-
gps_subgroup_search • Show schema
Hide schema
{'Agroup': False, 'Zgroup': False, 'abelian': False, 'ambient': '43200.bt', 'ambient_counter': 46, 'ambient_order': 43200, 'ambient_tex': '(C_5\\times A_4):S_6', 'central': False, 'central_factor': False, 'centralizer_order': 6, 'characteristic': False, 'core_order': 20, 'counter': 278, 'cyclic': False, 'direct': None, 'hall': 0, 'label': '43200.bt.360.j1.a1', 'maximal': False, 'maximal_normal': False, 'metabelian': True, 'metacyclic': None, 'minimal': False, 'minimal_normal': False, 'nilpotent': False, 'normal': False, 'old_label': '360.j1.a1', 'outer_equivalence': False, 'perfect': False, 'proper': True, 'quotient': None, 'quotient_Agroup': None, 'quotient_abelian': None, 'quotient_cyclic': None, 'quotient_hash': None, 'quotient_metabelian': None, 'quotient_nilpotent': None, 'quotient_order': 360, 'quotient_simple': None, 'quotient_solvable': None, 'quotient_supersolvable': None, 'quotient_tex': None, 'simple': False, 'solvable': True, 'special_labels': [], 'split': None, 'standard_generators': False, 'stem': False, 'subgroup': '120.20', 'subgroup_hash': 20, 'subgroup_order': 120, 'subgroup_tex': 'C_{15}:D_4', 'supersolvable': True, 'sylow': 0}
-
gps_subgroup_data • Show schema
Hide schema
{'ambient': '43200.bt', 'aut_centralizer_order': None, 'aut_label': '360.j1', 'aut_quo_index': None, 'aut_stab_index': None, 'aut_weyl_group': None, 'aut_weyl_index': None, 'centralizer': '7200.a1.a1', 'complements': None, 'conjugacy_class_count': 1, 'contained_in': ['90.g1.a1', '120.i1.a1', '120.j1.a1', '120.k1.a1', '180.l1.a1'], 'contains': ['720.d1.a1', '720.f1.a1', '720.j1.a1', '1080.n1.a1', '1800.h1.a1'], 'core': '2160.a1.a1', 'coset_action_label': None, 'count': 180, 'diagramx': [1706, -1, 6278, -1, 4290, -1, 8285, -1], 'generators': [87657292800, 15240960, 186810624000, 87672534381, 93887947978], 'label': '43200.bt.360.j1.a1', 'mobius_quo': None, 'mobius_sub': 0, 'normal_closure': '1.a1.a1', 'normal_contained_in': None, 'normal_contains': None, 'normalizer': '180.l1.a1', 'old_label': '360.j1.a1', 'projective_image': '43200.bt', 'quotient_action_image': None, 'quotient_action_kernel': None, 'quotient_action_kernel_order': None, 'quotient_fusion': None, 'short_label': '360.j1.a1', 'subgroup_fusion': None, 'weyl_group': '40.13'}
-
gps_groups • Show schema
Hide schema
{'Agroup': False, 'Zgroup': False, 'abelian': False, 'abelian_quotient': '12.5', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 2, 'aut_exponent': 20, 'aut_gen_orders': [2, 2, 4, 10], 'aut_gens': [[992, 566032, 685220], [29760, 566032, 685220], [992, 357520, 685220], [29760, 417098, 446894], [4092, 297923, 685220]], 'aut_group': '160.236', 'aut_hash': 236, 'aut_nilpotency_class': -1, 'aut_nilpotent': False, 'aut_order': 160, 'aut_permdeg': 11, 'aut_perms': [1, 126, 1169280, 4359888], 'aut_phi_ratio': 5.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [2, 2, 1, 1], [2, 10, 1, 1], [3, 1, 2, 1], [4, 10, 1, 1], [5, 2, 2, 1], [6, 1, 2, 1], [6, 2, 2, 1], [6, 10, 2, 1], [10, 2, 2, 1], [10, 2, 4, 1], [12, 10, 2, 1], [15, 2, 4, 1], [30, 2, 4, 1], [30, 2, 8, 1]], 'aut_supersolvable': True, 'aut_tex': 'C_2^3\\times F_5', 'autcent_abelian': True, 'autcent_cyclic': False, 'autcent_exponent': 2, 'autcent_group': '8.5', 'autcent_hash': 5, 'autcent_nilpotent': True, 'autcent_order': 8, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': True, 'autcent_tex': 'C_2^3', 'autcentquo_abelian': False, 'autcentquo_cyclic': False, 'autcentquo_exponent': 20, 'autcentquo_group': '20.3', 'autcentquo_hash': 3, 'autcentquo_nilpotent': False, 'autcentquo_order': 20, 'autcentquo_solvable': True, 'autcentquo_supersolvable': True, 'autcentquo_tex': 'F_5', 'cc_stats': [[1, 1, 1], [2, 1, 1], [2, 