient': '3888.jh', 'commutator_count': 1, 'commutator_label': '972.525', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1', '2.1', '2.1', '2.1', '2.1', '3.1', '3.1', '3.1', '3.1', '3.1'], 'composition_length': 10, 'conjugacy_classes_known': True, 'counter': 256, 'cyclic': False, 'derived_length': 3, 'dihedral': False, 'direct_factorization': [['162.19', 1], ['2.1', 1], ['24.12', 1]], 'direct_product': True, 'div_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [2, 3, 1, 2], [2, 6, 1, 2], [2, 27, 1, 2], [2, 81, 1, 2], [2, 162, 1, 2], [3, 2, 1, 1], [3, 3, 2, 1], [3, 6, 1, 3], [3, 8, 1, 1], [3, 16, 1, 1], [3, 18, 1, 1], [3, 24, 2, 1], [3, 48, 1, 3], [3, 144, 1, 1], [4, 6, 1, 2], [4, 162, 1, 2], [6, 2, 1, 1], [6, 3, 2, 1], [6, 6, 1, 5], [6, 8, 1, 1], [6, 9, 2, 2], [6, 12, 1, 2], [6, 16, 1, 1], [6, 18, 1, 7], [6, 18, 2, 2], [6, 24, 2, 1], [6, 27, 2, 2], [6, 36, 1, 6], [6, 48, 1, 3], [6, 54, 1, 2], [6, 81, 2, 2], [6, 108, 1, 2], [6, 144, 1, 1], [6, 162, 2, 2], [6, 216, 1, 2], [6, 216, 2, 2], [9, 18, 1, 2], [9, 144, 1, 2], [12, 12, 1, 2], [12, 18, 2, 2], [12, 36, 1, 6], [12, 108, 1, 2], [12, 162, 2, 2], [18, 18, 1, 2], [18, 54, 1, 4], [18, 108, 1, 4], [18, 144, 1, 2], [36, 108, 1, 4]], 'element_repr_type': 'PC', 'elementary': 1, 'eulerian_function': 816480, 'exponent': 36, 'exponents_of_order': [5, 5], 'factors_of_aut_order': [2, 3], 'factors_of_order': [2, 3], 'faithful_reps': [[18, 1, 6]], 'familial': False, 'frattini_label': '9.2', 'frattini_quotient': '864.4691', 'hash': 271183728978066164, 'hyperelementary': 1, 'inner_abelian': False, 'inner_cyclic': False, 'inner_exponent': 36, 'inner_gen_orders': [18, 6, 3, 6, 18], 'inner_gens': [[1, 7066, 2748, 6552, 432], [1157, 2, 5532, 3960, 1116], [5473, 5354, 12, 2664, 3168], [1297, 3890, 5196, 72, 3024], [1, 7598, 2892, 5256, 432]], 'inner_hash': 1865359641169939977, 'inner_nilpotent': False, 'inner_order': 3888, 'inner_split': True, 'inner_tex': 'C_3^3:S_3\\times S_4', 'inner_used': [1, 2, 3, 4], 'irrC_degree': 18, 'irrQ_degree': 18, 'irrQ_dim': 18, 'irrR_degree': 18, 'irrep_stats': [[1, 8], [2, 20], [3, 24], [4, 8], [6, 36], [9, 16], [12, 6], [18, 12]], 'label': '7776.jv', 'linC_count': None, 'linC_degree': None, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': None, 'linQ_degree_count': None, 'linQ_dim': None, 'linQ_dim_count': None, 'linR_count': None, 'linR_degree': None, 'maximal_subgroups_known': True, 'metabelian': False, 'metacyclic': False, 'monomial': True, 'name': 'C6^3:S3^2', 'ngens': 10, 'nilpotency_class': -1, 'nilpotent': False, 'normal_counts': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 58, 'number_characteristic_subgroups': 47, 'number_conjugacy_classes': 130, 'number_divisions': 110, 'number_normal_subgroups': 89, 'number_subgroup_autclasses': 1266, 'number_subgroup_classes': 3002, 'number_subgroups': 80746, 'old_label': None, 'order': 7776, 'order_factorization_type': 33, 'order_stats': [[1, 1], [2, 559], [3, 404], [4, 336], [6, 3572], [9, 324], [12, 1176], [18, 972], [36, 432]], 'outer_abelian': True, 'outer_cyclic': False, 'outer_equivalence': True, 'outer_exponent': 6, 'outer_gen_orders': [2, 2, 6], 'outer_gen_pows': [0, 0, 0], 'outer_gens': [[5377, 290, 2652, 360, 