-
gps_subgroup_search • Show schema
Hide schema
{'Agroup': False, 'Zgroup': False, 'abelian': False, 'ambient': '576.5406', 'ambient_counter': 5406, 'ambient_order': 576, 'ambient_tex': 'C_2^3.\\SOPlus(4,2)', 'central': False, 'central_factor': False, 'centralizer_order': 4, 'characteristic': True, 'core_order': 288, 'counter': 3, 'cyclic': False, 'direct': False, 'hall': 0, 'label': '576.5406.2.b1.a1', 'maximal': True, 'maximal_normal': True, 'metabelian': True, 'metacyclic': False, 'minimal': False, 'minimal_normal': False, 'nilpotent': False, 'normal': True, 'old_label': '2.b1.a1', 'outer_equivalence': False, 'perfect': False, 'proper': True, 'quotient': '2.1', 'quotient_Agroup': True, 'quotient_abelian': True, 'quotient_cyclic': True, 'quotient_hash': 1, 'quotient_metabelian': True, 'quotient_nilpotent': True, 'quotient_order': 2, 'quotient_simple': True, 'quotient_solvable': True, 'quotient_supersolvable': True, 'quotient_tex': 'C_2', 'simple': False, 'solvable': True, 'special_labels': [], 'split': True, 'standard_generators': False, 'stem': False, 'subgroup': '288.630', 'subgroup_hash': 630, 'subgroup_order': 288, 'subgroup_tex': 'C_6^2:Q_8', 'supersolvable': True, 'sylow': 0}
-
gps_subgroup_data • Show schema
Hide schema
{'ambient': '576.5406', 'aut_centralizer_order': 4, 'aut_label': '2.b1', 'aut_quo_index': 1, 'aut_stab_index': 1, 'aut_weyl_group': '1152.153182', 'aut_weyl_index': 4, 'centralizer': '144.a1.a1', 'complements': ['288.e1.a1', '288.e1.b1'], 'conjugacy_class_count': 1, 'contained_in': ['1.a1.a1'], 'contains': ['4.a1.a1', '4.d1.a1', '4.e1.a1', '4.i1.a1', '4.k1.a1', '6.b1.a1'], 'core': '2.b1.a1', 'coset_action_label': None, 'count': 1, 'diagramx': [7078, 7208, 8231, 4013, 7553, 4907, 8164, 2430], 'generators': [1, 224, 8, 288, 192, 4, 56], 'label': '576.5406.2.b1.a1', 'mobius_quo': 0, 'mobius_sub': -1, 'normal_closure': '2.b1.a1', 'normal_contained_in': ['1.a1.a1'], 'normal_contains': ['4.a1.a1', '4.e1.a1', '4.d1.a1'], 'normalizer': '1.a1.a1', 'old_label': '2.b1.a1', 'projective_image': '144.186', 'quotient_action_image': '2.1', 'quotient_action_kernel': '1.1', 'quotient_action_kernel_order': 1, 'quotient_fusion': None, 'short_label': '2.b1.a1', 'subgroup_fusion': None, 'weyl_group': '144.186'}
-
gps_groups • Show schema
Hide schema
{'Agroup': False, 'Zgroup': False, 'abelian': False, 'abelian_quotient': '8.5', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 3, 'aut_exponent': 12, 'aut_gen_orders': [6, 4, 6, 6, 6, 12, 4], 'aut_gens': [[1, 2, 8, 96], [53, 82, 136, 96], [1, 173, 183, 64], [1, 38, 284, 96], [53, 22, 188, 96], [1, 38, 104, 96], [53, 265, 227, 64], [49, 73, 231, 32]], 'aut_group': None, 'aut_hash': 696738818174563068, 'aut_nilpotency_class': -1, 'aut_nilpotent': False, 'aut_order': 4608, 'aut_permdeg': 28, 'aut_perms': [188500223675288403348489771889, 33130079021035561206084284732, 218281745832664730541060658548, 166821325856134828727309356255, 185674207546471024996188979776, 68273763895804721725706901114, 63369509941632336963354104893], 'aut_phi_ratio': 48.