-
gps_subgroup_search • Show schema
Hide schema
{'Agroup': True, 'Zgroup': False, 'abelian': False, 'ambient': '432.656', 'ambient_counter': 656, 'ambient_order': 432, 'ambient_tex': 'C_6^2.D_6', 'central': False, 'central_factor': False, 'centralizer_order': 12, 'characteristic': False, 'core_order': 18, 'counter': 101, 'cyclic': False, 'direct': None, 'hall': 0, 'label': '432.656.12.x1.b1', 'maximal': False, 'maximal_normal': False, 'metabelian': True, 'metacyclic': None, 'minimal': False, 'minimal_normal': False, 'nilpotent': False, 'normal': False, 'old_label': '12.x1.b1', 'outer_equivalence': False, 'perfect': False, 'proper': True, 'quotient': None, 'quotient_Agroup': None, 'quotient_abelian': None, 'quotient_cyclic': None, 'quotient_hash': None, 'quotient_metabelian': None, 'quotient_nilpotent': None, 'quotient_order': 12, 'quotient_simple': None, 'quotient_solvable': None, 'quotient_supersolvable': None, 'quotient_tex': None, 'simple': False, 'solvable': True, 'special_labels': [], 'split': None, 'standard_generators': False, 'stem': False, 'subgroup': '36.12', 'subgroup_hash': 12, 'subgroup_order': 36, 'subgroup_tex': 'C_6\\times S_3', 'supersolvable': True, 'sylow': 0}
-
gps_subgroup_data • Show schema
Hide schema
{'ambient': '432.656', 'aut_centralizer_order': 16, 'aut_label': '12.x1', 'aut_quo_index': None, 'aut_stab_index': 6, 'aut_weyl_group': '24.14', 'aut_weyl_index': 96, 'centralizer': '36.a1.a1', 'complements': None, 'conjugacy_class_count': 1, 'contained_in': ['4.c1.b1', '6.j1.a1', '6.o1.b1', '6.o1.d1'], 'contains': ['24.e1.a1', '24.t1.b1', '36.u1.b1', '36.w1.b1'], 'core': '24.e1.a1', 'coset_action_label': None, 'count': 3, 'diagramx': [7218, -1, 6119, -1, 6648, -1, 4121, -1], 'generators': [81, 36, 2, 24], 'label': '432.656.12.x1.b1', 'mobius_quo': None, 'mobius_sub': -2, 'normal_closure': '4.c1.b1', 'normal_contained_in': None, 'normal_contains': None, 'normalizer': '3.c1.a1', 'old_label': '12.x1.b1', 'projective_image': '72.46', 'quotient_action_image': None, 'quotient_action_kernel': None, 'quotient_action_kernel_order': None, 'quotient_fusion': None, 'short_label': '12.x1.b1', 'subgroup_fusion': None, 'weyl_group': '12.4'}
-
gps_groups • Show schema
Hide schema
{'Agroup': True, 'Zgroup': False, 'abelian': False, 'abelian_quotient': '12.5', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 2, 'aut_exponent': 6, 'aut_gen_orders': [2, 2, 6], 'aut_gens': [[1, 6], [5, 6], [1, 30], [31, 6]], 'aut_group': '24.14', 'aut_hash': 14, 'aut_nilpotency_class': -1, 'aut_nilpotent': False, 'aut_order': 24, 'aut_permdeg': 7, 'aut_perms': [7, 127, 856], 'aut_phi_ratio': 2.