-
gps_subgroup_search • Show schema
Hide schema
{'Agroup': True, 'Zgroup': False, 'abelian': True, 'ambient': '54000.c', 'ambient_counter': 3, 'ambient_order': 54000, 'ambient_tex': 'D_5^3:C_3^2:S_3', 'central': False, 'central_factor': False, 'centralizer_order': 90, 'characteristic': False, 'core_order': 3, 'counter': 996, 'cyclic': False, 'direct': None, 'hall': 0, 'label': '54000.c.6000.c1', 'maximal': False, 'maximal_normal': False, 'metabelian': True, 'metacyclic': True, 'minimal': False, 'minimal_normal': False, 'nilpotent': True, 'normal': False, 'old_label': '6000.c1', 'outer_equivalence': True, 'perfect': False, 'proper': True, 'quotient': None, 'quotient_Agroup': None, 'quotient_abelian': None, 'quotient_cyclic': None, 'quotient_hash': None, 'quotient_metabelian': None, 'quotient_nilpotent': None, 'quotient_order': 6000, 'quotient_simple': None, 'quotient_solvable': None, 'quotient_supersolvable': None, 'quotient_tex': None, 'simple': False, 'solvable': True, 'special_labels': [], 'split': None, 'standard_generators': False, 'stem': False, 'subgroup': '9.2', 'subgroup_hash': 2, 'subgroup_order': 9, 'subgroup_tex': 'C_3^2', 'supersolvable': True, 'sylow': 0}
-
gps_subgroup_data • Show schema
Hide schema
{'ambient': '54000.c', 'aut_centralizer_order': None, 'aut_label': '6000.c1', 'aut_quo_index': None, 'aut_stab_index': None, 'aut_weyl_group': None, 'aut_weyl_index': None, 'centralizer': '600.u1', 'complements': None, 'conjugacy_class_count': 1, 'contained_in': ['240.g1', '1200.g1', '1500.n1', '2000.a1', '3000.g1'], 'contains': ['18000.a1', '18000.d1'], 'core': '18000.a1', 'coset_action_label': None, 'count': 200, 'diagramx': None, 'generators': [7202, 7440], 'label': '54000.c.6000.c1', 'mobius_quo': None, 'mobius_sub': 0, 'normal_closure': '4.a1', 'normal_contained_in': None, 'normal_contains': None, 'normalizer': '200.b1', 'old_label': '6000.c1', 'projective_image': '54000.c', 'quotient_action_image': None, 'quotient_action_kernel': None, 'quotient_action_kernel_order': None, 'quotient_fusion': None, 'short_label': '6000.c1', 'subgroup_fusion': None, 'weyl_group': '3.1'}
-
gps_groups • Show schema
Hide schema
{'Agroup': True, 'Zgroup': False, 'abelian': True, 'abelian_quotient': '9.2', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 4, 'aut_exponent': 24, 'aut_gen_orders': [2, 3], 'aut_gens': [[1, 3], [1, 7], [4, 3]], 'aut_group': '48.29', 'aut_hash': 29, 'aut_nilpotency_class': -1, 'aut_nilpotent': False, 'aut_order': 48, 'aut_permdeg': 8, 'aut_perms': [31834, 28334], 'aut_phi_ratio': 8.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [3, 1, 8, 1]], 'aut_supersolvable': False, 'aut_tex': '\\GL(2,3)', 'autcent_abelian': False, 'autcent_cyclic': False, 'autcent_exponent': 24, 'autcent_group': '48.29', 'autcent_hash': 29, 'autcent_nilpotent': False, 'autcent_order': 48, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': False, 'autcent_tex': '\\GL(2,3)', 'autcentquo_abelian': True, 'autcentquo_cyclic': True, 'autcentquo_exponent': 1, 'autcentquo_group': '1.1', 'autcentquo_hash': 1, 'autcentquo_nilpotent': True, 'autcentquo_order': 1, 'autcentquo_solvable': True, 'autcentquo_supersolvable': True, 'autcentquo_tex': 'C_1', 'cc_stats': [[1, 1, 1], [3, 1, 8]], 