744], [5377, 326, 2652, 360, 744], [3493, 190, 2940, 3960, 2160]], 'outer_group': '24.15', 'outer_hash': 15, 'outer_nilpotent': True, 'outer_order': 24, 'outer_permdeg': 9, 'outer_perms': [40320, 720, 27], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'C_2^2\\times C_6', 'pc_rank': 5, 'perfect': False, 'permutation_degree': 15, 'pgroup': 0, 'primary_abelian_invariants': [2, 2, 2], 'quasisimple': False, 'rank': 3, 'rational': False, 'rational_characters_known': True, 'ratrep_stats': [[1, 8], [2, 20], [3, 8], [4, 8], [6, 36], [12, 10], [18, 20]], 'representations': {'PC': {'code': '35624107197229684526166280597460147191393645246111738832437255190306504829994333559374208255098257646673493016784306764697113866966022409215048551410859', 'gens': [1, 2, 4, 6, 8], 'pres': [10, 2, 2, 3, 2, 3, 2, 3, 2, 3, 3, 17280, 141321, 51, 164402, 109923, 110653, 26063, 113, 145204, 4814, 65124, 393125, 118815, 63205, 13355, 13185, 175, 372966, 31116, 8026, 44657, 117387, 21157, 11087, 3417, 3187, 237, 77778, 77788, 28118, 3828, 7618, 2228, 358, 259219]}, 'Perm': {'d': 15, 'gens': [147, 274468100972, 3634290, 178685, 87657654961, 316805, 6706344954, 6227337842, 80784, 240]}}, 'schur_multiplier': [2, 2, 2, 2], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [2, 2, 2], 'solvability_type': 11, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': False, 'sylow_subgroups_known': True, 'tex_name': 'C_6^3:S_3^2', 'transitive_degree': 54, 'wreath_data': None, 'wreath_product': False}
-
gps_groups • Show schema
Hide schema
{'Agroup': False, 'Zgroup': False, 'abelian': False, 'abelian_quotient': '4.2', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 3, 'aut_exponent': 12, 'aut_gen_orders': [2, 2, 3, 2, 2], 'aut_gens': [[143, 127, 576, 126, 121], [719, 127, 304, 126, 7], [16, 127, 576, 126, 121], [719, 127, 576, 7, 126], [143, 127, 702, 126, 121], [136, 127, 583, 126, 121]], 'aut_group': '48.48', 'aut_hash': 48, 'aut_nilpotency_class': -1, 'aut_nilpotent': False, 'aut_order': 48, 'aut_permdeg': 6, 'aut_perms': [269, 450, 244, 94, 444], 'aut_phi_ratio': 3.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [2, 3, 1, 2], [2, 6, 2, 1], [3, 8, 1, 1], [4, 6, 2, 1], [6, 8, 1, 1]], 'aut_supersolvable': False, 'aut_tex': 'C_2\\times S_4', 'autcent_abelian': True, 'autcent_cyclic': True, 'autcent_exponent': 2, 'autcent_group': '2.1', 'autcent_hash': 1, 'autcent_nilpotent': True, 'autcent_order': 2, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': True, 'autcent_tex': 'C_2', 'autcentquo_abelian': False, 'autcentquo_cyclic': False, 'autcentquo_exponent': 12, 'autcentquo_group': '24.12', 'autcentquo_hash': 12, 'autcentquo_nilpotent': False, 'autcentquo_order': 24, 'autcentquo_solvable': True, 'autcentquo_supersolvable': False, 'autcentquo_tex': 'S_4', 'cc_stats': [[1, 1, 1], [2, 1, 1], [2, 3, 2], [2, 6, 2], [3, 8, 1], [4, 6, 2], [6, 8, 1]], 'center_label': '2.1', 'center_order': 2, 'central_product': True, 'central_quotient': '24.12', 'commutator_count': 1, 'commutator_label': '12.3', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1', '2.1', '2.1', '2.1', '3.1'], 'composition_length': 5, 'conjugacy_classes_known': True, 'counter': 48, 'cyclic': False, 'derived_length': 3, 