-
gps_subgroup_search • Show schema
Hide schema
{'Agroup': True, 'Zgroup': False, 'abelian': True, 'ambient': '6144.bb', 'ambient_counter': 28, 'ambient_order': 6144, 'ambient_tex': 'C_4^4.C_{24}', 'central': False, 'central_factor': False, 'centralizer_order': 1536, 'characteristic': False, 'core_order': 16, 'counter': 933, 'cyclic': False, 'direct': None, 'hall': 0, 'label': '6144.bb.192.HH', 'maximal': False, 'maximal_normal': False, 'metabelian': True, 'metacyclic': True, 'minimal': False, 'minimal_normal': False, 'nilpotent': True, 'normal': False, 'old_label': '192.hg1', 'outer_equivalence': True, 'perfect': False, 'proper': True, 'quotient': None, 'quotient_Agroup': None, 'quotient_abelian': None, 'quotient_cyclic': None, 'quotient_hash': None, 'quotient_metabelian': None, 'quotient_nilpotent': None, 'quotient_order': 192, 'quotient_simple': None, 'quotient_solvable': None, 'quotient_supersolvable': None, 'quotient_tex': None, 'simple': False, 'solvable': True, 'special_labels': [], 'split': None, 'standard_generators': False, 'stem': False, 'subgroup': '32.16', 'subgroup_hash': 16, 'subgroup_order': 32, 'subgroup_tex': 'C_2\\times C_{16}', 'supersolvable': True, 'sylow': 0}
-
gps_subgroup_data • Show schema
Hide schema
{'ambient': '6144.bb', 'aut_centralizer_order': None, 'aut_label': '192.HH', 'aut_quo_index': None, 'aut_stab_index': None, 'aut_weyl_group': None, 'aut_weyl_index': None, 'centralizer': '4.H', 'complements': None, 'conjugacy_class_count': 4, 'contained_in': ['64.Q', '96.DW', '96.EN', '96.GY', '96.IF', '96.IH'], 'contains': ['384.K', '384.HS'], 'core': '384.K', 'coset_action_label': None, 'count': 16, 'diagramx': None, 'generators': [641733, 49681], 'label': '6144.bb.192.HH', 'mobius_quo': None, 'mobius_sub': None, 'normal_closure': '24.F', 'normal_contained_in': None, 'normal_contains': None, 'normalizer': '4.H', 'old_label': '192.hg1', 'projective_image': '384.18167', 'quotient_action_image': None, 'quotient_action_kernel': None, 'quotient_action_kernel_order': None, 'quotient_fusion': None, 'short_label': '192.HH', 'subgroup_fusion': None, 'weyl_group': '1.1'}
-
gps_groups • Show schema
Hide schema
{'Agroup': True, 'Zgroup': False, 'abelian': True, 'abelian_quotient': '32.16', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 2, 'aut_exponent': 4, 'aut_gen_orders': [4, 2, 2, 4, 2], 'aut_gens': [[1, 2], [17, 15], [1, 3], [1, 30], [1, 10], [1, 14]], 'aut_group': '32.48', 'aut_hash': 48, 'aut_nilpotency_class': 2, 'aut_nilpotent': True, 'aut_order': 32, 'aut_permdeg': 10, 'aut_perms': [455286, 374406, 1270441, 859248, 1], 'aut_phi_ratio': 2.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [2, 1, 2, 1], [4, 1, 2, 2], [8, 1, 4, 2], [16, 1, 16, 1]], 'aut_supersolvable': True, 'aut_tex': 'D_4:C_2^2', 'autcent_abelian': False, 'autcent_cyclic': False, 'autcent_exponent': 4, 'autcent_group': '32.48', 'autcent_hash': 48, 'autcent_nilpotent': True, 'autcent_order': 32, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': True, 'autcent_tex': 'D_4:C_2^2', 'autcentquo_abelian': True, 'autcentquo_cyclic': True, 'autcentquo_exponent': 1, 'autcentquo_group': '1.1', 'autcentquo_hash': 1, 'autcentquo_nilpotent': True, 'autcentquo_order': 1, 'autcentquo_solvable': True, 'autcentquo_supersolvable': True, 'autcentquo_tex': 'C_1', 'cc_stats': [[1, 1, 1], [2, 1, 3], [4, 1, 4], [8, 1, 8], [16, 1, 16]], 'center_label': '32.16', 'center_order': 32, 'central_product': True, 'central_quotient': '1.1', 'commutator_count': 0, 'commutator_label': '1.1', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1', '2.1', '2.1', '2.1', '2.1'], 'composition_length': 5, 'conjugacy_classes_known': True, 'counter': 16, 'cyclic': False, 'derived_length': 1, 