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 1, 1, 3], [2, 2, 2, 1], [3, 2, 2, 1], [3, 4, 1, 1], [4, 12, 2, 2], [4, 18, 2, 2], [6, 2, 2, 3], [6, 4, 1, 3], [6, 4, 4, 2], [12, 12, 4, 2]], 'aut_supersolvable': False, 'aut_tex': 'D_6^2.C_2^5', 'autcent_abelian': True, 'autcent_cyclic': False, 'autcent_exponent': 2, 'autcent_group': '64.267', 'autcent_hash': 267, 'autcent_nilpotent': True, 'autcent_order': 64, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': True, 'autcent_tex': 'C_2^6', 'autcentquo_abelian': False, 'autcentquo_cyclic': False, 'autcentquo_exponent': 12, 'autcentquo_group': '72.40', 'autcentquo_hash': 40, 'autcentquo_nilpotent': False, 'autcentquo_order': 72, 'autcentquo_solvable': True, 'autcentquo_supersolvable': False, 'autcentquo_tex': '\\SOPlus(4,2)', 'cc_stats': [[1, 1, 1], [2, 1, 3], [2, 2, 2], [3, 2, 2], [3, 4, 1], [4, 12, 4], [4, 18, 4], [6, 2, 6], [6, 4, 11], [12, 12, 8]], 'center_label': '4.2', 'center_order': 4, 'central_product': False, 'central_quotient': '72.46', 'commutator_count': 2, 'commutator_label': '36.14', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1', '2.1', '2.1', '2.1', '2.1', '3.1', '3.1'], 'composition_length': 7, 'conjugacy_classes_known': True, 'counter': 630, 'cyclic': False, 'derived_length': 2, 'dihedral': False, 'direct_factorization': [], 'direct_product': False, 'div_stats': [[1, 1, 1, 1], [2, 1, 1, 3], [2, 2, 1, 2], [3, 2, 1, 2], [3, 4, 1, 1], [4, 12, 1, 4], [4, 18, 1, 2], [4, 18, 2, 1], [6, 2, 1, 6], [6, 4, 1, 11], [12, 12, 2, 4]], 'element_repr_type': 'PC', 'elementary': 1, 'eulerian_function': 1344, 'exponent': 12, 'exponents_of_order': [5, 2], 'factors_of_aut_order': [2, 3], 'factors_of_order': [2, 3], 'faithful_reps': [], 'familial': False, 'frattini_label': '4.2', 'frattini_quotient': '72.46', 'hash': 630, 'hyperelementary': 1, 'inner_abelian': False, 'inner_cyclic': False, 'inner_exponent': 6, 'inner_gen_orders': [2, 2, 6, 3], 'inner_gens': [[1, 54, 60, 96], [53, 2, 88, 96], [53, 18, 8, 192], [1, 2, 200, 96]], 'inner_hash': 46, 'inner_nilpotent': False, 'inner_order': 72, 'inner_split': False, 'inner_tex': 'S_3\\times D_6', 'inner_used': [1, 2, 3, 4], 'irrC_degree': -1, 'irrQ_degree': -1, 'irrQ_dim': -1, 'irrR_degree': -1, 'irrep_stats': [[1, 8], [2, 22], [4, 12]], 'label': '288.630', 'linC_count': 264, 'linC_degree': 6, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': 6, 'linQ_degree_count': 16, 'linQ_dim': 8, 'linQ_dim_count': 6, 'linR_count': 94, 'linR_degree': 8, 'maximal_subgroups_known': True, 'metabelian': True, 'metacyclic': False, 'monomial': True, 'name': 'C6^2:Q8', 'ngens': 7, 'nilpotency_class': -1, 'nilpotent': False, 'normal_counts': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 21, 'number_characteristic_subgroups': 18, 'number_conjugacy_classes': 42, 'number_divisions': 37, 'number_normal_subgroups': 54, 'number_subgroup_autclasses': 