-
gps_subgroup_search • Show schema
Hide schema
{'Agroup': True, 'Zgroup': False, 'abelian': True, 'ambient': '4096.ol', 'ambient_counter': 376, 'ambient_order': 4096, 'ambient_tex': 'C_4^4.C_2^4', 'central': False, 'central_factor': False, 'centralizer_order': 2048, 'characteristic': False, 'core_order': 8, 'counter': 2606, 'cyclic': False, 'direct': False, 'hall': 0, 'label': '4096.ol.512.DM', 'maximal': False, 'maximal_normal': False, 'metabelian': True, 'metacyclic': True, 'minimal': False, 'minimal_normal': False, 'nilpotent': True, 'normal': True, 'old_label': '512.dm1', 'outer_equivalence': True, 'perfect': False, 'proper': True, 'quotient': '512.6277208', 'quotient_Agroup': False, 'quotient_abelian': False, 'quotient_cyclic': False, 'quotient_hash': 8928800377295992974, 'quotient_metabelian': True, 'quotient_nilpotent': True, 'quotient_order': 512, 'quotient_simple': False, 'quotient_solvable': True, 'quotient_supersolvable': True, 'quotient_tex': 'C_4^3.C_2^3', 'simple': False, 'solvable': True, 'special_labels': [], 'split': False, 'standard_generators': False, 'stem': False, 'subgroup': '8.2', 'subgroup_hash': 2, 'subgroup_order': 8, 'subgroup_tex': 'C_2\\times C_4', 'supersolvable': True, 'sylow': 0}
-
gps_subgroup_data • Show schema
Hide schema
{'ambient': '4096.ol', 'aut_centralizer_order': None, 'aut_label': '512.DM', 'aut_quo_index': None, 'aut_stab_index': None, 'aut_weyl_group': None, 'aut_weyl_index': None, 'centralizer': '2.E', 'complements': [], 'conjugacy_class_count': 2, 'contained_in': ['256.BP', '256.DI', '256.EZ', '256.FJ', '256.FP', '256.FS', '256.FW', '256.OH', '256.OM'], 'contains': ['1024.BC', '1024.BE', '1024.BG'], 'core': '512.DM', 'coset_action_label': None, 'count': 2, 'diagramx': None, 'generators': [295705, 573441], 'label': '4096.ol.512.DM', 'mobius_quo': None, 'mobius_sub': None, 'normal_closure': '512.DM', 'normal_contained_in': ['256.BP', '256.DI', '256.EZ', '256.FJ', '256.FP', '256.FS', '256.FW'], 'normal_contains': ['1024.BC', '1024.BE', '1024.BG'], 'normalizer': '1.a1', 'old_label': '512.dm1', 'projective_image': None, 'quotient_action_image': None, 'quotient_action_kernel': None, 'quotient_action_kernel_order': None, 'quotient_fusion': None, 'short_label': '512.DM', 'subgroup_fusion': None, 'weyl_group': None}
-
gps_groups • Show schema
Hide schema
{'Agroup': True, 'Zgroup': False, 'abelian': True, 'abelian_quotient': '8.2', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 2, 'aut_exponent': 4, 'aut_gen_orders': [2, 4], 'aut_gens': [[1, 2], [1, 3], [5, 3]], 'aut_group': '8.3', 'aut_hash': 3, 'aut_nilpotency_class': 2, 'aut_nilpotent': True, 'aut_order': 8, 'aut_permdeg': 4, 'aut_perms': [1, 22], 'aut_phi_ratio': 2.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [2, 1, 2, 1], [4, 1, 4, 1]], 'aut_supersolvable': True, 'aut_tex': 'D_4', 'autcent_abelian': False, 'autcent_cyclic': False, 'autcent_exponent': 4, 'autcent_group': '8.3', 'autcent_hash': 3, 'autcent_nilpotent': True, 'autcent_order': 8, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': True, 'autcent_tex': 'D_4', 'autcentquo_abelian': True, 'autcentquo_cyclic': True, 'autcentquo_exponent': 1, 'autcentquo_group': '1.1', 'autcentquo_hash': 1, 'autcentquo_nilpotent': True, 'autcentquo_order': 1, 'autcentquo_solvable': True, 'autcentquo_supersolvable': True, 'autcentquo_tex': 'C_1', 'cc_stats': [[1, 1, 1], [2, 1, 3], [4, 1, 4]], 'center_label': '8.2', 'center_order': 8, 'central_product': True, 'central_quotient': '1.1', 'commutator_count': 0, 