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [2, 3, 2, 1], [3, 1, 2, 1], [3, 2, 1, 1], [3, 2, 2, 1], [6, 1, 2, 1], [6, 2, 1, 1], [6, 2, 2, 1], [6, 3, 4, 1]], 'aut_supersolvable': True, 'aut_tex': 'C_2\\times D_6', 'autcent_abelian': True, 'autcent_cyclic': False, 'autcent_exponent': 2, 'autcent_group': '4.2', 'autcent_hash': 2, 'autcent_nilpotent': True, 'autcent_order': 4, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': True, 'autcent_tex': 'C_2^2', 'autcentquo_abelian': False, 'autcentquo_cyclic': False, 'autcentquo_exponent': 6, 'autcentquo_group': '6.1', 'autcentquo_hash': 1, 'autcentquo_nilpotent': False, 'autcentquo_order': 6, 'autcentquo_solvable': True, 'autcentquo_supersolvable': True, 'autcentquo_tex': 'S_3', 'cc_stats': [[1, 1, 1], [2, 1, 1], [2, 3, 2], [3, 1, 2], [3, 2, 3], [6, 1, 2], [6, 2, 3], [6, 3, 4]], 'center_label': '6.2', 'center_order': 6, 'central_product': True, 'central_quotient': '6.1', 'commutator_count': 1, 'commutator_label': '3.1', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1', '2.1', '3.1', '3.1'], 'composition_length': 4, 'conjugacy_classes_known': True, 'counter': 12, 'cyclic': False, 'derived_length': 2, 'dihedral': False, 'direct_factorization': [['2.1', 1], ['3.1', 1], ['6.1', 1]], 'direct_product': True, 'div_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [2, 3, 1, 2], [3, 1, 2, 1], [3, 2, 1, 1], [3, 2, 2, 1], [6, 1, 2, 1], [6, 2, 1, 1], [6, 2, 2, 1], [6, 3, 2, 2]], 'element_repr_type': 'PC', 'elementary': 1, 'eulerian_function': 12, 'exponent': 6, 'exponents_of_order': [2, 2], 'factors_of_aut_order': [2, 3], 'factors_of_order': [2, 3], 'faithful_reps': [[2, 0, 2]], 'familial': False, 'frattini_label': '1.1', 'frattini_quotient': '36.12', 'hash': 12, 'hyperelementary': 1, 'inner_abelian': False, 'inner_cyclic': False, 'inner_exponent': 6, 'inner_gen_orders': [2, 3], 'inner_gens': [[1, 30], [13, 6]], 'inner_hash': 1, 'inner_nilpotent': False, 'inner_order': 6, 'inner_split': True, 'inner_tex': 'S_3', 'inner_used': [1, 2], 'irrC_degree': 2, 'irrQ_degree': 4, 'irrQ_dim': 4, 'irrR_degree': 4, 'irrep_stats': [[1, 12], [2, 6]], 'label': '36.12', 'linC_count': 2, 'linC_degree': 2, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': 4, 'linQ_degree_count': 7, 'linQ_dim': 4, 'linQ_dim_count': 7, 'linR_count': 7, 'linR_degree': 4, 'maximal_subgroups_known': True, 'metabelian': True, 'metacyclic': True, 'monomial': True, 'name': 'C6*S3', 'ngens': 4, 'nilpotency_class': -1, 'nilpotent': False, 'normal_counts': [0, 0, 0, 0, 0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 10, 'number_characteristic_subgroups': 10, 'number_conjugacy_classes': 18, 'number_divisions': 12, 'number_normal_subgroups': 14, 'number_subgroup_autclasses': 18, 'number_subgroup_classes': 22, 'number_subgroups': 36, 'old_label': None, 'order': 36, 'order_factorization_type': 22, 'order_stats': [[1, 1], [2, 7], [3, 8], [6, 20]], 'outer_abelian': True, 'outer_cyclic': False, 'outer_equivalence': False, 'outer_exponent': 2, 'outer_gen_orders': [2, 2], 'outer_gen_pows': [0, 0], 'outer_gens': [[19, 6], [5, 6]], 'outer_group': '4.2', 'outer_hash': 2, 'outer_nilpotent': True, 'outer_order': 4, 'outer_permdeg': 4, 'outer_perms': [1, 6], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'C_2^2', 'pc_rank': 2, 'perfect': False, 'permutation_degree': 8, 'pgroup': 0, 'primary_abelian_invariants': [2, 2, 3], 'quasisimple': False, 'rank': 2, 'rational': False, 'rational_characters_known': True, 'ratrep_stats': [[1, 4], [2, 6], [4, 2]], 'representations': {'PC': {'code': 