'dihedral': False, 'direct_factorization': [['2.1', 1], ['24.12', 1]], 'direct_product': True, 'div_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [2, 3, 1, 2], [2, 6, 1, 2], [3, 8, 1, 1], [4, 6, 1, 2], [6, 8, 1, 1]], 'element_repr_type': 'Perm', 'elementary': 1, 'eulerian_function': 9, 'exponent': 12, 'exponents_of_order': [4, 1], 'factors_of_aut_order': [2, 3], 'factors_of_order': [2, 3], 'faithful_reps': [[3, 1, 2]], 'familial': True, 'frattini_label': '1.1', 'frattini_quotient': '48.48', 'hash': 48, 'hyperelementary': 1, 'inner_abelian': False, 'inner_cyclic': False, 'inner_exponent': 12, 'inner_gen_orders': [2, 1, 3, 2, 2], 'inner_gens': [[143, 127, 304, 121, 126], [143, 127, 576, 126, 121], [415, 127, 576, 121, 7], [136, 127, 697, 126, 121], [136, 127, 583, 126, 121]], 'inner_hash': 12, 'inner_nilpotent': False, 'inner_order': 24, 'inner_split': True, 'inner_tex': 'S_4', 'inner_used': [1, 3, 4], 'irrC_degree': 3, 'irrQ_degree': 3, 'irrQ_dim': 3, 'irrR_degree': 3, 'irrep_stats': [[1, 4], [2, 2], [3, 4]], 'label': '48.48', 'linC_count': 2, 'linC_degree': 3, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': 3, 'linQ_degree_count': 2, 'linQ_dim': 3, 'linQ_dim_count': 2, 'linR_count': 2, 'linR_degree': 3, 'maximal_subgroups_known': True, 'metabelian': False, 'metacyclic': False, 'monomial': True, 'name': 'C2*S4', 'ngens': 5, 'nilpotency_class': -1, 'nilpotent': False, 'normal_counts': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 8, 'number_characteristic_subgroups': 7, 'number_conjugacy_classes': 10, 'number_divisions': 10, 'number_normal_subgroups': 9, 'number_subgroup_autclasses': 26, 'number_subgroup_classes': 33, 'number_subgroups': 98, 'old_label': None, 'order': 48, 'order_factorization_type': 31, 'order_stats': [[1, 1], [2, 19], [3, 8], [4, 12], [6, 8]], 'outer_abelian': True, 'outer_cyclic': True, 'outer_equivalence': False, 'outer_exponent': 2, 'outer_gen_orders': [2], 'outer_gen_pows': [0], 'outer_gens': [[16, 127, 576, 126, 121]], 'outer_group': '2.1', 'outer_hash': 1, 'outer_nilpotent': True, 'outer_order': 2, 'outer_permdeg': 2, 'outer_perms': [1], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'C_2', 'pc_rank': 4, 'perfect': False, 'permutation_degree': 6, 'pgroup': 0, 'primary_abelian_invariants': [2, 2], 'quasisimple': False, 'rank': 2, 'rational': True, 'rational_characters_known': True, 'ratrep_stats': [[1, 4], [2, 2], [3, 4]], 'representations': {'PC': {'code': 44643202623812656708, 'gens': [1, 2, 4, 5], 'pres': [5, -2, -2, -3, -2, 2, 101, 26, 122, 483, 248, 193, 304, 459, 89]}, 'GLZ': {'b': 3, 'd': 3, 'gens': [10320, 9038]}, 'Lie': [{'d': 3, 'q': 3, 'gens': [1557, 1699, 13205], 'family': 'GO'}, {'d': 3, 'q': 3, 'gens': [1557, 1699, 13205], 'family': 'CO'}], 'GLFp': {'d': 3, 'p': 3, 'gens': [16120, 18391, 13286, 6922, 13843]}, 'Perm': {'d': 6, 'gens': [143, 127, 576, 126, 121]}}, 'schur_multiplier': [2, 2], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [2, 2], 'solvability_type': 11, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': False, 'sylow_subgroups_known': True, 'tex_name': 'C_2\\times S_4', 'transitive_degree': 6, 'wreath_data': ['24.b1.a1', '8.b1.a1', '24.d1.a1', '3T2'], 'wreath_product': True}