'commutator_label': '1.1', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1', '2.1', '2.1'], 'composition_length': 3, 'conjugacy_classes_known': True, 'counter': 2, 'cyclic': False, 'derived_length': 1, 'dihedral': False, 'direct_factorization': [['2.1', 1], ['4.1', 1]], 'direct_product': True, 'div_stats': [[1, 1, 1, 1], [2, 1, 1, 3], [4, 1, 2, 2]], 'element_repr_type': 'PC', 'elementary': 2, 'eulerian_function': 3, 'exponent': 4, 'exponents_of_order': [3], 'factors_of_aut_order': [2], 'factors_of_order': [2], 'faithful_reps': [], 'familial': True, 'frattini_label': '2.1', 'frattini_quotient': '4.2', 'hash': 2, 'hyperelementary': 2, 'inner_abelian': True, 'inner_cyclic': True, 'inner_exponent': 1, 'inner_gen_orders': [1, 1], 'inner_gens': [[1, 2], [1, 2]], 'inner_hash': 1, 'inner_nilpotent': True, 'inner_order': 1, 'inner_split': True, 'inner_tex': 'C_1', 'inner_used': [], 'irrC_degree': -1, 'irrQ_degree': -1, 'irrQ_dim': -1, 'irrR_degree': -1, 'irrep_stats': [[1, 8]], 'label': '8.2', 'linC_count': 12, 'linC_degree': 2, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': 3, 'linQ_degree_count': 4, 'linQ_dim': 3, 'linQ_dim_count': 4, 'linR_count': 4, 'linR_degree': 3, 'maximal_subgroups_known': True, 'metabelian': True, 'metacyclic': True, 'monomial': True, 'name': 'C2*C4', 'ngens': 2, 'nilpotency_class': 1, 'nilpotent': True, 'normal_counts': [0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 4, 'number_characteristic_subgroups': 4, 'number_conjugacy_classes': 8, 'number_divisions': 6, 'number_normal_subgroups': 8, 'number_subgroup_autclasses': 6, 'number_subgroup_classes': 8, 'number_subgroups': 8, 'old_label': None, 'order': 8, 'order_factorization_type': 3, 'order_stats': [[1, 1], [2, 3], [4, 4]], 'outer_abelian': False, 'outer_cyclic': False, 'outer_equivalence': False, 'outer_exponent': 4, 'outer_gen_orders': [2, 4], 'outer_gen_pows': [0, 0], 'outer_gens': [[1, 3], [5, 3]], 'outer_group': '8.3', 'outer_hash': 3, 'outer_nilpotent': True, 'outer_order': 8, 'outer_permdeg': 4, 'outer_perms': [1, 22], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'D_4', 'pc_rank': 2, 'perfect': False, 'permutation_degree': 6, 'pgroup': 2, 'primary_abelian_invariants': [2, 4], 'quasisimple': False, 'rank': 2, 'rational': False, 'rational_characters_known': True, 'ratrep_stats': [[1, 4], [2, 2]], 'representations': {'PC': {'code': 34, 'gens': [1, 2], 'pres': [3, -2, 2, -2, 16]}, 'GLZ': {'b': 3, 'd': 3, 'gens': [3362, 16426]}, 'GLFp': {'d': 2, 'p': 5, 'gens': [251, 504]}, 'Perm': {'d': 6, 'gens': [22, 120, 7]}}, 'schur_multiplier': [2], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [2, 4], 'solvability_type': 1, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': True, 'sylow_subgroups_known': True, 'tex_name': 'C_2\\times C_4', 'transitive_degree': 8, 'wreath_data': None, 'wreath_product': False}
-
gps_groups • Show schema
Hide schema
{'Agroup': False, 'Zgroup': False, 'abelian': False, 'abelian_quotient': '512.6249624', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': None, 'aut_cyclic': None, 'aut_derived_length': None, 'aut_exponent': None, 'aut_gen_orders': None, 'aut_gens': [[508551, 446601, 235785, 303385, 295705, 1015839], [573833, 708993, 305431, 41489, 295705, 492063], [1033119, 635279, 576015, 57873, 835849, 1032719], [304001, 176769, 768793, 844569, 312089, 1032735], [963473, 254599, 522257, 1024543, 312089, 1016335], [754319, 979329, 776457, 516639, 295705, 507919], [971417, 33417, 59407, 565265, 835849, 1016351], [692889, 238223, 822023, 762119, 819465, 1016335], [193425, 753799, 43535, 40961, 295705, 492047], [754079, 