-
gps_subgroup_search • Show schema
Hide schema
{'Agroup': True, 'Zgroup': False, 'abelian': True, 'ambient': '64.183', 'ambient_counter': 183, 'ambient_order': 64, 'ambient_tex': 'C_2^2\\times C_{16}', 'central': True, 'central_factor': False, 'centralizer_order': 64, 'characteristic': False, 'core_order': 4, 'counter': 35, 'cyclic': False, 'direct': True, 'hall': 0, 'label': '64.183.16.b1.b1', 'maximal': False, 'maximal_normal': False, 'metabelian': True, 'metacyclic': True, 'minimal': False, 'minimal_normal': False, 'nilpotent': True, 'normal': True, 'old_label': '16.b1.b1', 'outer_equivalence': False, 'perfect': False, 'proper': True, 'quotient': '16.1', 'quotient_Agroup': True, 'quotient_abelian': True, 'quotient_cyclic': True, 'quotient_hash': 1, 'quotient_metabelian': True, 'quotient_nilpotent': True, 'quotient_order': 16, 'quotient_simple': False, 'quotient_solvable': True, 'quotient_supersolvable': True, 'quotient_tex': 'C_{16}', 'simple': False, 'solvable': True, 'special_labels': [], 'split': True, 'standard_generators': False, 'stem': False, 'subgroup': '4.2', 'subgroup_hash': 2, 'subgroup_order': 4, 'subgroup_tex': 'C_2^2', 'supersolvable': True, 'sylow': 0}
-
gps_subgroup_data • Show schema
Hide schema
{'ambient': '64.183', 'aut_centralizer_order': 32, 'aut_label': '16.b1', 'aut_quo_index': 1, 'aut_stab_index': 4, 'aut_weyl_group': '6.1', 'aut_weyl_index': 128, 'centralizer': '1.a1.a1', 'complements': ['4.d1.a1', '4.d1.c1', '4.d1.b1', '4.d1.d1'], 'conjugacy_class_count': 1, 'contained_in': ['8.c1.a1'], 'contains': ['32.a1.a1', '32.a1.d1', '32.a1.f1'], 'core': '16.b1.b1', 'coset_action_label': None, 'count': 1, 'diagramx': [825, 825, 9648, 9648, 821, 821, 9841, 9841], 'generators': [33, 2], 'label': '64.183.16.b1.b1', 'mobius_quo': 2, 'mobius_sub': 0, 'normal_closure': '16.b1.b1', 'normal_contained_in': ['8.c1.a1'], 'normal_contains': ['32.a1.f1', '32.a1.a1', '32.a1.d1'], 'normalizer': '1.a1.a1', 'old_label': '16.b1.b1', 'projective_image': '16.1', 'quotient_action_image': '1.1', 'quotient_action_kernel': '16.1', 'quotient_action_kernel_order': 16, 'quotient_fusion': None, 'short_label': '16.b1.b1', 'subgroup_fusion': None, 'weyl_group': '1.1'}
-
gps_groups • Show schema
Hide schema
{'Agroup': True, 'Zgroup': False, 'abelian': True, 'abelian_quotient': '4.2', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 2, 'aut_exponent': 6, 'aut_gen_orders': [2, 3], 'aut_gens': [[1, 2], [3, 2], [2, 3]], 'aut_group': '6.1', 'aut_hash': 1, 'aut_nilpotency_class': -1, 'aut_nilpotent': False, 'aut_order': 6, 'aut_permdeg': 3, 'aut_perms': [1, 4], 'aut_phi_ratio': 3.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 1, 3, 1]], 'aut_supersolvable': True, 'aut_tex': 'S_3', 'autcent_abelian': False, 'autcent_cyclic': False, 'autcent_exponent': 6, 'autcent_group': '6.1', 'autcent_hash': 1, 'autcent_nilpotent': False, 'autcent_order': 6, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': True, 'autcent_tex': 'S_3', 'autcentquo_abelian': True, 'autcentquo_cyclic': True, 'autcentquo_exponent': 1, 'autcentquo_group': '1.1', 'autcentquo_hash': 1, 'autcentquo_nilpotent': True, 