'center_label': '9.2', 'center_order': 9, 'central_product': True, 'central_quotient': '1.1', 'commutator_count': 0, 'commutator_label': '1.1', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['3.1', '3.1'], 'composition_length': 2, 'conjugacy_classes_known': True, 'counter': 2, 'cyclic': False, 'derived_length': 1, 'dihedral': False, 'direct_factorization': [['3.1', 2]], 'direct_product': True, 'div_stats': [[1, 1, 1, 1], [3, 1, 2, 4]], 'element_repr_type': 'PC', 'elementary': 3, 'eulerian_function': 1, 'exponent': 3, 'exponents_of_order': [2], 'factors_of_aut_order': [2, 3], 'factors_of_order': [3], 'faithful_reps': [], 'familial': False, 'frattini_label': '1.1', 'frattini_quotient': '9.2', 'hash': 2, 'hyperelementary': 3, 'inner_abelian': True, 'inner_cyclic': True, 'inner_exponent': 1, 'inner_gen_orders': [1, 1], 'inner_gens': [[1, 3], [1, 3]], 'inner_hash': 1, 'inner_nilpotent': True, 'inner_order': 1, 'inner_split': True, 'inner_tex': 'C_1', 'inner_used': [], 'irrC_degree': -1, 'irrQ_degree': -1, 'irrQ_dim': -1, 'irrR_degree': -1, 'irrep_stats': [[1, 9]], 'label': '9.2', 'linC_count': 24, 'linC_degree': 2, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': 4, 'linQ_degree_count': 6, 'linQ_dim': 4, 'linQ_dim_count': 6, 'linR_count': 6, 'linR_degree': 4, 'maximal_subgroups_known': True, 'metabelian': True, 'metacyclic': True, 'monomial': True, 'name': 'C3^2', 'ngens': 2, 'nilpotency_class': 1, 'nilpotent': True, 'normal_counts': [0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 2, 'number_characteristic_subgroups': 2, 'number_conjugacy_classes': 9, 'number_divisions': 5, 'number_normal_subgroups': 6, 'number_subgroup_autclasses': 3, 'number_subgroup_classes': 6, 'number_subgroups': 6, 'old_label': None, 'order': 9, 'order_factorization_type': 2, 'order_stats': [[1, 1], [3, 8]], 'outer_abelian': False, 'outer_cyclic': False, 'outer_equivalence': False, 'outer_exponent': 24, 'outer_gen_orders': [2, 3], 'outer_gen_pows': [0, 0], 'outer_gens': [[1, 7], [4, 3]], 'outer_group': '48.29', 'outer_hash': 29, 'outer_nilpotent': False, 'outer_order': 48, 'outer_permdeg': 8, 'outer_perms': [31834, 28334], 'outer_solvable': True, 'outer_supersolvable': False, 'outer_tex': '\\GL(2,3)', 'pc_rank': 2, 'perfect': False, 'permutation_degree': 6, 'pgroup': 3, 'primary_abelian_invariants': [3, 3], 'quasisimple': False, 'rank': 2, 'rational': False, 'rational_characters_known': True, 'ratrep_stats': [[1, 1], [2, 4]], 'representations': {'PC': {'code': 0, 'gens': [1, 2], 'pres': [2, -3, 3]}, 'GLZ': {'b': 3, 'd': 4, 'gens': [16858733, 35931237]}, 'GLFp': {'d': 2, 'p': 7, 'gens': [687, 1374]}, 'Perm': {'d': 6, 'gens': [240, 4]}}, 'schur_multiplier': [3], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [3, 3], 'solvability_type': 1, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': True, 'sylow_subgroups_known': True, 'tex_name': 'C_3^2', 'transitive_degree': 9, 'wreath_data': None, 'wreath_product': False}
-
gps_groups • Show schema
Hide schema