403784533, 'gens': [1, 3], 'pres': [4, -2, -3, -2, -3, 8, 362, 34, 387]}, 'GLZ': {'b': 3, 'd': 4, 'gens': [16858573, 35931481]}, 'GLFp': {'d': 2, 'p': 7, 'gens': [56, 687, 1718]}, 'Perm': {'d': 8, 'gens': [720, 1, 30, 5760]}}, 'schur_multiplier': [2], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [2, 6], 'solvability_type': 6, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': True, 'sylow_subgroups_known': True, 'tex_name': 'C_6\\times S_3', 'transitive_degree': 12, 'wreath_data': None, 'wreath_product': False}
-
gps_groups • Show schema
Hide schema
{'Agroup': False, 'Zgroup': False, 'abelian': False, 'abelian_quotient': '24.15', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 2, 'aut_exponent': 12, 'aut_gen_orders': [4, 6, 12, 2, 6, 6, 2], 'aut_gens': [[1, 6, 72], [37, 282, 108], [25, 390, 72], [5, 114, 108], [13, 318, 396], [29, 186, 72], [269, 258, 360], [13, 30, 72]], 'aut_group': None, 'aut_hash': 8142848205473677161, 'aut_nilpotency_class': -1, 'aut_nilpotent': False, 'aut_order': 2304, 'aut_permdeg': 26, 'aut_perms': [196860533720901685151935352, 2515258693556483882215439, 530945821627064109220250, 240345314731180084867106349, 77736912152298522939625096, 97439727930265472931925075, 240556576587829282165235904], 'aut_phi_ratio': 16.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [2, 1, 2, 1], [2, 6, 2, 1], [2, 18, 2, 1], [3, 1, 2, 1], [3, 2, 1, 2], [3, 2, 2, 2], [3, 4, 1, 1], [3, 4, 2, 1], [4, 6, 2, 1], [6, 1, 2, 1], [6, 1, 4, 1], [6, 2, 1, 2], [6, 2, 2, 4], [6, 2, 4, 2], [6, 4, 1, 1], [6, 4, 2, 2], [6, 4, 4, 1], [6, 6, 4, 2], [6, 6, 8, 1], [6, 18, 4, 1], [12, 6, 4, 2], [12, 6, 8, 1]], 'aut_supersolvable': True, 'aut_tex': 'C_2\\times C_6^2.C_2^5', 'autcent_abelian': False, 'autcent_cyclic': False, 'autcent_exponent': 4, 'autcent_group': '64.202', 'autcent_hash': 202, 'autcent_nilpotent': True, 'autcent_order': 64, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': True, 'autcent_tex': 'C_2^3:D_4', 'autcentquo_abelian': False, 'autcentquo_cyclic': False, 'autcentquo_exponent': 6, 'autcentquo_group': '36.10', 'autcentquo_hash': 10, 'autcentquo_nilpotent': False, 'autcentquo_order': 36, 'autcentquo_solvable': True, 'autcentquo_supersolvable': True, 'autcentquo_tex': 'S_3^2', 'cc_stats': [[1, 1, 1], [2, 1, 3], [2, 6, 2], [2, 18, 2], [3, 1, 2], [3, 2, 6], [3, 4, 3], [4, 6, 2], [6, 1, 6], [6, 2, 18], [6, 4, 9], [6, 6, 16], [6, 18, 4], [12, 6, 16]], 'center_label': '12.5', 'center_order': 12, 'central_product': True, 'central_quotient': '36.10', 'commutator_count': 1, 'commutator_label': '18.5', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1', '2.1', '2.1', '2.1', '3.1', '3.1', '3.1'], 'composition_length': 7, 'conjugacy_classes_known': True, 'counter': 656, 'cyclic': False, 'derived_length': 2, 'dihedral': False, 'direct_factorization': [['2.1', 1], ['3.1', 1], ['72.23', 1]], 'direct_product': True, 'div_stats': [[1, 1, 1, 1], [2, 1, 1, 3], [2, 6, 1, 2], [2, 18, 1, 2], [3, 1, 2, 1], [3, 2, 1, 2], [3, 2, 2, 2], [3, 4, 1, 1], [3, 4, 2, 1], [4, 6, 1, 2], [6, 1, 2, 3], [6, 2, 1, 6], [6, 2, 2, 6], [6, 