'autcentquo_order': 1, 'autcentquo_solvable': True, 'autcentquo_supersolvable': True, 'autcentquo_tex': 'C_1', 'cc_stats': [[1, 1, 1], [2, 1, 3]], 'center_label': '4.2', 'center_order': 4, 'central_product': True, 'central_quotient': '1.1', 'commutator_count': 0, 'commutator_label': '1.1', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1', '2.1'], 'composition_length': 2, 'conjugacy_classes_known': True, 'counter': 2, 'cyclic': False, 'derived_length': 1, 'dihedral': True, 'direct_factorization': [['2.1', 2]], 'direct_product': True, 'div_stats': [[1, 1, 1, 1], [2, 1, 1, 3]], 'element_repr_type': 'PC', 'elementary': 2, 'eulerian_function': 1, 'exponent': 2, 'exponents_of_order': [2], 'factors_of_aut_order': [2, 3], 'factors_of_order': [2], 'faithful_reps': [], 'familial': True, 'frattini_label': '1.1', 'frattini_quotient': '4.2', 'hash': 2, 'hyperelementary': 2, 'inner_abelian': True, 'inner_cyclic': True, 'inner_exponent': 1, 'inner_gen_orders': [1, 1], 'inner_gens': [[1, 2], [1, 2]], 'inner_hash': 1, 'inner_nilpotent': True, 'inner_order': 1, 'inner_split': True, 'inner_tex': 'C_1', 'inner_used': [], 'irrC_degree': -1, 'irrQ_degree': -1, 'irrQ_dim': -1, 'irrR_degree': -1, 'irrep_stats': [[1, 4]], 'label': '4.2', 'linC_count': 3, 'linC_degree': 2, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': 2, 'linQ_degree_count': 3, 'linQ_dim': 2, 'linQ_dim_count': 3, 'linR_count': 3, 'linR_degree': 2, 'maximal_subgroups_known': True, 'metabelian': True, 'metacyclic': True, 'monomial': True, 'name': 'C2^2', 'ngens': 2, 'nilpotency_class': 1, 'nilpotent': True, 'normal_counts': [0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 2, 'number_characteristic_subgroups': 2, 'number_conjugacy_classes': 4, 'number_divisions': 4, 'number_normal_subgroups': 5, 'number_subgroup_autclasses': 3, 'number_subgroup_classes': 5, 'number_subgroups': 5, 'old_label': None, 'order': 4, 'order_factorization_type': 2, 'order_stats': [[1, 1], [2, 3]], 'outer_abelian': False, 'outer_cyclic': False, 'outer_equivalence': False, 'outer_exponent': 6, 'outer_gen_orders': [2, 3], 'outer_gen_pows': [0, 0], 'outer_gens': [[3, 2], [2, 3]], 'outer_group': '6.1', 'outer_hash': 1, 'outer_nilpotent': False, 'outer_order': 6, 'outer_permdeg': 3, 'outer_perms': [1, 4], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'S_3', 'pc_rank': 2, 'perfect': False, 'permutation_degree': 4, 'pgroup': 2, 'primary_abelian_invariants': [2, 2], 'quasisimple': False, 'rank': 2, 'rational': True, 'rational_characters_known': True, 'ratrep_stats': [[1, 4]], 'representations': {'PC': {'code': 0, 'gens': [1, 2], 'pres': [2, -2, 2]}, 'GLZ': {'b': 3, 'd': 2, 'gens': [14, 12]}, 'GLFp': {'d': 2, 'p': 3, 'gens': [55, 56]}, 'Perm': {'d': 4, 'gens': [6, 1]}}, 'schur_multiplier': [2], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [2, 2], 'solvability_type': 1, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': True, 'sylow_subgroups_known': True, 'tex_name': 'C_2^2', 'transitive_degree': 4, 'wreath_data': None, 'wreath_product': False}
-
gps_groups • Show schema
Hide schema
