-
gps_subgroup_search • Show schema
Hide schema
{'Agroup': True, 'Zgroup': True, 'abelian': True, 'ambient': '53240.bd', 'ambient_counter': 30, 'ambient_order': 53240, 'ambient_tex': 'D_{11}\\times C_{22}:F_{11}', 'central': False, 'central_factor': False, 'centralizer_order': 440, 'characteristic': False, 'core_order': 1, 'counter': 144, 'cyclic': True, 'direct': None, 'hall': 0, 'label': '53240.bd.5324.c1', 'maximal': False, 'maximal_normal': False, 'metabelian': True, 'metacyclic': True, 'minimal': False, 'minimal_normal': False, 'nilpotent': True, 'normal': False, 'old_label': '5324.c1', 'outer_equivalence': True, 'perfect': False, 'proper': True, 'quotient': None, 'quotient_Agroup': None, 'quotient_abelian': None, 'quotient_cyclic': None, 'quotient_hash': None, 'quotient_metabelian': None, 'quotient_nilpotent': None, 'quotient_order': 5324, 'quotient_simple': None, 'quotient_solvable': None, 'quotient_supersolvable': None, 'quotient_tex': None, 'simple': False, 'solvable': True, 'special_labels': [], 'split': None, 'standard_generators': False, 'stem': False, 'subgroup': '10.2', 'subgroup_hash': 2, 'subgroup_order': 10, 'subgroup_tex': 'C_{10}', 'supersolvable': True, 'sylow': 0}
-
gps_subgroup_data • Show schema
Hide schema
{'ambient': '53240.bd', 'aut_centralizer_order': None, 'aut_label': '5324.c1', 'aut_quo_index': None, 'aut_stab_index': None, 'aut_weyl_group': None, 'aut_weyl_index': None, 'centralizer': '121.b1', 'complements': None, 'conjugacy_class_count': 2, 'contained_in': ['484.e1', '484.f1', '2662.b1', '2662.d1'], 'contains': ['10648.a1', '26620.c1'], 'core': '53240.a1', 'coset_action_label': None, 'count': 242, 'diagramx': [2191, -1, 8772, -1], 'generators': [7370, 2], 'label': '53240.bd.5324.c1', 'mobius_quo': None, 'mobius_sub': -22, 'normal_closure': '22.a1', 'normal_contained_in': None, 'normal_contains': None, 'normalizer': '121.b1', 'old_label': '5324.c1', 'projective_image': '53240.bd', 'quotient_action_image': None, 'quotient_action_kernel': None, 'quotient_action_kernel_order': None, 'quotient_fusion': None, 'short_label': '5324.c1', 'subgroup_fusion': None, 'weyl_group': '1.1'}
-
gps_groups • Show schema
Hide schema
{'Agroup': True, 'Zgroup': True, 'abelian': True, 'abelian_quotient': '10.2', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': True, 'aut_cyclic': True, 'aut_derived_length': 1, 'aut_exponent': 4, 'aut_gen_orders': [4], 'aut_gens': [[1], [7]], 'aut_group': '4.1', 'aut_hash': 1, 'aut_nilpotency_class': 1, 'aut_nilpotent': True, 'aut_order': 4, 'aut_permdeg': 4, 'aut_perms': [9], 'aut_phi_ratio': 1.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [5, 1, 4, 1], [10, 1, 4, 1]], 'aut_supersolvable': True, 'aut_tex': 'C_4', 'autcent_abelian': True, 'autcent_cyclic': True, 'autcent_exponent': 4, 'autcent_group': '4.1', 'autcent_hash': 1, 'autcent_nilpotent': True, 'autcent_order': 4, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': True, 'autcent_tex': 'C_4', 'autcentquo_abelian': True, 'autcentquo_cyclic': True, 'autcentquo_exponent': 1, 'autcentquo_group': '1.1', 'autcentquo_hash': 1, 'autcentquo_nilpotent': True, 'autcentquo_order': 1, 'autcentquo_solvable': True, 'autcentquo_supersolvable': True, 'autcentquo_tex': 'C_1', 'cc_stats': [[1, 1, 1], [2, 1, 1], [5, 1, 4], [10, 1, 4]], 'center_label': '10.2', 'center_order': 10, 'central_product': True, 'central_quotient': '1.1', 'commutator_count': 0, 'commutator_label': '1.1', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1', '5.1'], 'composition_length': 2, 'conjugacy_classes_known': True, 'counter': 2, 'cyclic': True, 'derived_length': 1, 'dihedral': False, 'direct_factorization': [['2.1', 1], ['5.1', 1]], 'direct_product': True, 'div_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [5, 1, 4, 1], [10, 1, 4, 1]], 'element_repr_type': 'PC', 'elementary': 10, 'eulerian_function': 1, 'exponent': 10, 'exponents_of_order': [1, 1], 'factors_of_aut_order': [2], 