103055, 313607, 320281, 819465, 1016351], [778631, 168833, 252169, 778519, 819465, 1016351], [168593, 492183, 821511, 254727, 835849, 492063]], 'aut_group': None, 'aut_hash': None, 'aut_nilpotency_class': None, 'aut_nilpotent': None, 'aut_order': 17179869184, 'aut_permdeg': None, 'aut_perms': None, 'aut_phi_ratio': 8388608.0, 'aut_solvable': None, 'aut_stats': [[1, 1, 1, 1], [2, 1, 1, 3], [2, 1, 2, 4], [2, 1, 4, 1], [2, 1, 16, 1], [2, 8, 16, 1], [4, 1, 4, 2], [4, 1, 8, 3], [4, 1, 16, 2], [4, 1, 32, 1], [4, 2, 2, 2], [4, 2, 4, 1], [4, 2, 8, 3], [4, 2, 16, 2], [4, 2, 32, 2], [4, 2, 64, 1], [4, 8, 16, 1], [4, 8, 32, 1], [8, 2, 64, 2], [8, 4, 64, 1], [8, 4, 256, 1], [8, 8, 64, 1], [8, 8, 128, 1]], 'aut_supersolvable': None, 'aut_tex': None, 'autcent_abelian': None, 'autcent_cyclic': None, 'autcent_exponent': None, 'autcent_group': None, 'autcent_hash': None, 'autcent_nilpotent': None, 'autcent_order': None, 'autcent_solvable': None, 'autcent_split': None, 'autcent_supersolvable': None, 'autcent_tex': None, 'autcentquo_abelian': None, 'autcentquo_cyclic': None, 'autcentquo_exponent': None, 'autcentquo_group': None, 'autcentquo_hash': None, 'autcentquo_nilpotent': None, 'autcentquo_order': None, 'autcentquo_solvable': None, 'autcentquo_supersolvable': None, 'autcentquo_tex': None, 'cc_stats': [[1, 1, 1], [2, 1, 31], [2, 8, 16], [4, 1, 96], [4, 2, 192], [4, 8, 48], [8, 2, 128], [8, 4, 320], [8, 8, 192]], 'center_label': '128.2150', 'center_order': 128, 'central_product': True, 'central_quotient': '32.46', 'commutator_count': 1, 'commutator_label': '8.2', 'complements_known': True, 'complete': False, 'complex_characters_known': False, 'composition_factors': ['2.1', '2.1', '2.1', '2.1', '2.1', '2.1', '2.1', '2.1', '2.1', '2.1', '2.1', '2.1'], 'composition_length': 12, 'conjugacy_classes_known': True, 'counter': 376, 'cyclic': False, 'derived_length': 2, 'dihedral': False, 'direct_factorization': [['2.1', 1], ['2048.uc', 1]], 'direct_product': True, 'div_stats': [[1, 1, 1, 1], [2, 1, 1, 31], [2, 8, 1, 16], [4, 1, 2, 48], [4, 2, 1, 48], [4, 2, 2, 72], [4, 8, 2, 24], [8, 2, 4, 32], [8, 4, 4, 80], [8, 8, 4, 48]], 'element_repr_type': 'GLZq', 'elementary': 2, 'eulerian_function': None, 'exponent': 8, 'exponents_of_order': [12], 'factors_of_aut_order': [2], 'factors_of_order': [2], 'faithful_reps': [], 'familial': False, 'frattini_label': '128.997', 'frattini_quotient': '32.51', 'hash': 6956102936927258547, 'hyperelementary': 2, 'inner_abelian': None, 'inner_cyclic': None, 'inner_exponent': None, 'inner_gen_orders': [4, 4, 2, 2, 2, 1], 'inner_gens': [[508551, 971417, 514049, 303385, 295705, 1015839], [1032343, 446601, 1022481, 303385, 295705, 1015839], [770463, 693121, 235785, 844553, 819465, 1015839], [508551, 446601, 776985, 303385, 295705, 1015839], [508551, 446601, 760601, 303385, 295705, 1015839], [508551, 446601, 235785, 303385, 295705, 1015839]], 'inner_hash': None, 'inner_nilpotent': None, 'inner_order': 32, 'inner_split': None, 'inner_tex': 'C_2^2\\times D_4', 'inner_used': None, 'irrC_degree': -1, 'irrQ_degree': -1, 'irrQ_dim': -1, 'irrR_degree': None, 'irrep_stats': [[1, 512], [2, 384], [4, 128]], 'label': '4096.ol', 'linC_count': None, 'linC_degree': None, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': None, 'linQ_degree_count': None, 'linQ_dim': None, 'linQ_dim_count': None, 'linR_count': None, 'linR_degree': None, 'maximal_subgroups_known': True, 'metabelian': True, 'metacyclic': False, 'monomial': True, 'name': 'C4^4.C2^4', 'ngens': 5, 'nilpotency_class': 3, 'nilpotent': True, 