2, 1], [2, 10, 1], [3, 1, 2], [4, 10, 1], [5, 2, 2], [6, 1, 2], [6, 2, 2], [6, 10, 2], [10, 2, 6], [12, 10, 2], [15, 2, 4], [30, 2, 12]], 'center_label': '6.2', 'center_order': 6, 'central_product': True, 'central_quotient': '20.4', 'commutator_count': 1, 'commutator_label': '10.2', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1', '2.1', '2.1', '3.1', '5.1'], 'composition_length': 5, 'conjugacy_classes_known': True, 'counter': 20, 'cyclic': False, 'derived_length': 2, 'dihedral': False, 'direct_factorization': [['3.1', 1], ['40.8', 1]], 'direct_product': True, 'div_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [2, 2, 1, 1], [2, 10, 1, 1], [3, 1, 2, 1], [4, 10, 1, 1], [5, 2, 2, 1], [6, 1, 2, 1], [6, 2, 2, 1], [6, 10, 2, 1], [10, 2, 2, 1], [10, 2, 4, 1], [12, 10, 2, 1], [15, 2, 4, 1], [30, 2, 4, 1], [30, 2, 8, 1]], 'element_repr_type': 'GLFp', 'elementary': 1, 'eulerian_function': 24, 'exponent': 60, 'exponents_of_order': [3, 1, 1], 'factors_of_aut_order': [2, 5], 'factors_of_order': [2, 3, 5], 'faithful_reps': [[2, 0, 8]], 'familial': False, 'frattini_label': '2.1', 'frattini_quotient': '60.10', 'hash': 20, 'hyperelementary': 2, 'inner_abelian': False, 'inner_cyclic': False, 'inner_exponent': 10, 'inner_gen_orders': [2, 10, 5], 'inner_gens': [[992, 89392, 804380], [22940, 566032, 685220], [15438, 566032, 685220]], 'inner_hash': 4, 'inner_nilpotent': False, 'inner_order': 20, 'inner_split': True, 'inner_tex': 'D_{10}', 'inner_used': [1, 2], 'irrC_degree': 2, 'irrQ_degree': 16, 'irrQ_dim': 16, 'irrR_degree': 4, 'irrep_stats': [[1, 12], [2, 27]], 'label': '120.20', 'linC_count': 8, 'linC_degree': 2, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': 8, 'linQ_degree_count': 10, 'linQ_dim': 8, 'linQ_dim_count': 10, 'linR_count': 4, 'linR_degree': 4, 'maximal_subgroups_known': True, 'metabelian': True, 'metacyclic': False, 'monomial': True, 'name': 'C15:D4', 'ngens': 3, 'nilpotency_class': -1, 'nilpotent': False, 'normal_counts': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 16, 'number_characteristic_subgroups': 18, 'number_conjugacy_classes': 39, 'number_divisions': 16, 'number_normal_subgroups': 18, 'number_subgroup_autclasses': 32, 'number_subgroup_classes': 32, 'number_subgroups': 80, 'old_label': None, 'order': 120, 'order_factorization_type': 311, 'order_stats': [[1, 1], [2, 13], [3, 2], [4, 10], [5, 4], [6, 26], [10, 12], [12, 20], [15, 8], [30, 24]], 'outer_abelian': True, 'outer_cyclic': False, 'outer_equivalence': False, 'outer_exponent': 4, 'outer_gen_orders': [2, 4], 'outer_gen_pows': [29792, 29792], 'outer_gens': [[992, 536259, 804380], [992, 417098, 446894]], 'outer_group': '8.2', 'outer_hash': 2, 'outer_nilpotent': True, 'outer_order': 8, 'outer_permdeg': 6, 'outer_perms': [120, 9], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'C_2\\times C_4', 'pc_rank': 3, 'perfect': False, 'permutation_degree': 12, 'pgroup': 0, 'primary_abelian_invariants': [2, 2, 3], 'quasisimple': False, 'rank': 2, 'rational': False, 'rational_characters_known': True, 'ratrep_stats': [[1, 4], [2, 5], [4, 3], [8, 3], [16, 1]], 'representations': {'PC': {'code': 10473736188964871, 'gens': [1, 2, 3], 'pres': [5, -2, -2, 2, -3, -5, 1172, 42, 643, 78, 2404]}, 'GLFp': {'d': 2, 'p': 31, 'gens': [992, 566032, 685220]}, 'Perm': {'d': 12, 'gens': [40279687, 7620480, 5760, 87091200, 37]}}, 'schur_multiplier': [2], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [2, 6], 'solvability_type': 7, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': True, 'sylow_subgroups_known': True, 'tex_name': 'C_{15}:D_4', 'transitive_degree': 60, 'wreath_data': None, 'wreath_product': False}
-
gps_groups • Show schema
Hide schema