'factors_of_order': [2, 5], 'faithful_reps': [[1, 0, 4]], 'familial': True, 'frattini_label': '1.1', 'frattini_quotient': '10.2', 'hash': 2, 'hyperelementary': 10, 'inner_abelian': True, 'inner_cyclic': True, 'inner_exponent': 1, 'inner_gen_orders': [1], 'inner_gens': [[1]], 'inner_hash': 1, 'inner_nilpotent': True, 'inner_order': 1, 'inner_split': True, 'inner_tex': 'C_1', 'inner_used': [], 'irrC_degree': 1, 'irrQ_degree': 4, 'irrQ_dim': 4, 'irrR_degree': 2, 'irrep_stats': [[1, 10]], 'label': '10.2', 'linC_count': 4, 'linC_degree': 1, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': 4, 'linQ_degree_count': 1, 'linQ_dim': 4, 'linQ_dim_count': 1, 'linR_count': 2, 'linR_degree': 2, 'maximal_subgroups_known': True, 'metabelian': True, 'metacyclic': True, 'monomial': True, 'name': 'C10', 'ngens': 2, 'nilpotency_class': 1, 'nilpotent': True, 'normal_counts': [0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 4, 'number_characteristic_subgroups': 4, 'number_conjugacy_classes': 10, 'number_divisions': 4, 'number_normal_subgroups': 4, 'number_subgroup_autclasses': 4, 'number_subgroup_classes': 4, 'number_subgroups': 4, 'old_label': None, 'order': 10, 'order_factorization_type': 11, 'order_stats': [[1, 1], [2, 1], [5, 4], [10, 4]], 'outer_abelian': True, 'outer_cyclic': True, 'outer_equivalence': False, 'outer_exponent': 4, 'outer_gen_orders': [4], 'outer_gen_pows': [0], 'outer_gens': [[7]], 'outer_group': '4.1', 'outer_hash': 1, 'outer_nilpotent': True, 'outer_order': 4, 'outer_permdeg': 4, 'outer_perms': [9], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'C_4', 'pc_rank': 1, 'perfect': False, 'permutation_degree': 7, 'pgroup': 0, 'primary_abelian_invariants': [2, 5], 'quasisimple': False, 'rank': 1, 'rational': False, 'rational_characters_known': True, 'ratrep_stats': [[1, 2], [4, 2]], 'representations': {'PC': {'code': 83, 'gens': [1], 'pres': [2, -2, -5, 4]}, 'GLZ': {'b': 3, 'd': 4, 'gens': [16717348]}, 'GLFp': {'d': 2, 'p': 5, 'gens': [131, 504]}, 'Perm': {'d': 7, 'gens': [720, 96]}}, 'schur_multiplier': [], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [10], 'solvability_type': 0, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': True, 'sylow_subgroups_known': True, 'tex_name': 'C_{10}', 'transitive_degree': 10, 'wreath_data': None, 'wreath_product': False}
-
gps_groups • Show schema
Hide schema
{'Agroup': True, 'Zgroup': False, 'abelian': False, 'abelian_quotient': '40.14', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 3, 'aut_exponent': 220, 'aut_gen_orders': [110, 20, 10, 110, 55, 10], 'aut_gens': [[1, 10, 220, 2420], [5081, 27870, 11880, 2420], [22309, 44350, 5940, 42900], [47821, 50030, 45320, 41140], [3021, 41110, 24420, 41140], [14701, 9770, 34980, 2420], [32589, 32170, 40920, 3520]], 'aut_group': None, 'aut_hash': 906806283152441688, 'aut_nilpotency_class': -1, 'aut_nilpotent': False, 'aut_order': 10648000, 'aut_permdeg': 506, 'aut_perms': [4762606587073764483420383904637310809623561237426946426704807836961850403487548069177330164560713282384492164816972646415569448479154196013010365179201703873873362798147219719218192097058084042707735378332346637528867305102213450116863127415207335586703470871473944891404974228352663936541341015569088214120009086060086915458423428819657415499218554202841972054653344481035188839930335893092314710345922360267875569070160051589855706880593072796895238448715131394156704122165222899655703753134833460051138538614381321899028084891290799949732925398671655740999894087141942187525394033203139687054870475423603369713589991745603848503310514380021527750332994377693369640587037574476118520490610759215782742973928409900359006892168258253440190768080295312603663275522507937121630787447394876907726424187323137266868059709854249015269718640954264165350496770453847104193779395671486635811720583969642009335801830079024160652869917727893526851784336336356328638660676896025622241094135806868564913230151129439586516107445051048773421502750203215787852518461444528315175362789447345809426582052782753401636413284116900751136348537068166948598053003746923413, 