'normal_counts': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 38, 'number_characteristic_subgroups': 71, 'number_conjugacy_classes': 1024, 'number_divisions': 400, 'number_normal_subgroups': 11867, 'number_subgroup_autclasses': 2756, 'number_subgroup_classes': 67115, 'number_subgroups': 212187, 'old_label': None, 'order': 4096, 'order_factorization_type': 7, 'order_stats': [[1, 1], [2, 159], [4, 864], [8, 3072]], 'outer_abelian': None, 'outer_cyclic': None, 'outer_equivalence': True, 'outer_exponent': None, 'outer_gen_orders': None, 'outer_gen_pows': None, 'outer_gens': None, 'outer_group': None, 'outer_hash': None, 'outer_nilpotent': None, 'outer_order': 536870912, 'outer_permdeg': None, 'outer_perms': None, 'outer_solvable': None, 'outer_supersolvable': None, 'outer_tex': None, 'pc_rank': None, 'perfect': False, 'permutation_degree': None, 'pgroup': 2, 'primary_abelian_invariants': [2, 2, 2, 8, 8], 'quasisimple': False, 'rank': 5, 'rational': False, 'rational_characters_known': True, 'ratrep_stats': [[1, 32], [2, 80], [4, 176], [8, 112]], 'representations': {'PC': {'code': '6746569087339958082211710580228697601623861136345908295473955938971', 'gens': [1, 4, 7, 8, 10, 12], 'pres': [12, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 24, 61, 49539, 135, 172, 48390, 45714, 8778, 5766, 655, 283, 2961, 357]}, 'GLZq': {'d': 2, 'q': 32, 'gens': [32777, 33025, 32785, 102791, 32897, 294921, 100361, 33281, 709505, 557073, 573953, 828161]}}, 'schur_multiplier': [2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 8], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [2, 2, 2, 8, 8], 'solvability_type': 4, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': True, 'sylow_subgroups_known': True, 'tex_name': 'C_4^4.C_2^4', 'transitive_degree': 2048, 'wreath_data': None, 'wreath_product': False}
-
gps_groups • Show schema
Hide schema
{'Agroup': False, 'Zgroup': False, 'abelian': False, 'abelian_quotient': '256.53038', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 3, 'aut_exponent': 8, 'aut_gen_orders': [4, 4, 4, 4, 4, 4, 4, 4], 'aut_gens': [[1, 8, 32, 64, 256], [127, 408, 48, 212, 260], [235, 410, 416, 448, 388], [489, 414, 308, 68, 272], [121, 270, 416, 468, 388], [87, 200, 372, 468, 260], [59, 200, 368, 464, 256], [493, 408, 436, 84, 404], [149, 412, 436, 468, 384]], 'aut_group': None, 'aut_hash': 1279073005126419346, 'aut_nilpotency_class': 4, 'aut_nilpotent': True, 'aut_order': 8388608, 'aut_permdeg': 96, 'aut_perms': [699286954173727460883769491127627312018727080797504221267782205464217401490447893649662260006757441611719906968594758770687487689543293780838352502447, 219464301979510479444433215062437009102921088242446043115521471708834357189665127015781677984422437111643428520303808556929853184026894232856915760350, 448803147468672022523331088782424401639082095798107399225385316055898194006214413351750656349976879626263936933746402914043229870643663528983179052673, 448809504180883492065697406342697264567585292094167733650989373392059194776972500203868714184734166759227598036932475448839199412450486984841647869567, 344357093706418562943538100365137361815918877722938242518635728384398177396077365017582450817532456826271777271447287608167369089666606264086896489647, 730754902951213643650246516788652439533799924259193958618346700618751813471661306809062060419729681205100460010537978561318956040718433294006624253440, 970710017381589346171426917501759721678501826865900007275135649459850847008725551396047216213026345437923476037730771348763440979447453323000089484223, 480202589971878494255696035708453020333788045233045172636372884238907768619896255332081404831325099814176105040098447485310499882169645223862852502750], 'aut_phi_ratio': 32768.