{'Agroup': False, 'Zgroup': False, 'abelian': False, 'abelian_quotient': '2.1', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 3, 'aut_exponent': 120, 'aut_gen_orders': [30, 4, 40, 4, 24], 'aut_gens': [[87657292800, 274467916800, 181073576880, 87179097654, 262013875200, 6714051508], [186810624000, 87657292800, 181073576880, 12944695701, 12454041600, 174364611482], [87657292800, 186810624000, 6721263360, 87186643139, 100111334400, 181073577293], [87657292800, 186810624000, 174367554480, 487353196, 267761894400, 262021904393], [87657292800, 274467916800, 12462070320, 87189943944, 93405312000, 267766692928], [274467916800, 186810624000, 181067402880, 6235372421, 93405312000, 100126575406]], 'aut_group': None, 'aut_hash': 3309493389982338751, 'aut_nilpotency_class': -1, 'aut_nilpotent': False, 'aut_order': 691200, 'aut_permdeg': 900, 'aut_perms': [31213799722411722779826690360345153093683453639044419401397906932779092875665332679454161363041389646463684952253814748683899279312372269443909412027770432746865666879896242697234476235518712626046002564217158070002784389652240258794835302339213584380611076732125630665235045583319877950026140627333081050080048084212407166226940207564053119621092379567642894910690013483373811322024808566574286477370445260619346881353444407892775662212159815875384186514370094261900362573301207382023495272952305200506727647784649915315465753295053212305514672265891721480529237514838641005338531120801097148942116698387070757700800852275601504883517151894455511568453521445110126922467479882844908630858439087298372545685348938420104639125557176350645433791072854161963746102945674493210808166763766297216644552405837271855865933887468507375425609445118543084121459072118200998865397239995289250295356013895514561374174100853372145172173324403296061931926418040053548640496679271425840987846474713885879724222833094970491567900244524999178192044054202527473200617683610751923731361815888485373040796090325398594738362558231317330116052345684120560151511353575804767215391553478311262603504456307479374902597896341450431133250573404683098636777672550323292840624137809004567291612427693003045966928765500646384707845693925150491574092513923556126305175387067726772509587890293409936168911137526030629402783700968935904091258713836628132716049497194818578817694935248220228003425806533325664823779363797857946187680096687788797527820518230711581960939484729979651384813790022535818168576097998724144197717933290072237896996093888293468258899095781545982104954111326522346784553563902946368157570011512064403505969856135882671662731107621995949102282588677504637718276894854823686705084064812941816017966553108820559810527793108231417721328614627329280886842480862547011376483828173442650951901641553929178867756228716994203845438250804595994234700455050926341070340548840007294259844335964819830972595814369334448905119146026426535232347015878608255042420568863150359995617699474106781328847007998665332340161368808142979802901491328255926148133886982210003614535706374176332918323622464537038528389996819638349806131514019425675486825639944443223279832703182823954964215179071977858369, 1277263105815311583671017585169674552819244626973030445831085808549597616559735081159488964341873231005096464308962556545357842485651347742906553964071497288322755050428316257745290306508128572610955663222014924897487890096963741708581301807748897899086555688062031760936665696545799646242683865670794562090473717096251773209293145810527870077010989805963343869163285265480334601758858711769995228070200965024540327844528605719975263328430977632935192092470111936587086447351451920352486594468628374879203264738265390377783974529675259638717030034228770754662901616933032098051466069141123224138590183574263643789195017640487728564601196701767742413049200245800466201