1662166805548696180955043908605400338308195273119863891448437697588687299894334706958749351050170274848540409657450414667578282888585426291538226336877399389581323090752710452965923367402764575666505723155916225725483291151699787749052257677570896663771395291076745956636971536188259537431991663460005563817029202735434885472156621443961510749881475400598705875351705534978521118500638614555882572605809118761726171648642265620948954524853297881701458623095888983523738342014593168526185190844165783035862689862493639831621784778915745770447311610509720872090173446189047242040608742791053240136086826408928303966322485517474781211518403475922021558576146494546733291327123561813958728325753819469752284573850540431885846409882288932567554243272901159912645725761990928921437856436145817665811475986309982997950999293714892603262089753972717861428889338551483502349364205413850939937375519411435697988410128868187163477844284716857570885852520038718335089593230024729266260270753151639924976705364801314031059628996505570288620235014099098211295172753706699442203421692937917428544397112905997364438200936502625914703711941814303371961769880860824170, 10007577686644461947029677329023517748238701072009534619407894001056756638319096189656425949256817192236461578536956615352371233736287370502323177603488591353605464697659771967658816654346134525001187756571509918538466447134373110506250942493308061687200489743320023614678608896430560520942653395463921455453529005255682954224144429325017789882152033718965658961852350626351119909470241796848745165672539029330336989819376353159451373165728207201958562889951122408205970144729290523438325057528429187181138698791434209810720434390228528757975176373884430114202129300857850367517778937852695807284498535626348570861886390344751512640312701113620913423190117722723427221903736164506966677291812828687426343795924084988224766528553287231283297038912356946809933589667294319731774504501630636374101955440469190848020531580976082887393387622398670766759924281820658611775237297073806090319390300675946348180471850434580728594927688255593215991132654338751208493537029229891305144034371314297364306820997324010081878306598455254178987658227939049757946011292348001722362828852469218008248981242897091279042865541161145946455816751650527789383373012857928328, 14741565491413501767109718820915596862123836130166734801552506787541921187105026285422983747931328601407420374063532214403957336110799458223070170337665013549412934670812454688327359271964246741365181201834271411067743054461291971212139786481234225356864671856117918799202003148701938469918230735165271152402204596832386184047704948595605428441568132652718091099678042262955147044382152807314946008669123430925752830882905653481648313242409323560939606374509651169734569244969555613422124236360338828468077154745609733596546145372271129392308458018325053512989515862239982726584419016393509458293951077271293162888813018814665811603849007984797923130134995347487099069524772133533832465308596358368462022018100074554367738463136475009050153854696041663386730030134707639089883570643142876767404430158856855911330225347575487535997857281998452454057943991719076208005441425250820729671427256141505383443565114600642229488688104744638996831492077852328992796150281963889027270800081231257567581584747061320340953542967597651164870217077622271005394472399071435937166408235463081060029731845068783873215608938179238656723568431310027855311385641398824014, 