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 1, 1, 3], [2, 1, 2, 2], [2, 1, 8, 1], [2, 2, 16, 1], [4, 1, 4, 2], [4, 1, 8, 1], [4, 1, 32, 1], [4, 2, 8, 2], [4, 2, 16, 2], [4, 2, 32, 1], [8, 1, 64, 1], [8, 2, 32, 1], [8, 2, 64, 1]], 'aut_supersolvable': True, 'aut_tex': 'C_2^{14}.C_2^6.C_2^3', 'autcent_abelian': False, 'autcent_cyclic': False, 'autcent_exponent': 8, 'autcent_group': None, 'autcent_hash': 6280121446071870734, 'autcent_nilpotent': True, 'autcent_order': 4194304, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': True, 'autcent_tex': 'C_2^{12}.C_2^6.C_2^4', 'autcentquo_abelian': True, 'autcentquo_cyclic': True, 'autcentquo_exponent': 2, 'autcentquo_group': '2.1', 'autcentquo_hash': 1, 'autcentquo_nilpotent': True, 'autcentquo_order': 2, 'autcentquo_solvable': True, 'autcentquo_supersolvable': True, 'autcentquo_tex': 'C_2', 'cc_stats': [[1, 1, 1], [2, 1, 15], [2, 2, 16], [4, 1, 48], [4, 2, 80], [8, 1, 64], [8, 2, 96]], 'center_label': '128.1601', 'center_order': 128, 'central_product': True, 'central_quotient': '4.2', 'commutator_count': 1, 'commutator_label': '2.1', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1', '2.1', '2.1', '2.1', '2.1', '2.1', '2.1', '2.1', '2.1'], 'composition_length': 9, 'conjugacy_classes_known': True, 'counter': 6277208, 'cyclic': False, 'derived_length': 2, 'dihedral': False, 'direct_factorization': [['2.1', 1], ['4.1', 1], ['8.1', 1], ['8.3', 1]], 'direct_product': True, 'div_stats': [[1, 1, 1, 1], [2, 1, 1, 15], [2, 2, 1, 16], [4, 1, 2, 24], [4, 2, 1, 8], [4, 2, 2, 36], [8, 1, 4, 16], [8, 2, 4, 24]], 'element_repr_type': 'PC', 'elementary': 2, 'eulerian_function': 1249920, 'exponent': 8, 'exponents_of_order': [9], 'factors_of_aut_order': [2], 'factors_of_order': [2], 'faithful_reps': [], 'familial': False, 'frattini_label': '16.10', 'frattini_quotient': '32.51', 'hash': 6277208, 'hyperelementary': 2, 'inner_abelian': True, 'inner_cyclic': False, 'inner_exponent': 2, 'inner_gen_orders': [2, 2, 2, 2, 1], 'inner_gens': [[1, 136, 32, 192, 256], [129, 8, 160, 192, 256], [1, 136, 32, 192, 256], [129, 136, 160, 64, 256], [1, 8, 32, 64, 256]], 'inner_hash': 2, 'inner_nilpotent': True, 'inner_order': 4, 'inner_split': False, 'inner_tex': 'C_2^2', 'inner_used': [1, 2], 'irrC_degree': -1, 'irrQ_degree': -1, 'irrQ_dim': -1, 'irrR_degree': -1, 'irrep_stats': [[1, 256], [2, 64]], 'label': '512.6277208', 'linC_count': None, 'linC_degree': None, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': None, 'linQ_degree_count': None, 'linQ_dim': None, 'linQ_dim_count': None, 'linR_count': None, 'linR_degree': None, 'maximal_subgroups_known': True, 'metabelian': True, 'metacyclic': False, 'monomial': True, 'name': 'C4^3.C2^3', 'ngens': 5, 'nilpotency_class': 2, 'nilpotent': True, 'normal_counts': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 20, 'number_characteristic_subgroups': 30, 'number_conjugacy_classes': 320, 'number_divisions': 140, 'number_normal_subgroups': 2618, 'number_subgroup_autclasses': 350, 'number_subgroup_classes': 4430, 'number_subgroups': 6242, 'old_label': None, 'order': 512, 'order_factorization_type': 7, 'order_stats': [[1, 1], [2, 47], [4, 208], [8, 256]], 'outer_abelian': False, 'outer_cyclic': False, 'outer_equivalence': True, 'outer_exponent': 8, 'outer_gen_orders': [4, 4, 4, 4, 4, 4, 4, 4], 'outer_gen_pows': [0, 0, 0, 0, 0, 0, 0, 0], 'outer_gens': [[127, 408, 48, 212, 260], [87, 