100, 'number_subgroup_classes': 175, 'number_subgroups': 594, 'old_label': None, 'order': 288, 'order_factorization_type': 32, 'order_stats': [[1, 1], [2, 7], [3, 8], [4, 120], [6, 56], [12, 96]], 'outer_abelian': False, 'outer_cyclic': False, 'outer_equivalence': False, 'outer_exponent': 4, 'outer_gen_orders': [2, 2, 2, 2, 4], 'outer_gen_pows': [0, 0, 0, 0, 0], 'outer_gens': [[49, 6, 8, 96], [1, 54, 40, 192], [1, 50, 8, 192], [53, 2, 8, 192], [49, 77, 147, 32]], 'outer_group': '64.261', 'outer_hash': 261, 'outer_nilpotent': True, 'outer_order': 64, 'outer_permdeg': 10, 'outer_perms': [806400, 367936, 368040, 368047, 368058], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'D_4\\times C_2^3', 'pc_rank': 4, 'perfect': False, 'permutation_degree': 18, 'pgroup': 0, 'primary_abelian_invariants': [2, 2, 2], 'quasisimple': False, 'rank': 3, 'rational': False, 'rational_characters_known': True, 'ratrep_stats': [[1, 8], [2, 12], [4, 17]], 'representations': {'PC': {'code': 821659005897799949323590479107, 'gens': [1, 2, 4, 7], 'pres': [7, -2, -2, -2, 2, -2, -3, -3, 757, 36, 1683, 1242, 80, 1411, 102, 1356, 1203]}, 'GLZN': {'d': 2, 'p': 36, 'gens': [1177625, 793169, 1182397, 47305, 737409, 1675603, 78193]}, 'Perm': {'d': 18, 'gens': [358477182166446, 359791126421881, 136095256, 136095240, 7, 776764801612800, 1129924059264000]}}, 'schur_multiplier': [2, 2], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [2, 2, 2], 'solvability_type': 7, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': True, 'sylow_subgroups_known': True, 'tex_name': 'C_6^2:Q_8', 'transitive_degree': 48, 'wreath_data': None, 'wreath_product': False}
-
gps_groups • Show schema
Hide schema
{'Agroup': False, 'Zgroup': False, 'abelian': False, 'abelian_quotient': '8.5', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 3, 'aut_exponent': 12, 'aut_gen_orders': [4, 4, 6, 6, 6, 6, 6, 6, 6], 'aut_gens': [[1, 2, 16, 96], [77, 458, 400, 544], [61, 242, 272, 128], [61, 270, 272, 96], [13, 270, 400, 536], [225, 230, 16, 504], [401, 454, 16, 496], [93, 198, 400, 528], [53, 430, 272, 152], [29, 238, 272, 144]], 'aut_group': None, 'aut_hash': 8050331733301323351, 'aut_nilpotency_class': -1, 'aut_nilpotent': False, 'aut_order': 4608, 'aut_permdeg': 52, 'aut_perms': [25768534046731414169845977198498801682276923890485726331895631667880, 18804588061362678213284279845721960132438226349592609058203411654876, 60488170151394466897290818993551693158343647742522177666067509884374, 33550030853843807867417486758394403601660449130038674233164596656249, 4405596204934752372501548455564702743915958861264721748736326797203, 28244528234448291175408301256845624443979244773138712387428859509392, 61342497888018224612903521128263400250192940297924774700951640989862, 62007642196034831782814953845341398389808601071252685657542179547211, 61885482316313761164236921350220990706378029626861423728555732496720], 'aut_phi_ratio': 24.