-
gps_subgroup_search • Show schema
Hide schema
{'Agroup': False, 'Zgroup': False, 'abelian': False, 'ambient': '373248.bm', 'ambient_counter': 39, 'ambient_order': 373248, 'ambient_tex': 'C_6^4.C_6^2:D_4', 'central': False, 'central_factor': False, 'centralizer_order': None, 'characteristic': False, 'core_order': 162, 'counter': 499, 'cyclic': False, 'direct': None, 'hall': 0, 'label': '373248.bm.36.GI', 'maximal': False, 'maximal_normal': False, 'metabelian': False, 'metacyclic': False, 'minimal': False, 'minimal_normal': False, 'nilpotent': False, 'normal': False, 'old_label': '36.gi1', 'outer_equivalence': True, 'perfect': False, 'proper': True, 'quotient': None, 'quotient_Agroup': None, 'quotient_abelian': None, 'quotient_cyclic': None, 'quotient_hash': None, 'quotient_metabelian': None, 'quotient_nilpotent': None, 'quotient_order': 36, 'quotient_simple': None, 'quotient_solvable': None, 'quotient_supersolvable': None, 'quotient_tex': None, 'simple': False, 'solvable': True, 'special_labels': [], 'split': None, 'standard_generators': False, 'stem': False, 'subgroup': '10368.di', 'subgroup_hash': 9217159457059374049, 'subgroup_order': 10368, 'subgroup_tex': 'C_6^3.(S_3\\times D_4)', 'supersolvable': False, 'sylow': 0}
-
gps_subgroup_data • Show schema
Hide schema
{'ambient': '373248.bm', 'aut_centralizer_order': None, 'aut_label': '36.GI', 'aut_quo_index': None, 'aut_stab_index': None, 'aut_weyl_group': None, 'aut_weyl_index': None, 'centralizer': None, 'complements': None, 'conjugacy_class_count': 4, 'contained_in': None, 'contains': None, 'core': '2304.B', 'coset_action_label': None, 'count': 72, 'diagramx': [8629, -1, 6541, -1], 'generators': [141996444024748243792480859526, 11373648727153736356325360208, 40326, 12169709221230957660455213689, 127869906584753033773208400, 3242489683987837839328859526, 7097101949657778708815334, 1134120, 7085808264142632139543848, 25132763538316337694393582120, 147255367395667153699453633320], 'label': '373248.bm.36.GI', 'mobius_quo': None, 'mobius_sub': None, 'normal_closure': '1.a1', 'normal_contained_in': None, 'normal_contains': None, 'normalizer': '18.D', 'old_label': '36.gi1', 'projective_image': '373248.bm', 'quotient_action_image': None, 'quotient_action_kernel': None, 'quotient_action_kernel_order': None, 'quotient_fusion': None, 'short_label': '36.GI', 'subgroup_fusion': None, 'weyl_group': None}
-
gps_groups • Show schema
Hide schema
{'Agroup': False, 'Zgroup': False, 'abelian': False, 'abelian_quotient': '16.14', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 3, 'aut_exponent': 12, 'aut_gen_orders': [12, 12, 2, 4, 6, 4, 6, 4], 'aut_gens': [[1, 2, 4, 24, 288, 3456], [9361, 6277, 323, 4840, 10080, 3456], [3601, 4978, 2060, 9600, 4824, 2304], [145, 6267, 1677, 168, 8352, 6912], [7489, 3204, 3202, 7360, 8856, 2304], [8641, 2674, 10300, 1752, 3888, 6912], [1153, 5964, 8274, 2032, 5832, 2304], [4177, 7642, 5860, 9600, 4824, 1152], [5329, 5339, 7029, 7824, 7704, 1152]], 'aut_group': None, 'aut_hash': 8564989553364120192, 'aut_nilpotency_class': -1, 'aut_nilpotent': False, 'aut_order': 331776, 'aut_permdeg': 168, 