2737268159272744348206781064982221269632011148518855308028713624242300657908082658851696198095758497792286251467771708329030611714707643001922207108619474008072999907466111338797715311056640523503778282258551419638487708518848084700615420442215042167664290005424621344811176070587325083342261425730233819345095962819708013678303266313845180917779508344157152915148537605060414201054988352712921713793927605815676073721867066653258584730174113958134007164631087448258753522421490960041590688327718314060341897519975395656217834891911261675049735886620751924752199512012160117837528497599206422295840161084827042077336908023972233220220214591518135668512015442045239360238344801854142201011624114644838079398516662079042762090233925318567523433100593984108269672025929079043208192126818804938242015037597282516733296796437838635274997080944385134239103352689615744438553616464371679300744918229244399384913742954782224442891186047027476744940385580596034254102030439222093805972254835107399027241079943869392196819557172908377106727725496109346167750938369312722978697493013373537382875730304832415518652895520757408742606093782105347616996584110221204, 3787417562232875469946869340728877055721319141522417105988737599595962132663439795182680355306512860834877969012478566107641957474241098870215849035306718169770229278929008482403257588019780158510379419137245635813094680298356218255229709346652192026255941681173353238849053423686389305415605175344428929992470941067705856104162456338574631793317978216755777630773304027920211527036410462836479593639306715422905904539982466003002109751646179936740082378010126888505031181328267346242918583770159200248977924122850024318440399117832325616175258656207068358195985662476388759135120191600473482001131490533134439484214751337355223058773966038835101232007892368729864459138255102368175607083643737334866851383883616946682236027478175586254313265451532405784414383523208311205783442216953787174567717899240471926496822548424683769985304513672201227516734896645188737009482799554468546971556969508183600014433799251544171260348457116468366310209404661352964256136853212296141574947377956794735064441519608543923203239009824224868440650679293145660732843756677079457127524460269204724530459480620935239898909160793228761408743564162727184892625929518797410], 'aut_phi_ratio': 550.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [2, 11, 2, 1], [2, 121, 2, 1], [2, 1331, 2, 1], [5, 121, 2, 2], [10, 121, 2, 2], [10, 121, 4, 2], [10, 1331, 4, 4], [11, 2, 5, 1], [11, 10, 2, 1], [11, 10, 10, 1], [11, 20, 10, 1], [11, 20, 50, 1], [22, 2, 5, 1], [22, 10, 2, 1], [22, 10, 10, 1], [22, 20, 10, 1], [22, 20, 50, 1], [22, 110, 4, 1], [22, 110, 20, 1], [22, 242, 10, 1], [55, 242, 10, 2], [110, 242, 10, 2], [110, 242, 20, 2]], 'aut_supersolvable': False, 'aut_tex': 'C_{11}^3.C_5.C_{10}^2.C_2^4', 'autcent_abelian': True, 'autcent_cyclic': False, 'autcent_exponent': 2, 'autcent_group': '4.2', 'autcent_hash': 2, 'autcent_nilpotent': True, 'autcent_order': 4, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': True, 'autcent_tex': 'C_2^2', 'autcentquo_abelian': False, 'autcentquo_cyclic': False, 'autcentquo_exponent': 220, 'autcentquo_group': None, 'autcentquo_hash': 3149364867277236831, 'autcentquo_nilpotent': False, 'autcentquo_order': 2662000, 'autcentquo_solvable': True, 'autcentquo_supersolvable': False, 'autcentquo_tex': 'C_{11}^3.C_{10}.C_{10}^2.C_2', 'cc_stats': [[1, 1, 1], [2, 1, 1], [2, 11, 2], [2, 121, 2], [2, 1331, 2], [5, 121, 4], [10, 121, 12], [10, 1331, 16], [11, 2, 5], [11, 10, 12], [11, 20, 60], [22, 2, 5], [22, 10, 12], [22, 20, 60], [22, 110, 24], [22, 242, 10], [55, 242, 20], [110, 242, 60]], 'center_label': '2.1', 'center_order': 2, 'central_product': True, 'central_quotient': '26620.bb', 'commutator_count': 1, 'commutator_label': '1331.5', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1', '2.1', '2.1', '5.1', '11.1', '11.1', '11.1'], 'composition_length': 7, 'conjugacy_classes_known': True, 'counter': 30, 'cyclic': False, 'derived_length': 2, 'dihedral': False, 'direct_factorization': [['1210.10', 1], ['2.1', 1], ['22.1', 1]], 'direct_product': True, 'div_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [2, 11, 1, 2], [2, 121, 1, 2], [2, 