200, 372, 468, 260], [149, 412, 436, 468, 384], [59, 200, 368, 464, 256], [493, 408, 436, 84, 404], [121, 270, 416, 468, 388], [489, 414, 308, 68, 272], [107, 410, 288, 320, 388]], 'outer_group': None, 'outer_hash': 8748338138142181001, 'outer_nilpotent': True, 'outer_order': 2097152, 'outer_permdeg': 512, 'outer_perms': [688480038966080631104031765277193976389826021846878659444471656482300000812587410815766508173665959487438740547460294708788293896999830624033739169947817040317641091701535489748031199154757084794776717735103621864629349602924802889453580959816793666738345520049743710648242372070850168272824373071963112611675496781889366587357338063469374998098047162582548745268185130421532579686991240909173207281064446847368935429794289415981749229428755307260101769492034091047204747103104610695524689320519241868638844121525434901501813501660433115938845527513553109223398331847549141253105007690433822089268135934458339738176752577480986906331701054986423635559866753055408125074977100808911202818622919814150842640879877734433366308507585190247359659906001396449389214326785173218858709055076192395344230944352682971981062852146430287129422002046073747724378673209485841868048863712060630861518632365997160712807775646699659712080627733732692049572894689099009442782656510940011254987763866489402057283103672313989473460850667277372016014228683972456204768194484620046335574890477351169480434259362911732212907381113725731468140042267286583503866935924415199644756744290212, 2731294308198522133720098393734620028788832239241150551125292414356186806525922785227957138998758021584398157230457985671336349612878230814699835024741127241755570324528652574486036206275984991825737396503626000956545035605486060633230238041477947179279260155359943328721589688864903518875056745815626876304968317214714111185001144677079236435909351354829401853965841201101835865713987801137876191766955978732102148295974948538377870712164799736438533300103057852587751578319614661327761466081984337980990029070554725027766186473242942437148845560624750456303447733330255883206939774042772789139076082251915681257992858333187807519687592203692340926535437538923722837568536926692718334389174489025562028571293873069771571700814232406710242085495588126750657832591767678871864938658840373018765429397723987761594456875663386098579618041375140739866131416999159148511687433142663466846740507666551651918651804381299235560342439105930859013796419190397570334656074007821394719116045668705005597277727122206186518720228280611275446486588102297657661349551602825255587971345888821690727212816100089047748161483708131108764934416078583204469429904183329735135670795740187, 4762131246915214678389718570289071417022510930095726390956657879933777546286653254209861032457455809594667153160490785218276630666585461586640844046377093459115798602562939015460950497176496935809923899703588592273199266379217330908128217160013924879638470705981148859155829858637582292872821972700129429207444357511608354759579378132239087790965968721076078202817263672040842259242985437080905431872863807632983541526758924151963203198206783272489848756025772722210439580995881395463206820794271074515827935318747296454950029392352298715661833871481971467950669785944273160702808540763291226053820775366265265430244848496049367031977971646212412063315013939224700490671700406425127279605863248028075139046198992016702338606389755358646562279167781013629531881636406410777535170846729806663293937773543484238483480094363825228207416593212805863890376403904573122338031733447986455757928348659657287031705255520536914006393471195720092804853149535364758380531037798711281468959732786913402131787867413740745938477811202654102289731460256528354055291093477815646355079217696001392656408966264671797036806018564603498569907361701581765016103097051596013423885962372496, 