'aut_perms': [189478761539010596380544011110045428067770315082251738089819672369814191556673144359538169027922997587399655204906547143385174191568828811641979609564594028923110138369370664625251589073747961343224929579062106480544422398653706915129877117925966813641006018220762410822135967448640551970128191828404519, 98355937730980155587827165392327823032237667289908600254471935761403494180814082084626224743522622673563087239514645875912777319673885364561659785767128941462267631140310317803189975962718191529173897034585101851527838398447393157752770229240651101129441380874179461975086500287971048190784399989268750, 175263068836397292685377580902544982843394804068395165744553991796384365572520481623705414777259860609714093155729231987497908486187251093339033928396276506565583162887515159777510864642439832478605755405340136039644040055266061006169404523485490020142998915916313294914332685500379312928140653875544527, 42129795531249439168652993052502967541252430284896887542967863848682383962856288705670493277307650123198434232648454248893369609859872077579903393376382881780596789348969718628261670163066055733918562981737906041222010113334154959663477247595227562243812669649184117420752262298604928396234497915730901, 243182596607293202817619732641894773794495965033093652597762892528986182911170688497776785993808823099268089146121949833932096971282579267623062564287637684673694670234345941380652225241301744439114664154585838375792540716098394648048683459611259444701646059426886624225183020563210932919249636692843821, 74032662120011484696575794876607695316644447217467993155739209408770731220351609042101382138501118932547365480257043600294102928936291013074332208032406614055044026228970473886680516728567758342971355195695861548102812523408215425645399312675263029118007173352138545147819222342422394174249275888125006, 145465137290985905066837356143474688866719782857519849897703832001647013675776598818368808298358175676081859847316914805214802733288334905358482608140437050840270298624031005852070152052237737174880097034303612569644546059879314225599251748283976327196509451634411037174588727526579853950190451844951362, 143626355840880679104672378246448899347190720237916180347373425314316629041907945651172054079166722383912642827228705696907374219795285818809358047660770348824549328928103909410862511111182034013001154836355743242260820612271824825141918203127453492361354882597621812921317226892066099502063366714852707], 'aut_phi_ratio': 96.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [2, 2, 1, 1], [2, 4, 1, 1], [2, 24, 1, 1], [2, 36, 1, 2], [2, 36, 4, 1], [2, 81, 2, 1], [2, 162, 1, 1], [2, 216, 1, 1], [2, 324, 1, 1], [3, 2, 2, 1], [3, 4, 1, 3], [3, 8, 2, 3], [3, 16, 1, 1], [4, 12, 2, 1], [4, 18, 2, 2], [4, 36, 4, 1], [4, 108, 2, 1], [6, 2, 2, 1], [6, 4, 1, 5], [6, 4, 2, 2], [6, 8, 1, 1], [6, 8, 2, 9], [6, 8, 4, 1], [6, 16, 1, 3], [6, 16, 2, 3], [6, 16, 4, 3], [6, 48, 1, 1], [6, 48, 2, 2], [6, 48, 4, 2], [6, 72, 2, 2], [6, 72, 4, 2], [6, 144, 1, 2], [6, 144, 4, 1], [6, 432, 1, 1], [8, 216, 4, 1], [12, 24, 2, 1], [12, 24, 4, 2], [12, 36, 4, 1], [12, 48, 4, 2], [12, 72, 2, 3], [12, 72, 4, 2], [12, 144, 4, 1], [12, 216, 2, 1], [24, 432, 4, 1]], 'aut_supersolvable': False, 'aut_tex': 'C_3^4.C_2^6.C_2^6', 'autcent_abelian': True, 