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 1, 1, 3], [2, 4, 1, 1], [2, 12, 2, 1], [3, 4, 1, 2], [4, 12, 2, 1], [4, 18, 1, 2], [4, 18, 2, 1], [4, 24, 1, 2], [6, 4, 1, 6], [6, 8, 2, 2], [6, 24, 2, 1], [8, 36, 2, 2], [12, 24, 2, 3]], 'aut_supersolvable': False, 'aut_tex': 'C_3:S_3.C_2^6.C_2^2', 'autcent_abelian': True, 'autcent_cyclic': False, 'autcent_exponent': 2, 'autcent_group': '64.267', 'autcent_hash': 267, 'autcent_nilpotent': True, 'autcent_order': 64, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': True, 'autcent_tex': 'C_2^6', 'autcentquo_abelian': False, 'autcentquo_cyclic': False, 'autcentquo_exponent': 12, 'autcentquo_group': '72.40', 'autcentquo_hash': 40, 'autcentquo_nilpotent': False, 'autcentquo_order': 72, 'autcentquo_solvable': True, 'autcentquo_supersolvable': False, 'autcentquo_tex': '\\SOPlus(4,2)', 'cc_stats': [[1, 1, 1], [2, 1, 3], [2, 4, 1], [2, 12, 2], [3, 4, 2], [4, 12, 2], [4, 18, 4], [4, 24, 2], [6, 4, 6], [6, 8, 4], [6, 24, 2], [8, 36, 4], [12, 24, 6]], 'center_label': '4.2', 'center_order': 4, 'central_product': False, 'central_quotient': '144.186', 'commutator_count': 2, 'commutator_label': '72.34', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1', '2.1', '2.1', '2.1', '2.1', '2.1', '3.1', '3.1'], 'composition_length': 8, 'conjugacy_classes_known': True, 'counter': 5406, 'cyclic': False, 'derived_length': 3, 'dihedral': False, 'direct_factorization': [], 'direct_product': False, 'div_stats': [[1, 1, 1, 1], [2, 1, 1, 3], [2, 4, 1, 1], [2, 12, 1, 2], [3, 4, 1, 2], [4, 12, 1, 2], [4, 18, 1, 2], [4, 18, 2, 1], [4, 24, 1, 2], [6, 4, 1, 6], [6, 8, 1, 4], [6, 24, 1, 2], [8, 36, 2, 2], [12, 24, 1, 2], [12, 24, 2, 2]], 'element_repr_type': 'PC', 'elementary': 1, 'eulerian_function': 13440, 'exponent': 24, 'exponents_of_order': [6, 2], 'factors_of_aut_order': [2, 3], 'factors_of_order': [2, 3], 'faithful_reps': [], 'familial': False, 'frattini_label': '4.2', 'frattini_quotient': '144.186', 'hash': 5406, 'hyperelementary': 1, 'inner_abelian': False, 'inner_cyclic': False, 'inner_exponent': 12, 'inner_gen_orders': [2, 4, 3, 6], 'inner_gens': [[1, 6, 16, 504], [13, 2, 272, 176], [1, 418, 16, 96], [281, 18, 16, 96]], 'inner_hash': 186, 'inner_nilpotent': False, 'inner_order': 144, 'inner_split': True, 'inner_tex': 'S_3^2:C_2^2', 'inner_used': [1, 2, 3, 4], 'irrC_degree': -1, 'irrQ_degree': -1, 'irrQ_dim': -1, 'irrR_degree': -1, 'irrep_stats': [[1, 8], [2, 10], [4, 17], [8, 4]], 'label': '576.5406', 'linC_count': 48, 'linC_degree': 6, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': 8, 'linQ_degree_count': 4, 'linQ_dim': 12, 'linQ_dim_count': 8, 'linR_count': 8, 'linR_degree': 8, 'maximal_subgroups_known': True, 'metabelian': False, 'metacyclic': False, 'monomial': True, 'name': 'C2^3.SO+(4,2)', 'ngens': 8, 'nilpotency_class': -1, 'nilpotent': False, 'normal_counts': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 28, 'number_characteristic_subgroups': 31, 'number_conjugacy_classes': 39, 'number_divisions': 34, 'number_normal_subgroups': 