071612070647878795778821337710462662959836094917262676450489763289328209763992685951313701608065333726476617955373412608259093901529364371699966919398777400046050296412619290686029487489608081282923646179480439664663473871544107613648694318467691583418855908432178040373087149096937568058533489293237502661250568329106732077207655181761937324334584106624903191623877326544883609134253765505043937413229054714083119631551702831043750961639307627231089592049931007325703589749271234181310364687835626759551843750945439078366507024350945357811653102498357621496384699716245431742760445540075101490225362984947082360360784553353498648933854609171528869355949792338901036203752292843844162135576043487860885078599831204167410243737660859639204808428327352290233750635152449696759749578745633997519127655898824890873998240544999657003965507026134428796124384003728271966071291886470735938937774893908897773293746801605839325414945441802054241802591297830543056224781996897925867431209517049423700585928738304856368046151065516173699448981239101162389610024488862527896571151610337988270331012235320067591232664106068766166309387308128062403470524146531910440318988552398473733928713721403676947281124320917000561601165182006495912679919550966180535651062587743119953313638586078316124242853302273755564528680450706189421320017097184091849271595317317686154873443934023768339964075880199465314053658889409990045378177615853186655298648764514669712479784946928560527268806353363808311213653801269662491955352737144467875818544202522738107481668356907666671587330625460907671020280642601098323995277297871642467, 43885934532674289071103459911633313345314062321192390880988302445681535390177479729175418592087306336696140406859188207786115188885027556864823102153618625550668456814611028237554120520353397304556475259366163653112679970906753963667145293324157341971621451448681442726624646717349224339310194629402134031175913034186528698795835982857477116328725960286292416653277341789691123785959685682039949444007065782926749446439563194399298270242270302550312352791274856627747883521577963713945575017318246057354675684080564512799804209839787100320989089194978303126185814462224469736489947741740466571639489210157179429789279487225182181683972408717816220901168929796363704828822898724737753515528191156964206807727335778288292489602745215866592593608224940980128966120028416876239608914270750221136573312024737853715471460122065947248290391820045888901826718044994997005770919096661682917330812423617445103468474812206726106008616519867832477576414246327424609363838518862616568921009330045804670045600771053688591434219798055509489792913554694675889383818046252909579216492134161264195919889720915235689324863344717708723883804965744758638882470015900351816791204467400314178399288008785282660605395333045229626462220790149469361334174219771581043318692553258194824028865235797034914657855775105879362578881908232112533225803718186421687078744854373554321826704291971971717918898409664665914830892770872504249371944419487163753665001812238511602440066036924676874107150955955823212304669157387525382251474490657214356445997330728591358493460752570895804193607417330454163721947119902125150372987834096692050335441019101982542190965565189969951549805341987605324668308536825422017344447609365393150779942173481671198050625033822178843425686546241785942585312605302265793257646724395515054175716347982100529524066645514040526791055037808211701525733403539228299887593228360543578224156129661235106868532179056010889026398619952415221303668381805147672842140861258517657742162635926304235725670500607572156836128388335872036565380795165915738073714722412597514454808641162821701067292266129878312797850585739937351081933906140717483334957539444392189987072706475651936718126831663414967307336209841416147535776248642707049983785657809738209310085504813616867363180005503647521999, 