{'Agroup': False, 'Zgroup': False, 'abelian': False, 'abelian_quotient': '12.5', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 4, 'aut_exponent': 60, 'aut_gen_orders': [12, 60, 12, 30], 'aut_gens': [[1, 6, 12, 360, 10800], [30689, 5442, 2064, 39780, 4320], [40031, 1260, 17580, 9594, 288], [28075, 14220, 20640, 36114, 144], [5681, 6702, 6042, 41472, 43200]], 'aut_group': None, 'aut_hash': 8717420453910764587, 'aut_nilpotency_class': -1, 'aut_nilpotent': False, 'aut_order': 648000, 'aut_permdeg': 624, 'aut_perms': [17304275444156185519073872874502670312572835585578676939159751811081215815042650749307228562333108510416516788925754179264679704304830656546918969684816878500994198805971561549792882169898362330793776361547558219471005557457156060171495728566585546446201470047086228316063139507753142385178477843696641754305202091584728813586372511548230523308873277965624579795487269158573042027432795401837105445499484771788763581828820723408300255774039276126663640743082553834549343171276645621278449324876702543445413390016923749580818801922361369717547276488725521934624929373880743598371385999652403573929589276981669865621296832204291215118258597271077331529365664583407954756541349416965442814885901225280050421745526146030120680176866911232493843647955429422297557246193942994077712433617972933538099347833436573442008184389034858349089568871401296854209198380046091673035236856200659469093887231992471021789374994534768368304150640840546772258640217232147159981800226704008808146012881077196857298731701524187277279490519393627488615437143474177829378315430236954951384446778714600274723661052986798120591329760514214214869087288260664512306585736948591739320846923735553004048446602726988969523145563641922479889154438160052226540249253066035175877563821458984462742848746662541038858475628193152799294131286863563821481383928691396701106941267887504277730112072680370464607664160698392407724377396265990418707800087181521437727306749658467939493656614983622241061050000016697105, 4851209965707566455151079786546907403767348601985503389707677104735411717803652547365050647921207025642343871682659228388067441040036316974471594072987779204467746281841215060594315785767126454363614791222033968025561935290795433756519419342747354783090276236912897063368102255914125010836580478965025029411846921882045007087678060065230942796157798321385275293575932096640080140459130573340372164765689037472996529003511989174754698593743836045353426393796531702015178792903712523489338626831989722731818270498270936048927680678382096087415220430550064001292920642601282035552049373978882250527094451860067522327833903717486426803722254645821889184015382386504375213633427546878496260340440547216142624956846723101110072664191424797259877139694659702864656717731239461089440898238786970402908384214410878139727937022967278667648759035098546630622122922884680675983267818617036696595829074838481690906678469621615749419610093723357804360747618333441299793861339980120098292584574760839685049092013019477170818560090219204297519492538518646261684864429524581376895245961043132044809565522970790895286776907984916488327311850538982227120933804469247940237227169384809132365027198449341425828990004166025528716390603428711512988306508447523710662852076441622834270657650865894165175771459707831471441114337255382171986626936431472731680902223501938213270003574510434834499153444920669954102870064866085197487749579535312976732470890913701160599476782595717928608580773953072436, 