'dihedral': False, 'direct_factorization': [['16.1', 1], ['2.1', 1]], 'direct_product': True, 'div_stats': [[1, 1, 1, 1], [2, 1, 1, 3], [4, 1, 2, 2], [8, 1, 4, 2], [16, 1, 8, 2]], 'element_repr_type': 'PC', 'elementary': 2, 'eulerian_function': 12, 'exponent': 16, 'exponents_of_order': [5], 'factors_of_aut_order': [2], 'factors_of_order': [2], 'faithful_reps': [], 'familial': False, 'frattini_label': '8.1', 'frattini_quotient': '4.2', 'hash': 16, 'hyperelementary': 2, 'inner_abelian': True, 'inner_cyclic': True, 'inner_exponent': 1, 'inner_gen_orders': [1, 1], 'inner_gens': [[1, 2], [1, 2]], 'inner_hash': 1, 'inner_nilpotent': True, 'inner_order': 1, 'inner_split': True, 'inner_tex': 'C_1', 'inner_used': [], 'irrC_degree': -1, 'irrQ_degree': -1, 'irrQ_dim': -1, 'irrR_degree': -1, 'irrep_stats': [[1, 32]], 'label': '32.16', 'linC_count': 192, 'linC_degree': 2, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': 9, 'linQ_degree_count': 4, 'linQ_dim': 9, 'linQ_dim_count': 4, 'linR_count': 16, 'linR_degree': 3, 'maximal_subgroups_known': True, 'metabelian': True, 'metacyclic': True, 'monomial': True, 'name': 'C2*C16', 'ngens': 2, 'nilpotency_class': 1, 'nilpotent': True, 'normal_counts': [0, 0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 8, 'number_characteristic_subgroups': 10, 'number_conjugacy_classes': 32, 'number_divisions': 10, 'number_normal_subgroups': 14, 'number_subgroup_autclasses': 12, 'number_subgroup_classes': 14, 'number_subgroups': 14, 'old_label': None, 'order': 32, 'order_factorization_type': 3, 'order_stats': [[1, 1], [2, 3], [4, 4], [8, 8], [16, 16]], 'outer_abelian': False, 'outer_cyclic': False, 'outer_equivalence': False, 'outer_exponent': 4, 'outer_gen_orders': [4, 2, 2, 4, 2], 'outer_gen_pows': [0, 0, 0, 0, 0], 'outer_gens': [[17, 15], [1, 3], [1, 30], [1, 10], [1, 14]], 'outer_group': '32.48', 'outer_hash': 48, 'outer_nilpotent': True, 'outer_order': 32, 'outer_permdeg': 10, 'outer_perms': [455286, 374406, 1270441, 859248, 1], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'D_4:C_2^2', 'pc_rank': 2, 'perfect': False, 'permutation_degree': 18, 'pgroup': 2, 'primary_abelian_invariants': [2, 16], 'quasisimple': False, 'rank': 2, 'rational': False, 'rational_characters_known': True, 'ratrep_stats': [[1, 4], [2, 2], [4, 2], [8, 2]], 'representations': {'PC': {'code': 17891342, 'gens': [1, 2], 'pres': [5, -2, 2, -2, -2, -2, 26, 42, 58]}, 'GLFp': {'d': 2, 'p': 17, 'gens': [19665, 14742]}, 'Perm': {'d': 18, 'gens': [20916435456000, 355687428096000, 9703614452976, 4097506710982, 1313941673647]}}, 'schur_multiplier': [2], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [2, 16], 'solvability_type': 1, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': True, 'sylow_subgroups_known': True, 'tex_name': 'C_2\\times C_{16}', 'transitive_degree': 32, 'wreath_data': None, 'wreath_product': False}
-
gps_groups • Show schema
Hide schema
{'Agroup': False, 'Zgroup': False, 'abelian': False, 'abelian_quotient': '384.5396', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 3, 'aut_exponent': 24, 'aut_gen_orders': [8, 8, 12, 8, 4, 8, 6, 12], 'aut_gens': [[998829, 754463, 1032711, 500487, 1032735], [55022, 500247, 753695, 762639, 508431], [368314, 245791, 508679, 762127, 1032223], [353395, 819713, 582169, 303377, 492047], [317174, 1016583, 516615, 254751, 507935], [62710, 253967, 507927, 500487, 491551], [241202, 33033, 40985, 844561, 1016351], [620015, 581657, 557833, 303361, 1032223], [745141, 303105, 819457, 582425, 1016335]], 'aut_group': None, 'aut_hash': 9173326487122815049, 'aut_nilpotency_class': -1, 'aut_nilpotent': False, 'aut_order': 1572864, 'aut_permdeg': 288, 