{'Agroup': True, 'Zgroup': False, 'abelian': True, 'abelian_quotient': '64.183', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 4, 'aut_exponent': 12, 'aut_gen_orders': [2, 2, 4, 3, 2, 2, 2, 2, 2], 'aut_gens': [[1, 2, 4], [3, 2, 4], [1, 2, 28], [1, 2, 12], [2, 3, 5], [1, 34, 36], [33, 2, 4], [1, 2, 5], [1, 2, 6], [1, 2, 36]], 'aut_group': '768.1090215', 'aut_hash': 1090215, 'aut_nilpotency_class': -1, 'aut_nilpotent': False, 'aut_order': 768, 'aut_permdeg': 18, 'aut_perms': [85092497694055, 1, 819074715523560, 189743871462480, 2567105332778526, 1516205100373248, 361313303949726, 3677548499212488, 1200485585577960], 'aut_phi_ratio': 24.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [2, 1, 6, 1], [4, 1, 2, 1], [4, 1, 6, 1], [8, 1, 4, 1], [8, 1, 12, 1], [16, 1, 32, 1]], 'aut_supersolvable': False, 'aut_tex': '(C_2^3\\times C_4):S_4', 'autcent_abelian': False, 'autcent_cyclic': False, 'autcent_exponent': 12, 'autcent_group': '768.1090215', 'autcent_hash': 1090215, 'autcent_nilpotent': False, 'autcent_order': 768, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': False, 'autcent_tex': '(C_2^3\\times C_4):S_4', 'autcentquo_abelian': True, 'autcentquo_cyclic': True, 'autcentquo_exponent': 1, 'autcentquo_group': '1.1', 'autcentquo_hash': 1, 'autcentquo_nilpotent': True, 'autcentquo_order': 1, 'autcentquo_solvable': True, 'autcentquo_supersolvable': True, 'autcentquo_tex': 'C_1', 'cc_stats': [[1, 1, 1], [2, 1, 7], [4, 1, 8], [8, 1, 16], [16, 1, 32]], 'center_label': '64.183', 'center_order': 64, 'central_product': True, 'central_quotient': '1.1', 'commutator_count': 0, 'commutator_label': '1.1', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1', '2.1', '2.1', '2.1', '2.1', '2.1'], 'composition_length': 6, 'conjugacy_classes_known': True, 'counter': 183, 'cyclic': False, 'derived_length': 1, 'dihedral': False, 'direct_factorization': [['16.1', 1], ['2.1', 2]], 'direct_product': True, 'div_stats': [[1, 1, 1, 1], [2, 1, 1, 7], [4, 1, 2, 4], [8, 1, 4, 4], [16, 1, 8, 4]], 'element_repr_type': 'PC', 'elementary': 2, 'eulerian_function': 112, 'exponent': 16, 'exponents_of_order': [6], 'factors_of_aut_order': [2, 3], 'factors_of_order': [2], 'faithful_reps': [], 'familial': False, 'frattini_label': '8.1', 'frattini_quotient': '8.5', 'hash': 183, 'hyperelementary': 2, 'inner_abelian': True, 'inner_cyclic': True, 'inner_exponent': 1, 'inner_gen_orders': [1, 1, 1], 'inner_gens': [[1, 2, 4], [1, 2, 4], [1, 2, 4]], 'inner_hash': 1, 'inner_nilpotent': True, 'inner_order': 1, 'inner_split': True, 'inner_tex': 'C_1', 'inner_used': [], 'irrC_degree': -1, 'irrQ_degree': -1, 'irrQ_dim': -1, 'irrR_degree': -1, 'irrep_stats': [[1, 64]], 'label': '64.183', 'linC_count': 14336, 'linC_degree': 3, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': 10, 'linQ_degree_count': 48, 'linQ_dim': 10, 'linQ_dim_count': 48, 'linR_count': 192, 'linR_degree': 4, 'maximal_subgroups_known': True, 'metabelian': True, 'metacyclic': False, 'monomial': True, 'name': 'C2^2*C16', 'ngens': 3, 'nilpotency_class': 1, 'nilpotent': True, 'normal_counts': [0, 0, 0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 8, 