'autcent_cyclic': False, 'autcent_exponent': 2, 'autcent_group': '16.14', 'autcent_hash': 14, 'autcent_nilpotent': True, 'autcent_order': 16, 'autcent_solvable': True, 'autcent_split': False, 'autcent_supersolvable': True, 'autcent_tex': 'C_2^4', 'autcentquo_abelian': False, 'autcentquo_cyclic': False, 'autcentquo_exponent': 12, 'autcentquo_group': None, 'autcentquo_hash': 7113313633987731786, 'autcentquo_nilpotent': False, 'autcentquo_order': 20736, 'autcentquo_solvable': True, 'autcentquo_supersolvable': False, 'autcentquo_tex': 'C_3^4.C_2^6.C_2^2', 'cc_stats': [[1, 1, 1], [2, 1, 1], [2, 2, 1], [2, 4, 1], [2, 24, 1], [2, 36, 6], [2, 81, 2], [2, 162, 1], [2, 216, 1], [2, 324, 1], [3, 2, 2], [3, 4, 3], [3, 8, 6], [3, 16, 1], [4, 12, 2], [4, 18, 4], [4, 36, 4], [4, 108, 2], [6, 2, 2], [6, 4, 9], [6, 8, 23], [6, 16, 21], [6, 48, 13], [6, 72, 12], [6, 144, 6], [6, 432, 1], [8, 216, 4], [12, 24, 10], [12, 36, 4], [12, 48, 8], [12, 72, 14], [12, 144, 4], [12, 216, 2], [24, 432, 4]], 'center_label': '2.1', 'center_order': 2, 'central_product': False, 'central_quotient': None, 'commutator_count': 1, 'commutator_label': '648.687', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1', '2.1', '2.1', '2.1', '2.1', '2.1', '2.1', '3.1', '3.1', '3.1', '3.1'], 'composition_length': 11, 'conjugacy_classes_known': True, 'counter': 87, 'cyclic': False, 'derived_length': 3, 'dihedral': False, 'direct_factorization': [], 'direct_product': False, 'div_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [2, 2, 1, 1], [2, 4, 1, 1], [2, 24, 1, 1], [2, 36, 1, 6], [2, 81, 1, 2], [2, 162, 1, 1], [2, 216, 1, 1], [2, 324, 1, 1], [3, 2, 1, 2], [3, 4, 1, 3], [3, 8, 1, 6], [3, 16, 1, 1], [4, 12, 1, 2], [4, 18, 1, 4], [4, 36, 1, 4], [4, 108, 1, 2], [6, 2, 1, 2], [6, 4, 1, 9], [6, 8, 1, 23], [6, 16, 1, 21], [6, 48, 1, 13], [6, 72, 1, 12], [6, 144, 1, 6], [6, 432, 1, 1], [8, 216, 1, 4], [12, 24, 1, 10], [12, 36, 1, 4], [12, 48, 1, 8], [12, 72, 1, 14], [12, 144, 1, 4], [12, 216, 1, 2], [24, 432, 1, 4]], 'element_repr_type': 'PC', 'elementary': 1, 'eulerian_function': 9921300480, 'exponent': 24, 'exponents_of_order': [7, 4], 'factors_of_aut_order': [2, 3], 'factors_of_order': [2, 3], 'faithful_reps': [[8, 1, 8], [16, 1, 6]], 'familial': False, 'frattini_label': '4.2', 'frattini_quotient': '2592.fh', 'hash': 9217159457059374049, 'hyperelementary': 1, 'inner_abelian': False, 'inner_cyclic': False, 'inner_exponent': 12, 'inner_gen_orders': [2, 2, 6, 12, 12, 3], 'inner_gens': [[1, 2, 9220, 168, 10080, 6912], [1, 2, 20, 6144, 8280, 2304], [4609, 10, 4, 9696, 3672, 1152], [145, 4538, 7900, 24, 1440, 3456], [4033, 8426, 3820, 2328, 288, 6912], [6913, 4610, 5764, 24, 7200, 3456]], 'inner_hash': 5727878832586813877, 'inner_nilpotent': False, 'inner_order': 5184, 'inner_split': None, 'inner_tex': 'C_3^4.C_2^5.C_2', 'inner_used': [1, 2, 3, 4], 'irrC_degree': 8, 'irrQ_degree': 8, 'irrQ_dim': 8, 'irrR_degree': 8, 'irrep_stats': [[1, 16], [2, 28], [4, 48], [8, 64], [16, 21]], 'label': '10368.di', 'linC_count': None, 'linC_degree': None, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': None, 'linQ_degree_count': None, 'linQ_dim': None, 'linQ_dim_count': None, 'linR_count': None, 'linR_degree': None, 'maximal_subgroups_known': True, 'metabelian': False, 'metacyclic': False, 'monomial': None, 'name': 'C6^3.