1687049806462380512174255546800848691385775565268540300161377303986341346412683334064463014891937221269558252121733587124171841031729141127228106146456701206550548234792753440782404156622192054478129322183196068959581955755997174239860039335968293412011999323616482307463461056526198353570044461041277805586047798578409697882538229139547241040878783028743636608906667638134785942880107595376786844822739845342183747253676355610814572690762383567626616110821603317679545571731509186848087085245516268089107013913233798411732470042131769471475185787829622668642991662587170741771245714743939016533970299779588709201443266206392172534188309419615247404036406059255383832458517602859676502130372288011033308930830574920234747119381222588776120333507750029055393949666680499804230994661161067414817513965288707069995402963850057349320327060208644649881775772982386969412412761811790144500162135556338265949009644707016110359788333565520585807630551971460707060894788969821576008836064859870074542847503905150526692430151154508094791481893660393293899692861030380837083474466199064491193723493602620936546494808041858769745794137903026342951212732472970459178921928229360209696931489024271423598086280799219962198491240781030861554231673021633295503510789946094414693987310637962538518901896785947769913353515347010130645634955793710979808805474498355788489338690443753756735042700125006618518567941245998633946018034749985749271516223143877605288803790825824616461659429091379659168825340720024607508756671157757481840800889184250236454286556713151295396867056855849206267779004760895718262691652731346325375484733500545217082901904117719887723394152460942455281513931500891047740430382252102819803160024523286409025334955581056663161705108384102096855668339328941684362140051599633853205877720071557196408473634950640610849941035217555629794020174912396746779729092061938541682511575968133609505723132408670428194412596425251514166893615075689508371877497807031997716082857486251876599490871549565961851127575212824662137051612833643128485866350605791103943165860282827944532565671714900203919057994138342691642820568870184992036059241763377042065314893736769932805017014437597266715334609804574099153470079986412800050804300319242606889102545549727628252242399420302033626, 62775781482503927183199494587137018173407384246950882174736127908643104570146503072858627940237109456184073842684617780750889875642597370152439310554611514655863582314047924630654386758279571004318654741362307200422555657015998556155635969804958834314801657670905868488119900323210571135495185815780525046185512359292991281614562276708670384233549419672717798312881173653298362944691079252464476086476892354495778179468805163277977914607036513549432850018519755543854997726794956491131916298154269329786020455443325695889923090266467505469431511817289293094323583296446342249871019403463545083258669060031384149611229399141768342961813650319771586455077767908635154288579461867649157981217653604359027263774785226217923577749968801675134792448260599071123392680234998031249081199936750965710054642711579612200927993575823662017650761305862151448088022296320209627465955004024846788390438788543318067675574712322655156324236065651269496182051851175547626157709486438453368773392457659052009345404241783720337783920572913076696653966038046812488856807949260281420146820262717741066002842702450456674791994856742813473055913592493912542704443531700177371534259571266052203813103379055064154089282428127252245683008430950485280649259962638402067285539513021929106951227461698782718062430973441397423120893684560239115763501220915052493188375725