'number_characteristic_subgroups': 8, 'number_conjugacy_classes': 64, 'number_divisions': 20, 'number_normal_subgroups': 49, 'number_subgroup_autclasses': 19, 'number_subgroup_classes': 49, 'number_subgroups': 49, 'old_label': None, 'order': 64, 'order_factorization_type': 3, 'order_stats': [[1, 1], [2, 7], [4, 8], [8, 16], [16, 32]], 'outer_abelian': False, 'outer_cyclic': False, 'outer_equivalence': False, 'outer_exponent': 12, 'outer_gen_orders': [2, 2, 4, 3, 2, 2, 2, 2, 2], 'outer_gen_pows': [0, 0, 0, 0, 0, 0, 0, 0, 0], 'outer_gens': [[3, 2, 4], [1, 2, 28], [1, 2, 12], [2, 3, 5], [1, 34, 36], [33, 2, 4], [1, 2, 5], [1, 2, 6], [1, 2, 36]], 'outer_group': '768.1090215', 'outer_hash': 1090215, 'outer_nilpotent': False, 'outer_order': 768, 'outer_permdeg': 18, 'outer_perms': [85092497694055, 1, 819074715523560, 189743871462480, 2567105332778526, 1516205100373248, 361313303949726, 3677548499212488, 1200485585577960], 'outer_solvable': True, 'outer_supersolvable': False, 'outer_tex': '(C_2^3\\times C_4):S_4', 'pc_rank': 3, 'perfect': False, 'permutation_degree': 20, 'pgroup': 2, 'primary_abelian_invariants': [2, 2, 16], 'quasisimple': False, 'rank': 3, 'rational': False, 'rational_characters_known': True, 'ratrep_stats': [[1, 8], [2, 4], [4, 4], [8, 4]], 'representations': {'PC': {'code': 4433379356, 'gens': [1, 2, 3], 'pres': [6, -2, 2, 2, -2, -2, -2, 50, 69, 88]}, 'GLZN': {'d': 2, 'p': 21, 'gens': [39958, 120406, 9269, 74096, 43861, 38503]}, 'GLZq': {'d': 2, 'q': 16, 'gens': [14903, 28679, 36873, 37985, 4225, 39113]}, 'Perm': {'d': 20, 'gens': [20916435456000, 121645100408832000, 355687428096000, 9703614452976, 4097506710982, 1313941673647]}}, 'schur_multiplier': [2, 2, 2], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [2, 2, 16], 'solvability_type': 2, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': True, 'sylow_subgroups_known': True, 'tex_name': 'C_2^2\\times C_{16}', 'transitive_degree': 64, 'wreath_data': None, 'wreath_product': False}
-
gps_groups • Show schema
Hide schema
{'Agroup': True, 'Zgroup': True, 'abelian': True, 'abelian_quotient': '16.1', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': True, 'aut_cyclic': False, 'aut_derived_length': 1, 'aut_exponent': 4, 'aut_gen_orders': [2, 4], 'aut_gens': [[1], [15], [3]], 'aut_group': '8.2', 'aut_hash': 2, 'aut_nilpotency_class': 1, 'aut_nilpotent': True, 'aut_order': 8, 'aut_permdeg': 6, 'aut_perms': [120, 130], 'aut_phi_ratio': 1.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [4, 1, 2, 1], [8, 1, 4, 1], [16, 1, 8, 1]], 'aut_supersolvable': True, 'aut_tex': 'C_2\\times C_4', 'autcent_abelian': True, 'autcent_cyclic': False, 'autcent_exponent': 4, 'autcent_group': '8.2', 'autcent_hash': 2, 'autcent_nilpotent': True, 'autcent_order': 8, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': True, 'autcent_tex': 'C_2\\times C_4', 'autcentquo_abelian': True, 'autcentquo_cyclic': True, 'autcentquo_exponent': 1, 'autcentquo_group': '1.1', 'autcentquo_hash': 1, 'autcentquo_nilpotent': True, 'autcentquo_order': 1, 'autcentquo_solvable': True, 'autcentquo_supersolvable': True, 'autcentquo_tex': 'C_1', 'cc_stats': [[1, 