58179734145709818911432741022717104260597617674289466691665261958331694617839762614941173090958260508631120269656654442382895842323988611798125842481046419204820912409499441144404961947411160216264770937831736656537563704436385358248362814742128856507383074804073778289339671659256204961412636059032809212754662285128920742407890334111305605470475668638729895885792039472432491194435508633571221387988482549122643269846641266677990675439798083301084062111706704688661796558803097708328322618450383073088841684143497045047080814210411744033602924271408306123672043672731818386474117220295111338876413767240337758207753242202669462883477305245065342337605026051556502916807964225375241754518769837288765273294297374847961483071467920403064763167447060558711552727629308536668672866045436412550312090471217105758598160488274240690564001218693071696759369651616841203986111278650481285493737200542018313041744105356929979684690414329585972640130802568121145565871089255549728675764987024411714003390112995465745903744868750846446161439418063562583254728052876253938734672450874580852437473158209807897032881113083023862802266190621789401357833482211321255345802420316678810242742238382716112023996493834793394794947014355183144241612343722376360547276994182572718805705584611064465160404129469311580461989435033637706693938636633677204745463389764775209735497500905513953396031358407992162640203646372069880694571900799194645451054578570774899816326800343132523322399627268194202, 21422329912192239910246229635863223169095550398645878133841856798673314406442572627499473820556234341657201319838464787242180412927332344042945161206324706301840443761764702950806122159197717302908426502314011678062353018902342713939138584998051951339429330695417472511094574240463655274274280256968325889608240252283111465240277583355968303750824556589633102800101553459967721336528774099664166502501578582762588765236268790496239454890491463218485028539220824295609925065958986485956401037509066774076121425452474008766720444564778425329095931377377590095717486535572638026741379073354829128038726681090944825652562045329046134883324205462967206133379375886156322888984703408405142609503541031969260764155336549337766071188427260625858294677850972461059474246767841187985888587449255170230438120773412528838535924916157946899566787734427590675737858511488662022194746623251012993350969853249477230392041992339598593597079015043973751003833009008982409161300744322352561917950331021903346113652616587573257636297521812190820380523606373220587388849261197587717313112910919981297693119324957642776096318156396108420661029258143290522783767751162970150073231035743487035132113411840697053104289943310187078634911954755784200606067193841142297025428107731164791225086623929078820600288592683844626292959461574364945011108859040746068031755505120773445565200662207602069292294337049682482073660293623603194804848203419880496255002655357007172131563233698775771945715112420227264], 'aut_phi_ratio': 45.