934556678072308007689335035611749392660236100252584808370580698275899675624702807916547549071880506399856858236907302861847617944327723953766248892434785074229916139389744050789684880782859271187056938955696854659055385239920369621274947338148432917360735433734268520344163267532923192101582680813552947351368830451284666454374802686956730709491129843778049723455677905182350831446392418065009218088465934004169176436874587184892468648125422254583876603347494787239849915282209645176502829821760241668956711515771781906513900570327008775145216420091829583513162631942101555347374902084848232054697765704099757385275141504392613922287985062044444190518600087309218549022744581120556948369198973281627402147384379626363092066607363537672034185657988743103586676837545075662825723244368798961221755354486821886861576059137334006667217364811709923751578312611115462686805783884410385063008317846950297761872384999043338293897038975806], 'aut_phi_ratio': 60.0, 'aut_solvable': False, 'aut_stats': [[1, 1, 1, 1], [2, 3, 1, 1], [2, 45, 1, 1], [2, 135, 1, 1], [2, 450, 2, 1], [3, 8, 1, 1], [3, 40, 2, 1], [3, 320, 2, 1], [4, 90, 1, 1], [4, 270, 1, 1], [4, 450, 2, 1], [4, 2700, 1, 2], [5, 2, 2, 1], [5, 144, 1, 1], [5, 144, 4, 1], [6, 120, 2, 1], [6, 360, 1, 1], [6, 3600, 2, 1], [10, 6, 2, 1], [10, 90, 2, 1], [10, 270, 2, 1], [10, 432, 1, 1], [10, 432, 4, 1], [12, 720, 1, 1], [12, 3600, 2, 1], [15, 8, 4, 1], [15, 80, 4, 1], [15, 320, 8, 1], [15, 576, 2, 1], [15, 576, 8, 1], [20, 180, 2, 1], [20, 540, 2, 1], [30, 240, 4, 1], [30, 360, 4, 1], [60, 720, 4, 1]], 'aut_supersolvable': False, 'aut_tex': '(F_5\\times S_4).A_6.C_2^2', 'autcent_abelian': True, 'autcent_cyclic': True, 'autcent_exponent': 1, 'autcent_group': '1.1', 'autcent_hash': 1, 'autcent_nilpotent': True, 'autcent_order': 1, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': True, 'autcent_tex': 'C_1', 'autcentquo_abelian': False, 'autcentquo_cyclic': False, 'autcentquo_exponent': 120, 'autcentquo_group': None, 'autcentquo_hash': 3309493389982338751, 'autcentquo_nilpotent': False, 'autcentquo_order': 691200, 'autcentquo_solvable': False, 'autcentquo_supersolvable': False, 'autcentquo_tex': '(F_5\\times S_4).A_6.C_2^2', 'cc_stats': [[1, 1, 1], [2, 3, 1], [2, 45, 1], [2, 135, 1], [2, 450, 2], [3, 8, 1], [3, 40, 2], [3, 320, 2], [4, 90, 1], [4, 270, 1], [4, 450, 2], [4, 2700, 2], [5, 2, 2], [5, 144, 5], [6, 120, 2], [6, 360, 1], [6, 3600, 2], [10, 6, 2], [10, 90, 2], [10, 270, 2], [10, 432, 5], [12, 720, 1], [12, 3600, 2], [15, 8, 4], [15, 80, 4], [15, 320, 8], [15, 576, 10], [20, 180, 2], [20, 540, 2], [30, 240, 4], [30, 360, 4], [60, 720, 4]], 'center_label': '1.1', 'center_order': 1, 'central_product': False, 'central_quotient': '43200.bt', 'commutator_count': 1, 'commutator_label': '21600.bg', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1', '2.1', '2.1', '3.1', '5.1', '360.118'], 'composition_length': 6, 'conjugacy_classes_known': True, 'counter': 46, 'cyclic': False, 'derived_length': 3, 'dihedral': False, 'direct_factorization': [], 'direct_product': False, 'div_stats': [[1, 1, 1, 1], [2, 3, 1, 1], [2, 45, 1, 1], [2, 135, 1, 1], [2, 450, 1, 2], [3, 8, 1, 1], [3, 40, 1, 2], [3, 320, 1, 2], [4, 90, 1, 1], [4, 270, 1, 1], [4, 450, 1, 2], [4, 2700, 1, 2], [5, 2, 2, 1], [5, 144, 1, 1], [5, 144, 4, 1], [6, 120, 1, 2], [6, 360, 1, 1], [6, 3600, 1, 2], [10, 6, 2, 1], [10, 90, 2, 1], [10, 270, 2, 1], [10, 432, 1, 1], [10, 432, 4, 1], [12, 720, 1, 1], [12, 3600, 1, 2], [15, 8, 4, 1], [15, 80, 2, 2], [15, 320, 4, 2], [15, 576, 2, 1], [15, 576, 8, 1], [20, 180, 2, 1], [20, 540, 2, 1], [30, 240, 2, 2], [30, 360, 4, 1], [60, 720, 4, 1]], 'element_repr_type': 'Perm', 'elementary': 1, 'eulerian_function': 477, 'exponent': 60, 'exponents_of_order': [6, 