35, 'number_subgroup_autclasses': 206, 'number_subgroup_classes': 271, 'number_subgroups': 1562, 'old_label': None, 'order': 576, 'order_factorization_type': 32, 'order_stats': [[1, 1], [2, 31], [3, 8], [4, 144], [6, 104], [8, 144], [12, 144]], 'outer_abelian': True, 'outer_cyclic': False, 'outer_equivalence': False, 'outer_exponent': 2, 'outer_gen_orders': [2, 2, 2, 2, 2], 'outer_gen_pows': [0, 0, 0, 4, 0], 'outer_gens': [[9, 2, 16, 96], [1, 10, 16, 96], [1, 2, 16, 104], [5, 2, 400, 544], [57, 2, 16, 96]], 'outer_group': '32.51', 'outer_hash': 51, 'outer_nilpotent': True, 'outer_order': 32, 'outer_permdeg': 10, 'outer_perms': [362880, 5040, 120, 6, 1], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'C_2^5', 'pc_rank': 4, 'perfect': False, 'permutation_degree': 26, 'pgroup': 0, 'primary_abelian_invariants': [2, 2, 2], 'quasisimple': False, 'rank': 3, 'rational': False, 'rational_characters_known': True, 'ratrep_stats': [[1, 8], [2, 6], [4, 13], [8, 7]], 'representations': {'PC': {'code': 1295873942959053242059640485982562766427069042187536815877, 'gens': [1, 2, 5, 7], 'pres': [8, 2, 2, 2, 2, 2, 3, 2, 3, 64, 97, 41, 290, 66, 5452, 820, 116, 10765, 789, 28230, 4942, 6742, 166, 26631, 8207, 6167]}, 'Perm': {'d': 26, 'gens': [2299216350016143749640, 15537113421176574734628965, 32390573712065287, 53952440847693490252200, 16, 521647785267532560, 1269047912603090780160000, 31695696522600758968320000]}}, 'schur_multiplier': [2, 2, 2], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [2, 2, 2], 'solvability_type': 11, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': False, 'sylow_subgroups_known': True, 'tex_name': 'C_2^3.\\SOPlus(4,2)', 'transitive_degree': 96, 'wreath_data': None, 'wreath_product': False}
-
gps_groups • Show schema
Hide schema
{'Agroup': True, 'Zgroup': True, 'abelian': True, 'abelian_quotient': '2.1', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': True, 'aut_cyclic': True, 'aut_derived_length': 0, 'aut_exponent': 1, 'aut_gen_orders': [], 'aut_gens': [[1]], 'aut_group': '1.1', 'aut_hash': 1, 'aut_nilpotency_class': 0, 'aut_nilpotent': True, 'aut_order': 1, 'aut_permdeg': 1, 'aut_perms': [], 'aut_phi_ratio': 1.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 1, 1, 1]], 'aut_supersolvable': True, 'aut_tex': 'C_1', 'autcent_abelian': True, 'autcent_cyclic': True, 'autcent_exponent': 1, 'autcent_group': '1.1', 'autcent_hash': 1, 'autcent_nilpotent': True, 'autcent_order': 1, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': True, 'autcent_tex': 'C_1', 'autcentquo_abelian': True, 'autcentquo_cyclic': True, 'autcentquo_exponent': 1, 'autcentquo_group': '1.1', 'autcentquo_hash': 1, 'autcentquo_nilpotent': True, 'autcentquo_order': 1, 'autcentquo_solvable': True, 'autcentquo_supersolvable': True, 'autcentquo_tex': 'C_1', 'cc_stats': [[1, 1, 1], [2, 1, 1]], 'center_label': '2.1', 'center_order': 2, 'central_product': False, 'central_quotient': '1.1', 'commutator_count': 0, 