'aut_perms': [332859700513462847681775643940270319122098774287911681390047133920550815983898241732011226590297203655884435824053158197549965305993996026157971986563079779937639263038185632478176369006064620684382268674967782772302095180120387790891136786443826060892152846719359627969323305158234463728582563090285291894562347279454995323479959695549959781111669361786433276752431323335273855402765409734113720412005054112689606848807683511448029034776494223963721806266959679792333758585297009170405386290201512218500332918776728233416953607539967123813661481499720328824500775019347319458619738711, 522585136275309060778984780437349378727487551033053431183820395438881028524275653037501973893998522931527097709834556856377071714016105794082617608106681426118431919237424821157017478999007123267314177915269132492978405798763572904293537053684770758166235804263812002031154423840031804787490997980656195976245422639431021287819392926516120021938988377131096134226004988795426102191104669234062218501322054268120715941165964909168641868517871219861936026744270079945417238891172108575963320928202315668488963963596253274752273938582087672307192812597066127832142546571671521546904531612, 4116259407061203599991729794740196553728762381546078584197082962625670368606513112147497999764373352049043653794322414270487307402610201558448517438693342143736087805878266644374435351327671012940014657057911494655160510252499045210362282331984583329498519005156201140376235914579846299604974546119580999215580549429840922855377311584197065627546607059532966666594590883237910605121546390013529326311679795529312963991872346224008277359384111102786949905432289502219796263642968643161204835622428425364923424414161650223608194926459111135520691190338484462103704978433989953856000709, 561150991867914739585264924617542508328273370255446395449090889644757095642996258097263376369170640504377364194605265900340365890089075665860803593023605715052384215498411792462230909760176850506857134988671085297950941342117993535490176060638896138136185059792005992755832285006539009176252596780382930641301366743105476938926087194990165462821003144884769761387529528800560736913685494136372185127079905793811105971491911385305976551903948088893666361797117772197307787501574103547842791831871737052328013349408764632544922019282933759998266409963386780142643313882346486552104451678, 470848411866082149743478351973546237881686083070680607844263334266276825293172741175486104997225238622623461923676802810905601342026813972683569213417960833424588443808903775754716493519442023090658913528651041585630625789058687532041150372747132382342986981226135664442411727481236746810176385740040692324403543506747365898329160364179700946703376155855978290070210133912721765456844845326375692668351235819158517007261243704354248539627618466273164205060326897874201694993308984506046408930332669606292734995866747206094691432812149809725353923710677518374425543739100161214957983013, 252956254534661621926880658865116644420283471617108104345226771027976369230737735037701149428458003917565875687102543771987524703061386726644517064869623380834031088300071716177283607641031009769397500478293852673171843431996690861105385726852065353921972084058515430143862668400347629164470334256960605880146894164651601693936536681792096839838467338032741533271333581199685874994976424863747256692402623435142331852514624133457891305369667170089722707408155883391880265437340758870422745613629207141516840783278921929320537512104175266396734127305656641954918264141815492554047277202, 