1331, 1, 2], [5, 121, 4, 1], [10, 121, 4, 3], [10, 1331, 4, 4], [11, 2, 5, 1], [11, 10, 1, 2], [11, 10, 5, 2], [11, 20, 5, 12], [22, 2, 5, 1], [22, 10, 1, 2], [22, 10, 5, 2], [22, 20, 5, 12], [22, 110, 1, 4], [22, 110, 5, 4], [22, 242, 5, 2], [55, 242, 20, 1], [110, 242, 20, 3]], 'element_repr_type': 'PC', 'elementary': 1, 'eulerian_function': 4499712, 'exponent': 110, 'exponents_of_order': [3, 3, 1], 'factors_of_aut_order': [2, 5, 11], 'factors_of_order': [2, 5, 11], 'faithful_reps': [[20, 1, 50]], 'familial': False, 'frattini_label': '1.1', 'frattini_quotient': '53240.bd', 'hash': 3100417070322456923, 'hyperelementary': 1, 'inner_abelian': False, 'inner_cyclic': False, 'inner_exponent': 110, 'inner_gen_orders': [10, 22, 11, 11], 'inner_gens': [[1, 48610, 20460, 21780], [4861, 10, 2200, 50820], [35421, 450, 220, 2420], [33881, 4850, 220, 2420]], 'inner_hash': 738845080847280697, 'inner_nilpotent': False, 'inner_order': 26620, 'inner_split': False, 'inner_tex': 'D_{11}\\times C_{11}:F_{11}', 'inner_used': [1, 2, 3], 'irrC_degree': 20, 'irrQ_degree': 100, 'irrQ_dim': 100, 'irrR_degree': 20, 'irrep_stats': [[1, 40], [2, 100], [10, 48], [20, 120]], 'label': '53240.bd', 'linC_count': None, 'linC_degree': None, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': None, 'linQ_degree_count': None, 'linQ_dim': None, 'linQ_dim_count': None, 'linR_count': None, 'linR_degree': None, 'maximal_subgroups_known': True, 'metabelian': True, 'metacyclic': False, 'monomial': True, 'name': 'D11*C22:F11', 'ngens': 7, 'nilpotency_class': -1, 'nilpotent': False, 'normal_counts': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 34, 'number_characteristic_subgroups': 23, 'number_conjugacy_classes': 308, 'number_divisions': 64, 'number_normal_subgroups': 63, 'number_subgroup_autclasses': 156, 'number_subgroup_classes': 440, 'number_subgroups': 94916, 'old_label': None, 'order': 53240, 'order_factorization_type': 321, 'order_stats': [[1, 1], [2, 2927], [5, 484], [10, 22748], [11, 1330], [22, 6390], [55, 4840], [110, 14520]], 'outer_abelian': True, 'outer_cyclic': False, 'outer_equivalence': True, 'outer_exponent': 10, 'outer_gen_orders': [2, 2, 10, 10], 'outer_gen_pows': [0, 8, 0, 0], 'outer_gens': [[9, 45750, 20460, 42900], [1, 50830, 35860, 12100], [26621, 31530, 26400, 36300], [1, 19370, 5060, 31460]], 'outer_group': '400.221', 'outer_hash': 221, 'outer_nilpotent': True, 'outer_order': 400, 'outer_permdeg': 18, 'outer_perms': [355687428096000, 1307714284800, 6227475162, 39916842], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'C_2^2\\times C_{10}^2', 'pc_rank': 4, 'perfect': False, 'permutation_degree': 35, 'pgroup': 0, 'primary_abelian_invariants': [2, 2, 2, 5], 'quasisimple': False, 'rank': 3, 'rational': False, 'rational_characters_known': True, 'ratrep_stats': [[1, 8], [4, 8], [10, 12], [40, 4], [50, 8], [100, 24]], 'representations': {'PC': {'code': '17758002571555044466105400900421978247758065417477149017511461742040987647090309909', 'gens': [1, 3, 5, 6], 'pres': [7, -2, -5, -2, -11, -11, -2, -11, 14, 1020812, 50934, 58, 5603, 716104, 96261, 7718, 914765, 762312, 213463, 124, 2134446, 474333, 237180]}, 'GLFp': {'d': 4, 'p': 11, 'gens': [32906036359581576, 18721992341619836, 11300846666707172, 1754382938723032, 36037487804644665, 32182222080390795, 41772741070013040]}, 'Perm': {'d': 35, 'gens': [340007756491608160105911900865578977880, 608909717286147822420363932861514282487, 938901755970236865128710790579787429294, 1242035941944727800399071423394049536000, 62659640997738622771558431091307779806, 1547473788333472666977512918876160000000, 1]}}, 'schur_multiplier': [2, 2, 22], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [2, 2, 10], 'solvability_type': 7, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': True, 'sylow_subgroups_known': True, 'tex_name': 'D_{11}\\times C_{22}:F_{11}', 'transitive_degree': 220, 'wreath_data': None, 'wreath_product': False}