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 9, 1, 1], [2, 15, 1, 1], [2, 75, 1, 1], [2, 125, 1, 1], [2, 135, 1, 1], [2, 675, 1, 1], [2, 1125, 1, 1], [3, 2, 1, 1], [3, 6, 1, 1], [3, 300, 2, 1], [3, 600, 2, 1], [5, 6, 2, 1], [5, 8, 2, 1], [5, 12, 2, 2], [5, 24, 2, 1], [6, 30, 1, 1], [6, 30, 3, 1], [6, 150, 1, 1], [6, 150, 3, 1], [6, 250, 1, 1], [6, 750, 1, 1], [6, 900, 2, 1], [6, 1500, 2, 1], [6, 3000, 2, 1], [6, 4500, 2, 1], [10, 30, 4, 1], [10, 54, 2, 1], [10, 60, 2, 2], [10, 72, 2, 1], [10, 108, 2, 2], [10, 150, 2, 1], [10, 216, 2, 1], [10, 270, 4, 1], [10, 540, 2, 2], [10, 1350, 2, 1], [15, 12, 2, 1], [15, 12, 6, 1], [15, 16, 2, 1], [15, 24, 2, 2], [15, 24, 6, 2], [15, 48, 2, 2], [15, 48, 6, 1], [15, 600, 4, 1], [15, 1200, 4, 1], [30, 60, 4, 1], [30, 60, 12, 1], [30, 120, 2, 2], [30, 120, 6, 2], [30, 300, 2, 1], [30, 300, 6, 1], [30, 1800, 4, 1]], 'aut_supersolvable': False, 'aut_tex': 'C_5^3.C_6^2.(C_4\\times S_3^2)', 'autcent_abelian': True, 'autcent_cyclic': True, 'autcent_exponent': 1, 'autcent_group': '1.1', 'autcent_hash': 1, 'autcent_nilpotent': True, 'autcent_order': 1, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': True, 'autcent_tex': 'C_1', 'autcentquo_abelian': False, 'autcentquo_cyclic': False, 'autcentquo_exponent': 60, 'autcentquo_group': None, 'autcentquo_hash': 8717420453910764587, 'autcentquo_nilpotent': False, 'autcentquo_order': 648000, 'autcentquo_solvable': True, 'autcentquo_supersolvable': False, 'autcentquo_tex': 'C_5^3.C_6^2.(C_4\\times S_3^2)', 'cc_stats': [[1, 1, 1], [2, 9, 1], [2, 15, 1], [2, 75, 1], [2, 125, 1], [2, 135, 1], [2, 675, 1], [2, 1125, 1], [3, 2, 1], [3, 6, 1], [3, 300, 2], [3, 600, 2], [5, 6, 2], [5, 8, 2], [5, 12, 4], [5, 24, 2], [6, 30, 4], [6, 150, 4], [6, 250, 1], [6, 750, 1], [6, 900, 2], [6, 1500, 2], [6, 3000, 2], [6, 4500, 2], [10, 30, 4], [10, 54, 2], [10, 60, 4], [10, 72, 2], [10, 108, 4], [10, 150, 2], [10, 216, 2], [10, 270, 4], [10, 540, 4], [10, 1350, 2], [15, 12, 8], [15, 16, 2], [15, 24, 16], [15, 48, 10], [15, 600, 4], [15, 1200, 4], [30, 60, 16], [30, 120, 16], [30, 300, 8], [30, 1800, 4]], 'center_label': '1.1', 'center_order': 1, 'central_product': False, 'central_quotient': '54000.c', 'commutator_count': 1, 'commutator_label': None, 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1', '2.1', '2.1', '2.1', '3.1', '3.1', '3.1', '5.1', '5.1', '5.1'], 'composition_length': 10, 'conjugacy_classes_known': True, 'counter': 3, 'cyclic': False, 'derived_length': 3, 'dihedral': False, 'direct_factorization': [], 'direct_product': False, 'div_stats': [[1, 1, 1, 1], [2, 9, 1, 1], [2, 15, 1, 1], [2, 75, 1, 1], [2, 125, 1, 1], [2, 135, 1, 1], [2, 675, 1, 1], [2, 1125, 1, 1], [3, 2, 1, 1], [3, 6, 1, 1], [3, 300, 2, 1], [3, 600, 2, 1], [5, 6, 2, 1], [5, 8, 2, 1], [5, 12, 2, 2], [5, 24, 2, 1], [6, 30, 1, 4], [6, 150, 1, 4], [6, 250, 1, 1], [6, 750, 1, 1], [6, 900, 2, 1], [6, 1500, 2, 1], [6, 3000, 2, 1], [6, 4500, 2, 1], [10, 30, 2, 2], [10, 54, 2, 1], [10, 60, 2, 2], [10, 72, 2, 1], [10, 108, 2, 2], [10, 150, 2, 1], [10, 216, 2, 1], [10, 270, 2, 2], [10, 540, 2, 2], [10, 1350, 2, 1], [15, 12, 2, 4], [15, 16, 2, 1], [15, 24, 2, 8], [15, 48, 2, 5], [15, 600, 4, 1], [15, 1200, 4, 1], [30, 60, 2, 8], [30, 120, 2, 8], [30, 300, 2, 4], [30, 1800, 4, 1]], 'element_repr_type': 'PC', 'elementary': 1, 'eulerian_function': 744, 'exponent': 30, 'exponents_of_order': [4, 3, 3], 'factors_of_aut_order': [2, 3, 5], 'factors_of_order': [2, 3, 5], 'faithful_reps': [[12, 1, 24], [24, 1, 24], [48, 1, 