365927073892352448455460537981903133980793895819026613888425798951017743433627443760293809684999593058577182967615986327133059307636916998543081867663575572777057715363683516351670705347594792468556000891564491241944519533151164742286430485220279497184278704300340920650626781125242777412228798944441985951471425008215519050475677044872524791400931281831776570363013454931470660671770048426071886176541146543488864614945421561109991537478832131081018210043882506715155743030670238966087649404750759774766047412562346305158319257898120179920310969039006580362657853154996393529640412754, 309260540285710331536911693134130939943284105768946338849750002229430926592775769138715011732974840745898977877423399178700420328796749092203070087240299029703035317562998600744215893371765562007108598276393463419800803787231329710616325238035409090652707105239150825249613794666194575041195921397368294957936846051045428712736268909758969783063948239512582146377384100878499973807893543970716897089348747091034731652145340157200505813458812680709154863126936460550631326318492744491352593042390927269983240447690003526620810322334601401798362693227436179393007373865883603804329954120], 'aut_phi_ratio': 768.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [2, 1, 2, 1], [2, 1, 4, 1], [2, 3, 1, 2], [2, 3, 2, 1], [2, 3, 4, 1], [3, 16, 2, 1], [4, 1, 2, 2], [4, 1, 4, 1], [4, 1, 16, 1], [4, 3, 2, 2], [4, 3, 4, 1], [4, 3, 16, 1], [4, 6, 2, 2], [4, 6, 4, 3], [4, 6, 8, 2], [4, 6, 32, 1], [6, 16, 2, 1], [6, 16, 4, 1], [6, 16, 8, 1], [8, 1, 8, 2], [8, 1, 16, 1], [8, 3, 8, 2], [8, 3, 16, 1], [8, 6, 16, 2], [8, 6, 32, 1], [12, 16, 4, 2], [12, 16, 8, 1], [12, 16, 32, 1], [16, 4, 64, 1], [16, 12, 64, 1], [24, 16, 16, 2], [24, 16, 32, 1], [48, 16, 128, 1]], 'aut_supersolvable': False, 'aut_tex': 'C_4^2.(C_2^4\\times C_{12}).C_2^6.C_2^3', 'autcent_abelian': False, 'autcent_cyclic': False, 'autcent_exponent': 8, 'autcent_group': None, 'autcent_hash': 3871067695706100043, 'autcent_nilpotent': True, 'autcent_order': 4096, 'autcent_solvable': True, 'autcent_split': None, 'autcent_supersolvable': True, 'autcent_tex': 'C_2^5.C_2^6.C_2', 'autcentquo_abelian': False, 'autcentquo_cyclic': False, 'autcentquo_exponent': 24, 'autcentquo_group': None, 'autcentquo_hash': 5677, 'autcentquo_nilpotent': False, 'autcentquo_order': 384, 'autcentquo_solvable': True, 'autcentquo_supersolvable': False, 'autcentquo_tex': 'C_4^2:C_3.D_4', 'cc_stats': [[1, 1, 1], [2, 1, 7], [2, 3, 8], [3, 16, 2], [4, 1, 24], [4, 3, 24], [4, 6, 64], [6, 16, 14], [8, 1, 32], [8, 3, 32], [8, 6, 64], [12, 16, 48], [16, 4, 64], [16, 12, 64], [24, 16, 64], [48, 16, 128]], 'center_label': '64.83', 'center_order': 64, 'central_product': True, 'central_quotient': '96.72', 'commutator_count': 1, 'commutator_label': '16.2', 'complements_known': True, 'complete': False, 'complex_characters_known': False, 'composition_factors': ['2.1', '2.1', '2.1', '2.1', '2.1', '2.1', '2.1', '2.1', '2.1', '2.1', '2.1', '3.1'], 'composition_length': 12, 'conjugacy_classes_known': True, 'counter': 28, 'cyclic': False, 'derived_length': 2, 'dihedral': False, 'direct_factorization': [['2.1', 1], ['4.1', 1], ['768.1083570', 1]], 'direct_product': True, 'div_stats': [[1, 1, 1, 1], [2, 1, 1, 7], [2, 3, 1, 8], [3, 16, 2, 1], [4, 1, 2, 12], [4, 3, 2, 12], [4, 6, 1, 16], [4, 6, 2, 24], [6, 16, 2, 7], [8, 1, 4, 8], [8, 3, 4, 8], [8, 6, 4, 16], [12, 16, 4, 12], [16, 4, 8, 8], [16, 12, 8, 8], [24, 16, 8, 8], [48, 16, 16, 8]], 'element_repr_type': 'GLZq', 'elementary': 1, 'eulerian_function': 43680, 'exponent': 48, 'exponents_of_order': [11, 1], 'factors_of_aut_order': [2, 3], 'factors_of_order': [2, 3], 'faithful_reps': [], 'familial': False, 'frattini_label': '64.246', 'frattini_quotient': '96.228', 'hash': 3133702695541003383, 'hyperelementary': 1, 'inner_abelian': False, 'inner_cyclic': False, 'inner_exponent': 12, 'inner_gen_orders': [6, 4, 4, 2, 2], 'inner_gens': [[998829, 1032727, 253983, 1041175, 492047], [744885, 754463, 