3, 2], 'factors_of_aut_order': [2, 3, 5], 'factors_of_order': [2, 3, 5], 'faithful_reps': [[30, 1, 4], [48, 0, 4], [54, 1, 2], [60, 1, 2]], 'familial': False, 'frattini_label': '1.1', 'frattini_quotient': '43200.bt', 'hash': 3677769386235727755, 'hyperelementary': 1, 'inner_abelian': False, 'inner_cyclic': False, 'inner_exponent': 60, 'inner_gen_orders': [2, 2, 15, 2, 3, 15], 'inner_gens': [[87657292800, 274467916800, 12465013680, 87179097654, 93405312000, 267769923508], [87657292800, 274467916800, 262024847280, 479808054, 181062604800, 174364611508], [274467916800, 186810624000, 181073576880, 6235372134, 93405312000, 100119363508], [87657292800, 186810624000, 6710820480, 87179097654, 100111334400, 181077845978], [274467916800, 186810624000, 12465013680, 268241702454, 262013875200, 174364611508], [186810624000, 87657292800, 262024847280, 180587237145, 93405312000, 6714051508]], 'inner_hash': 3677769386235727755, 'inner_nilpotent': False, 'inner_order': 43200, 'inner_split': True, 'inner_tex': '(C_5\\times A_4):S_6', 'inner_used': [1, 2, 3, 4, 6], 'irrC_degree': 30, 'irrQ_degree': 60, 'irrQ_dim': 60, 'irrR_degree': 30, 'irrep_stats': [[1, 2], [2, 7], [3, 2], [5, 4], [6, 2], [9, 2], [10, 16], [15, 4], [16, 15], [18, 7], [20, 7], [27, 2], [30, 6], [48, 5], [54, 2], [60, 2]], 'label': '43200.bt', 'linC_count': 48, 'linC_degree': 10, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': 12, 'linQ_degree_count': 8, 'linQ_dim': 12, 'linQ_dim_count': 8, 'linR_count': 48, 'linR_degree': 10, 'maximal_subgroups_known': True, 'metabelian': False, 'metacyclic': False, 'monomial': False, 'name': '(C5*A4):S6', 'ngens': 6, 'nilpotency_class': -1, 'nilpotent': False, 'normal_counts': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 36, 'number_characteristic_subgroups': 13, 'number_conjugacy_classes': 85, 'number_divisions': 46, 'number_normal_subgroups': 13, 'number_subgroup_autclasses': 557, 'number_subgroup_classes': 865, 'number_subgroups': 222088, 'old_label': None, 'order': 43200, 'order_factorization_type': 321, 'order_stats': [[1, 1], [2, 1083], [3, 728], [4, 6660], [5, 724], [6, 7800], [10, 2892], [12, 7920], [15, 8672], [20, 1440], [30, 2400], [60, 2880]], 'outer_abelian': True, 'outer_cyclic': False, 'outer_equivalence': False, 'outer_exponent': 4, 'outer_gen_orders': [2, 2, 4], 'outer_gen_pows': [0, 584, 0], 'outer_gens': [[87657292800, 186810624000, 6716994480, 87179097654, 100111334400, 181070633908], [87657292800, 274467916800, 181073576880, 87179098198, 262013875200, 6714051821], [87657292800, 274467916800, 181077845760, 87179097654, 262013875200, 6716994868]], 'outer_group': '16.10', 'outer_hash': 10, 'outer_nilpotent': True, 'outer_order': 16, 'outer_permdeg': 8, 'outer_perms': [5040, 120, 9], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'C_2^2\\times C_4', 'pc_rank': None, 'perfect': False, 'permutation_degree': 15, 'pgroup': 0, 'primary_abelian_invariants': [2], 'quasisimple': False, 'rank': 2, 'rational': False, 'rational_characters_known': True, 'ratrep_stats': [[1, 2], [2, 1], [3, 2], [4, 1], [5, 4], [8, 1], [9, 2], [10, 4], [12, 1], [15, 4], [16, 1], [18, 1], [20, 3], [27, 2], [30, 2], [32, 1], [36, 1], [40, 3], [48, 1], [60, 2], [64, 1], [72, 1], [80, 1], [108, 1], [120, 1], [128, 1], [192, 1]], 'representations': {'Perm': {'d': 15, 'gens': [87657292800, 274467916800, 181073576880, 87179097654, 262013875200, 6714051508]}}, 'schur_multiplier': [2, 2], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [2], 'solvability_type': 13, 'solvable': False, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': False, 'sylow_subgroups_known': True, 'tex_name': '(C_5\\times A_4):S_6', 'transitive_degree': 120, 'wreath_data': None, 'wreath_product': False}