'commutator_label': '1.1', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1'], 'composition_length': 1, 'conjugacy_classes_known': True, 'counter': 1, 'cyclic': True, 'derived_length': 1, 'dihedral': True, 'direct_factorization': [], 'direct_product': False, 'div_stats': [[1, 1, 1, 1], [2, 1, 1, 1]], 'element_repr_type': 'PC', 'elementary': 2, 'eulerian_function': 1, 'exponent': 2, 'exponents_of_order': [1], 'factors_of_aut_order': [], 'factors_of_order': [2], 'faithful_reps': [[1, 1, 1]], 'familial': True, 'frattini_label': '1.1', 'frattini_quotient': '2.1', 'hash': 1, 'hyperelementary': 2, 'inner_abelian': True, 'inner_cyclic': True, 'inner_exponent': 1, 'inner_gen_orders': [1], 'inner_gens': [[1]], 'inner_hash': 1, 'inner_nilpotent': True, 'inner_order': 1, 'inner_split': True, 'inner_tex': 'C_1', 'inner_used': [], 'irrC_degree': 1, 'irrQ_degree': 1, 'irrQ_dim': 1, 'irrR_degree': 1, 'irrep_stats': [[1, 2]], 'label': '2.1', 'linC_count': 1, 'linC_degree': 1, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': 1, 'linQ_degree_count': 1, 'linQ_dim': 1, 'linQ_dim_count': 1, 'linR_count': 1, 'linR_degree': 1, 'maximal_subgroups_known': True, 'metabelian': True, 'metacyclic': True, 'monomial': True, 'name': 'C2', 'ngens': 1, 'nilpotency_class': 1, 'nilpotent': True, 'normal_counts': [0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 2, 'number_characteristic_subgroups': 2, 'number_conjugacy_classes': 2, 'number_divisions': 2, 'number_normal_subgroups': 2, 'number_subgroup_autclasses': 2, 'number_subgroup_classes': 2, 'number_subgroups': 2, 'old_label': None, 'order': 2, 'order_factorization_type': 1, 'order_stats': [[1, 1], [2, 1]], 'outer_abelian': True, 'outer_cyclic': True, 'outer_equivalence': False, 'outer_exponent': 1, 'outer_gen_orders': [], 'outer_gen_pows': [], 'outer_gens': [], 'outer_group': '1.1', 'outer_hash': 1, 'outer_nilpotent': True, 'outer_order': 1, 'outer_permdeg': 1, 'outer_perms': [], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'C_1', 'pc_rank': 1, 'perfect': False, 'permutation_degree': 2, 'pgroup': 2, 'primary_abelian_invariants': [2], 'quasisimple': False, 'rank': 1, 'rational': True, 'rational_characters_known': True, 'ratrep_stats': [[1, 2]], 'representations': {'PC': {'code': 0, 'gens': [1], 'pres': [1, -2]}, 'GLZ': {'b': 3, 'd': 2, 'gens': [12]}, 'Lie': [{'d': 2, 'q': 2, 'gens': [6], 'family': 'CSOPlus'}, {'d': 2, 'q': 2, 'gens': [6], 'family': 'COPlus'}, {'d': 1, 'q': 2, 'gens': [1], 'family': 'AGL'}, {'d': 1, 'q': 2, 'gens': [1], 'family': 'AGammaL'}, {'d': 1, 'q': 2, 'gens': [1], 'family': 'ASigmaL'}], 'GLFp': {'d': 2, 'p': 2, 'gens': [11]}, 'Perm': {'d': 2, 'gens': [1]}}, 'schur_multiplier': [], 'semidirect_product': False, 'simple': True, 'smith_abelian_invariants': [2], 'solvability_type': 0, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': True, 'sylow_subgroups_known': True, 'tex_name': 'C_2', 'transitive_degree': 2, 'wreath_data': None, 'wreath_product': False}