1032711, 500487, 1032735], [990381, 754463, 1032711, 500487, 1032735], [1015725, 754463, 1032711, 500487, 1032735], [1015725, 754463, 1032711, 500487, 1032735]], 'inner_hash': 72, 'inner_nilpotent': False, 'inner_order': 96, 'inner_split': False, 'inner_tex': 'C_4^2:C_6', 'inner_used': [1, 2], 'irrC_degree': -1, 'irrQ_degree': -1, 'irrQ_dim': -1, 'irrR_degree': None, 'irrep_stats': [[1, 384], [3, 128], [6, 128]], 'label': '6144.bb', 'linC_count': None, 'linC_degree': None, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': None, 'linQ_degree_count': None, 'linQ_dim': None, 'linQ_dim_count': None, 'linR_count': None, 'linR_degree': None, 'maximal_subgroups_known': True, 'metabelian': True, 'metacyclic': False, 'monomial': None, 'name': 'C4^4.C24', 'ngens': 12, 'nilpotency_class': -1, 'nilpotent': False, 'normal_counts': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 47, 'number_characteristic_subgroups': 63, 'number_conjugacy_classes': 640, 'number_divisions': 164, 'number_normal_subgroups': 405, 'number_subgroup_autclasses': 1445, 'number_subgroup_classes': 7068, 'number_subgroups': 32100, 'old_label': None, 'order': 6144, 'order_factorization_type': 51, 'order_stats': [[1, 1], [2, 31], [3, 32], [4, 480], [6, 224], [8, 512], [12, 768], [16, 1024], [24, 1024], [48, 2048]], 'outer_abelian': False, 'outer_cyclic': False, 'outer_equivalence': True, 'outer_exponent': 8, 'outer_gen_orders': [4, 8, 4, 8, 4, 8, 2, 4], 'outer_gen_pows': [49665, 32769, 146619, 32769, 32769, 32769, 933795, 378228], 'outer_gens': [[55022, 500247, 753695, 762639, 508431], [368314, 245791, 508679, 762127, 1032223], [353395, 819713, 582169, 303377, 492047], [317174, 1016583, 516615, 254751, 507935], [62710, 253967, 507927, 500487, 491551], [241202, 33033, 40985, 844561, 1016351], [620015, 581657, 557833, 303361, 1032223], [745141, 303105, 819457, 582425, 1016335]], 'outer_group': None, 'outer_hash': 793570606469686138, 'outer_nilpotent': True, 'outer_order': 16384, 'outer_permdeg': 256, 'outer_perms': [3456753280772302636786400636882419064213428188840612000228399913253540748287780991024586332041607960493803203746734552025966370177171867081778569972171059314708038148532282621005728976123169365501020382077995586314901688908599583451457969598449317648801784117333528627079821774264344612587344076698539449166231837314168243324554094499683475609615631534746860113064343600843173795353872122004780545937381404174388731231770214293893959960733526667271584281741286909461674074802559185482638861380705150211392, 6820798737810742780698094593690959625690313013644632660521724921218149215284123767662181481299251512686358904332306271429904933055590370547392295351134566550669861918056250779060844926913463432713648417592560397405816379045681324832683300633659062916949360328539474726233663908662220721370528014993938950815178061312969965875371155697904844212347943020039258906708083277164235547072864078934783074858087000834065797790149988152259386232652335144683727682795824543270835550074963197344972982433160995533233, 10184837473575816604888872813947052629345848457734198015206290782943863262978167532322582477647889410236510658111720814202127777865440749419866835199011396449954819173425664121718951848975533529825668205874508042633274276311547271372776940916660684749252859597548214330963391916868723940881972850060955493561014755935740319178083340834395393593352092319512697023096659793988646694696591235289390820507447704622592573392749176540897185397855780316030193101137128919020941591844235370076414171165598817874262, 