3411784158872920252218501015279994139263271401986450303951833421833458262405007353681560733225606924918377377413339213895381693267589191445028045607504897791250977959177738169208113537970279045431367365266834029033075663260726356761734950130596404431188595372914332716332156300226474285000182083823071650818397281845210173560101428837721814199176942868522416110547933302590238510093282234566200563529301066022984623029366606595447474829041993413614092505464290186415303504867077806591248051309856048097639760054770053174658423937291528540646845973449038229899103504985779445310423755928074030084199330994173174245666029674116897687844016954519807740504246503729050058715529079421936336347571226712844631921772548568564125570715304354888381408354963246539682870032187823236783602332677871505815741787114882352177836263398693263369777906113218064348531859631596130450275586625953976304880094034423069317320298171962906127976221796635452197614171677404396212793508167852324174381176403055491691870009026169979689787729641224120721316818403467803593231668553986958680337242856529429363723118244059989792665469133051413321416170156622434002369465760913126869581417804348, 4092274009507002492919457437079237930966219835797466037085476552944688082082598004445725557907226978205212225832550668891628468219780084896231903572999103246273387754703417903604261290595024760942974782060238722374122024629888574239921461381404587309681868193974903910554709595547771326115557469138312557164021067878347401330726915658451581338579842337382948041715820152800243220168844822084056570629805701121864378965801235581154011278063845754613752080779677230236073661836876277719030283430114237607517704474553842119464114667526485555772065183530702361482347551429105116511238272884938644572096347407826597264221124325270872597158468825906368445527967761947173240454208464515599614720890342320993301344512984064840478475713771664062048381059077786900557543111632936695291215556288281326864964811933012366535458218137434958244428144011131043633207193646361183385682991172470432322910577112466521972123749400227911018885549500303917070356809588481718646299506997418269606642750654734136951759756663386764445337052931724100609465089811600765732192081250503243532993499843966004550533545102395289918496351676626006419371121184565425169916406475764668493994809606349, 1371646295236289978736780896916266618331695638737180417313875504765661111609111302776389004551453381035692021843567109396599566769973875221985732415810408491222317442750102030364208141452697259465733321916294130065866678624503052135431594656029201386886499276593164745802380805437675503075179321051501369695868521049421872148140412277336128105397378976418730479109219531485170721700116755029782040016210454215318675321347610445011151356915828383181936303807740600468768399065224796014946958904116385114608481596761755767598930157493159660480524962653568871936339402751839546396336117562282365527253935909242189607331484522467089529360322501771448342244018867482991547675621728449426186568820681533766908888531996777471742047229329150260658836235396890476544562853079190954840817623075571227529203388551723234088177799130948462806899267098082795577624424292921633746862287953046484692450443394922195522024145805562400994267933732135644375861217983413814092695897500080774166713825355703710498506469900010336241149573910158358558745448652797823338792352419279180993222407051117700488586310695668821254831634400133591202278732119907668159196681045338165000884025881990, 