8]], 'familial': False, 'frattini_label': '3.1', 'frattini_quotient': '18000.d', 'hash': 7387495986454361018, 'hyperelementary': 1, 'inner_abelian': False, 'inner_cyclic': False, 'inner_exponent': 30, 'inner_gen_orders': [6, 2, 30, 30, 5], 'inner_gens': [[1, 3420, 10560, 43506, 288], [7747, 6, 228, 6840, 10800], [7093, 150, 12, 6840, 10800], [43627, 4326, 4332, 360, 43200], [10873, 6, 12, 21960, 10800]], 'inner_hash': 7387495986454361018, 'inner_nilpotent': False, 'inner_order': 54000, 'inner_split': False, 'inner_tex': 'D_5^3:C_3^2:S_3', 'inner_used': [1, 2, 3], 'irrC_degree': 12, 'irrQ_degree': 24, 'irrQ_dim': 24, 'irrR_degree': 12, 'irrep_stats': [[1, 12], [2, 6], [3, 4], [6, 26], [8, 12], [12, 48], [16, 6], [24, 36], [48, 10]], 'label': '54000.c', 'linC_count': None, 'linC_degree': None, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': None, 'linQ_degree_count': None, 'linQ_dim': None, 'linQ_dim_count': None, 'linR_count': None, 'linR_degree': None, 'maximal_subgroups_known': True, 'metabelian': False, 'metacyclic': False, 'monomial': True, 'name': 'D5^3:C3^2:S3', 'ngens': 10, 'nilpotency_class': -1, 'nilpotent': False, 'normal_counts': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 61, 'number_characteristic_subgroups': 29, 'number_conjugacy_classes': 160, 'number_divisions': 87, 'number_normal_subgroups': 29, 'number_subgroup_autclasses': 1050, 'number_subgroup_classes': 1710, 'number_subgroups': 291198, 'old_label': None, 'order': 54000, 'order_factorization_type': 321, 'order_stats': [[1, 1], [2, 2159], [3, 1808], [5, 124], [6, 21520], [10, 7716], [15, 8192], [30, 12480]], 'outer_abelian': False, 'outer_cyclic': False, 'outer_equivalence': True, 'outer_exponent': 6, 'outer_gen_orders': [2, 6], 'outer_gen_pows': [0, 3534], 'outer_gens': [[5, 6, 9666, 1872, 10800], [39097, 2238, 6084, 2760, 21600]], 'outer_group': '12.4', 'outer_hash': 4, 'outer_nilpotent': False, 'outer_order': 12, 'outer_permdeg': 5, 'outer_perms': [6, 49], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'D_6', 'pc_rank': 5, 'perfect': False, 'permutation_degree': 24, 'pgroup': 0, 'primary_abelian_invariants': [2, 2, 3], 'quasisimple': False, 'rank': 2, 'rational': False, 'rational_characters_known': True, 'ratrep_stats': [[1, 4], [2, 6], [3, 4], [4, 2], [6, 10], [12, 8], [16, 2], [24, 24], [32, 3], [48, 18], [64, 1], [96, 5]], 'representations': {'PC': {'code': '531121569954694569393498682229141570344046412924164294722812186829621118540796289700978124348343086521592382600401284825875769852777034758980151804902254663370344223', 'gens': [1, 3, 4, 7, 10], 'pres': [10, 2, 3, 2, 2, 3, 5, 2, 3, 5, 5, 20, 102602, 245802, 422403, 363733, 1543, 113, 516004, 630014, 824, 194, 518405, 324015, 2905, 3045426, 176836, 79826, 39936, 206, 2611207, 144977, 38427, 19237, 317, 3888008, 3258, 129628, 64838, 28809, 108019, 12069]}, 'Perm': {'d': 24, 'gens': [52984131216757424104634, 28207328802774788672943]}}, 'schur_multiplier': [2, 6], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [2, 6], 'solvability_type': 11, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': False, 'sylow_subgroups_known': True, 'tex_name': 'D_5^3:C_3^2:S_3', 'transitive_degree': 45, 'wreath_data': None, 'wreath_product': False}