13548884974590059699385098524906054137708705226270212474071141769125310741713715216260811890610743362106987035177129146445386984180820130383719983355812855638703092954771431532374514635242692945266339772825150916080779188418976675066738222496386744357416121194287911159357423928200555997770678269589528411448620224369070432815870108047959398905379302848294888947010592887285965166870901090658047198458793251178277657774102633684325043822924738509794503028425743060366873722363026994716258802310229302009085, 16912928190354053525927259623370827632227266957162090100144082778203834914766615678590750335277568166760735093241247772828655686714186200663213252579613882441563046101058426082127739623966110988578564467869410835478654036449514146085294892665056989007341846418925042691956842683720851193829776087828808649460877599229541813771292343068599867143852945535257097329758854254987551466217010623657850244819810175874719878165235208293315220605977800752220048669200719509194920405771367139952349107023732672554128, 20276971413420604110142739026128038685976903643737272354824308814259503419033188543349022537694685215393455376501242445899095938464035779917451888534377048001226682288881364823247062481953815833705489716308740087238324647752129483547537976429160266812100661595533867643033887281339334580577838376923332618553646964131577595444451713873262772586463800872510619833765941754876211890478268989499577383668729489258346173997738951105491550176730225045898337579149767884154914315418531960511445111096753294987420, 23641014629184130072596657480865791927666020622919271648191511741401051132457508586256287162289499133629984031264937989512109737118950306878728798040238913580232531653203082873126276517854698164516780797543634234277073344869759571191218479210677209279728449775635900292180288266731688183924861764328133322540382677438982566292873196709545772537482837423402840777605160194252094822387889788220453327914973488081549298525752138118727800227150950939605125832736459754887581575804737788744299340072976273463459, 27004281825798763238870579303532084054055909196364116838758996467484880354970127695262398818366379635182213194544851068981460727531467418507754149759634870893525954336622655414237747372577226089664911084283347159686323640479099709706719186979932229344997150974365348282270425768752408749415326883997633266884230141724168719582941804199177469260562730508324986157013722025298019856839775885985059922845902980863555956083289040512266443047802522162351286168236760595734279712757766171556384629290766058466681], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'C_2.C_2^6.C_2^6.C_2', 'pc_rank': None, 'perfect': False, 'permutation_degree': None, 'pgroup': 0, 'primary_abelian_invariants': [2, 4, 16, 3], 'quasisimple': False, 'rank': 3, 'rational': False, 'rational_characters_known': True, 'ratrep_stats': [[1, 8], [2, 20], [3, 8], [4, 20], [6, 28], [8, 16], [12, 32], [16, 8], [24, 24]], 'representations': {'PC': {'code': '509873775914174022841184100850348418057930660757857287018008151124698500575189229469788339970638345840404177616022047779504533109656585288939049985897086475496517760', 'gens': [1, 6, 8, 10, 12], 'pres': [12, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 24, 61, 98, 135, 41477, 95057, 31133, 23801, 7829, 209, 32262, 84690, 8094, 21210, 2070, 133639, 76051, 26527, 19051, 6679, 283, 217736, 5204, 54464, 1340, 13664, 288009, 74901, 72033, 18765, 18057, 357, 677387, 255767, 169379, 63983, 42395]}, 'GLZq': {'d': 2, 'q': 32, 'gens': [32777, 33025, 32785, 98307, 100557, 294921, 124284, 33281, 557073, 573953, 713485, 828161]}}, 'schur_multiplier': [2, 2, 4, 4], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [2, 4, 48], 'solvability_type': 16, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': False, 'sylow_subgroups_known': True, 'tex_name': 'C_4^4.C_{24}', 'transitive_degree': 384, 'wreath_data': None, 'wreath_product': False}