1, 1], [2, 1, 1], [4, 1, 2], [8, 1, 4], [16, 1, 8]], 'center_label': '16.1', 'center_order': 16, 'central_product': False, 'central_quotient': '1.1', 'commutator_count': 0, 'commutator_label': '1.1', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1', '2.1', '2.1', '2.1'], 'composition_length': 4, 'conjugacy_classes_known': True, 'counter': 1, 'cyclic': True, 'derived_length': 1, 'dihedral': False, 'direct_factorization': [], 'direct_product': False, 'div_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [4, 1, 2, 1], [8, 1, 4, 1], [16, 1, 8, 1]], 'element_repr_type': 'PC', 'elementary': 2, 'eulerian_function': 1, 'exponent': 16, 'exponents_of_order': [4], 'factors_of_aut_order': [2], 'factors_of_order': [2], 'faithful_reps': [[1, 0, 8]], 'familial': True, 'frattini_label': '8.1', 'frattini_quotient': '2.1', 'hash': 1, 'hyperelementary': 2, 'inner_abelian': True, 'inner_cyclic': True, 'inner_exponent': 1, 'inner_gen_orders': [1], 'inner_gens': [[1]], 'inner_hash': 1, 'inner_nilpotent': True, 'inner_order': 1, 'inner_split': True, 'inner_tex': 'C_1', 'inner_used': [], 'irrC_degree': 1, 'irrQ_degree': 8, 'irrQ_dim': 8, 'irrR_degree': 2, 'irrep_stats': [[1, 16]], 'label': '16.1', 'linC_count': 8, 'linC_degree': 1, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': 8, 'linQ_degree_count': 1, 'linQ_dim': 8, 'linQ_dim_count': 1, 'linR_count': 4, 'linR_degree': 2, 'maximal_subgroups_known': True, 'metabelian': True, 'metacyclic': True, 'monomial': True, 'name': 'C16', 'ngens': 1, 'nilpotency_class': 1, 'nilpotent': True, 'normal_counts': [0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 5, 'number_characteristic_subgroups': 5, 'number_conjugacy_classes': 16, 'number_divisions': 5, 'number_normal_subgroups': 5, 'number_subgroup_autclasses': 5, 'number_subgroup_classes': 5, 'number_subgroups': 5, 'old_label': None, 'order': 16, 'order_factorization_type': 3, 'order_stats': [[1, 1], [2, 1], [4, 2], [8, 4], [16, 8]], 'outer_abelian': True, 'outer_cyclic': False, 'outer_equivalence': False, 'outer_exponent': 4, 'outer_gen_orders': [2, 4], 'outer_gen_pows': [0, 0], 'outer_gens': [[15], [3]], 'outer_group': '8.2', 'outer_hash': 2, 'outer_nilpotent': True, 'outer_order': 8, 'outer_permdeg': 6, 'outer_perms': [120, 130], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'C_2\\times C_4', 'pc_rank': 1, 'perfect': False, 'permutation_degree': 16, 'pgroup': 2, 'primary_abelian_invariants': [16], 'quasisimple': False, 'rank': 1, 'rational': False, 'rational_characters_known': True, 'ratrep_stats': [[1, 2], [2, 1], [4, 1], [8, 1]], 'representations': {'PC': {'code': 149511, 'gens': [1], 'pres': [4, -2, -2, -2, -2, 8, 21, 34]}, 'GLFp': {'d': 2, 'p': 7, 'gens': [1860]}, 'Perm': {'d': 16, 'gens': [20916435456000, 9703614452976, 4097506710982, 1313941673647]}}, 'schur_multiplier': [], 'semidirect_product': False, 'simple': False, 'smith_abelian_invariants': [16], 'solvability_type': 0, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': True, 'sylow_subgroups_known': True, 'tex_name': 'C_{16}', 'transitive_degree': 16, 'wreath_data': None, 'wreath_product': False}