4, 1, 3], [6, 4, 2, 3], [6, 6, 2, 8], [6, 18, 2, 2], [12, 6, 2, 4], [12, 6, 4, 2]], 'element_repr_type': 'PC', 'elementary': 1, 'eulerian_function': 8736, 'exponent': 12, 'exponents_of_order': [4, 3], 'factors_of_aut_order': [2, 3], 'factors_of_order': [2, 3], 'faithful_reps': [], 'familial': False, 'frattini_label': '2.1', 'frattini_quotient': '216.170', 'hash': 656, 'hyperelementary': 1, 'inner_abelian': False, 'inner_cyclic': False, 'inner_exponent': 6, 'inner_gen_orders': [2, 6, 3], 'inner_gens': [[1, 66, 72], [13, 6, 360], [1, 150, 72]], 'inner_hash': 10, 'inner_nilpotent': False, 'inner_order': 36, 'inner_split': True, 'inner_tex': 'S_3^2', 'inner_used': [1, 2, 3], 'irrC_degree': -1, 'irrQ_degree': -1, 'irrQ_dim': -1, 'irrR_degree': -1, 'irrep_stats': [[1, 24], [2, 54], [4, 12]], 'label': '432.656', 'linC_count': 192, 'linC_degree': 4, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': 6, 'linQ_degree_count': 16, 'linQ_dim': 6, 'linQ_dim_count': 16, 'linR_count': 136, 'linR_degree': 6, 'maximal_subgroups_known': True, 'metabelian': True, 'metacyclic': False, 'monomial': True, 'name': 'C6^2.D6', 'ngens': 7, 'nilpotency_class': -1, 'nilpotent': False, 'normal_counts': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 34, 'number_characteristic_subgroups': 36, 'number_conjugacy_classes': 90, 'number_divisions': 54, 'number_normal_subgroups': 80, 'number_subgroup_autclasses': 180, 'number_subgroup_classes': 306, 'number_subgroups': 1120, 'old_label': None, 'order': 432, 'order_factorization_type': 33, 'order_stats': [[1, 1], [2, 51], [3, 26], [4, 12], [6, 246], [12, 96]], 'outer_abelian': False, 'outer_cyclic': False, 'outer_equivalence': False, 'outer_exponent': 4, 'outer_gen_orders': [2, 2, 2, 2, 4], 'outer_gen_pows': [0, 0, 0, 0, 0], 'outer_gens': [[221, 222, 360], [217, 6, 72], [5, 6, 72], [1, 30, 360], [221, 6, 108]], 'outer_group': '64.202', 'outer_hash': 202, 'outer_nilpotent': True, 'outer_order': 64, 'outer_permdeg': 10, 'outer_perms': [766096, 23, 806520, 806407, 1174342], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'C_2^3:D_4', 'pc_rank': 3, 'perfect': False, 'permutation_degree': 15, 'pgroup': 0, 'primary_abelian_invariants': [2, 2, 2, 3], 'quasisimple': False, 'rank': 3, 'rational': False, 'rational_characters_known': True, 'ratrep_stats': [[1, 8], [2, 18], [4, 22], [8, 6]], 'representations': {'PC': {'code': 20936774360428536126890953528997, 'gens': [1, 3, 6], 'pres': [7, -2, -3, -2, -2, -3, -2, -3, 14, 1388, 58, 1683, 80, 1684, 2539, 124, 2372]}, 'GLZ': {'b': 3, 'd': 6, 'gens': [125101736038821652, 24992906222180337, 41624323485457081]}, 'GLZN': {'d': 2, 'p': 18, 'gens': [99161, 68839, 40831, 6083, 5941, 5995, 42997]}, 'Perm': {'d': 15, 'gens': [41064, 1465, 39916800, 93405312000, 2424, 3, 403200]}}, 'schur_multiplier': [2, 2, 2], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [2, 2, 6], 'solvability_type': 7, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': True, 'sylow_subgroups_known': True, 'tex_name': 'C_6^2.D_6', 'transitive_degree': 48, 'wreath_data': None, 'wreath_product': False}