2049472770115179956815127601678371617582767749013080733473408216884572334217569065324409023530899315747640955698717472367865427124295227748748369349679617199209329737976554073114466024683811438426027769713386208934688060587551675825999668436075215812091585538096504466263243968024942860567516217269031757753438477144722204664260472681298392368901167875248298702860351499685613387092022148237330344380531275131944148801241233016575544914402087969759186221621709062431329389167648317271225080578237596859927316747916102205732018895674723592400712497297137525038370500518290696661964517570725380941242543620679539097757762848934232045922461173649870059679376866494549152545669352985161913595520338791722984267653686998788470393514192181808818748828224345051254728501425813465412630500399122003214646483790761236906134588393540649785184598997766668441686671029907486492057059372775776415532888895122872012074120682405343885248330208379446092714375785601118887390216633425861309043213016407187324079939540043461721270202782938614457076838566064182312289040331874375789256861719826135208516441508875419504002732696969577390744867020179372093693424160782286680014709692872, 1368982919652431534149149684491636526263055241081095244072568108758030527765766824397117282502293663870096223631850166090447165395045337720546138556338606041565198097034755493666064288812283715735303413131452080953030575898407307986162390948243889541625346127123047469867599656948825228553459491980069900793547399304587499416762551644324019210472911007277587433914484750731417471191402418688777816973518813293975033040876813570754439090061933719179513624664963160719835943223211378513886008134603693973295841015171518838920675990606896537842626014637793739781957384231807121271936328485650173448454273756001592174845400683641386972087436616982858389519444029745632286409679236681006403273259015860491097856767760219211548121675017768645466112182586208571411303577103988402861394094055258449858327669826511370231931536722728972055802788564230535566237380890685703767548805789388602451940835505697666458490931434405398033397852965708139350362048016297029954162294815549582612703881376727887061843481229355827422700289729157214343229861468847635624352871600801963029492267037455551215838322923457872353273826995592925514005602514631551923371749135790054849022269977990], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'C_2^9.C_2^5.C_2^6.C_2', 'pc_rank': None, 'perfect': False, 'permutation_degree': 18, 'pgroup': 2, 'primary_abelian_invariants': [2, 2, 2, 4, 8], 'quasisimple': False, 'rank': 5, 'rational': False, 'rational_characters_known': True, 'ratrep_stats': [[1, 32], [2, 56], [4, 44], [8, 8]], 'representations': {'PC': {'code': '166478653092435712611241314855429195', 'gens': [1, 4, 6, 7, 9], 'pres': [9, 2, 2, 2, 2, 2, 2, 2, 2, 2, 18, 46, 4899, 102, 1112, 12102, 1545, 429, 186]}, 'Perm': {'d': 18, 'gens': [401736287272447, 798996224315575, 1171856857691808, 401736287559888, 1174609, 288, 1171856858422320, 1552384830492720, 1552384829318400]}}, 'schur_multiplier': [2, 2, 2, 2, 2, 2, 2, 2, 2, 4], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [2, 2, 2, 4, 8], 'solvability_type': 4, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': True, 'sylow_subgroups_known': True, 'tex_name': 'C_4^3.C_2^3', 'transitive_degree': 256, 'wreath_data': None, 'wreath_product': False}