(S3*D4)', 'ngens': 11, 'nilpotency_class': -1, 'nilpotent': False, 'normal_counts': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 81, 'number_characteristic_subgroups': 55, 'number_conjugacy_classes': 177, 'number_divisions': 177, 'number_normal_subgroups': 195, 'number_subgroup_autclasses': 3975, 'number_subgroup_classes': 10953, 'number_subgroups': 401184, 'old_label': None, 'order': 10368, 'order_factorization_type': 33, 'order_stats': [[1, 1], [2, 1111], [3, 80], [4, 456], [6, 3344], [8, 864], [12, 2784], [24, 1728]], 'outer_abelian': False, 'outer_cyclic': False, 'outer_equivalence': True, 'outer_exponent': 4, 'outer_gen_orders': [2, 2, 2, 2, 4], 'outer_gen_pows': [3257, 9224, 312, 7599, 0], 'outer_gens': [[7489, 9019, 4397, 1056, 7128, 2304], [7057, 1090, 8428, 1752, 3888, 6912], [3601, 4978, 2060, 9600, 4824, 2304], [7633, 7741, 6395, 9088, 6552, 1152], [7489, 3204, 3202, 7360, 8856, 2304]], 'outer_group': '64.261', 'outer_hash': 261, 'outer_nilpotent': True, 'outer_order': 64, 'outer_permdeg': 32, 'outer_perms': [43958692881100088213986114702981131, 251011381903811786101912456955750086, 8277786405963451254482467336750314, 139376863493070240569358298948386874, 26865700984845515980784346782063032], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'D_4\\times C_2^3', 'pc_rank': 6, 'perfect': False, 'permutation_degree': 20, 'pgroup': 0, 'primary_abelian_invariants': [2, 2, 2, 2], 'quasisimple': False, 'rank': 4, 'rational': True, 'rational_characters_known': True, 'ratrep_stats': [[1, 16], [2, 28], [4, 48], [8, 64], [16, 21]], 'representations': {'PC': {'code': '24023980865235236027441680711597826253913692758520416709835993704715205875625733717931422190717283081015172036646239609076355564520943577069902136975507', 'gens': [1, 2, 3, 5, 8, 11], 'pres': [11, 2, 2, 2, 3, 2, 2, 3, 2, 2, 3, 3, 304262, 343, 90, 203107, 366, 9244, 168975, 133346, 16042, 158, 63376, 30123, 192, 3724, 887047, 364338, 80813, 79240, 5331, 260, 285128, 178219, 174666, 11932, 294, 253449, 380180, 95071, 10613, 836362, 139413, 34880, 2991]}, 'Perm': {'d': 20, 'gens': [371694682967731201, 13160435322223464, 13161742514010720, 135516916810598403, 262539167514998400]}}, 'schur_multiplier': [2, 2, 2, 2, 2, 2], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [2, 2, 2, 2], 'solvability_type': 17, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': False, 'sylow_subgroups_known': True, 'tex_name': 'C_6^3.(S_3\\times D_4)', 'transitive_degree': 24, 'wreath_data': None, 'wreath_product': False}
-
gps_groups • Show schema
Hide schema
{'Agroup': False, 'Zgroup': False, 'abelian': False, 'abelian_quotient': '16.14', 'all_subgroups_known': False, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 4, 'aut_exponent': 24, 'aut_gen_orders': [8, 8, 6, 6, 6, 12], 'aut_gens': [[12147347173586427137412864385, 1710820164043610883405366726, 23892491726920618711608728406, 11776940190719642451726783654], [101866187587419918573400801560, 87536802701825548098059013870, 38829816889296927550883015785, 134801416277909890087178978094], [168720041582512674755635895448, 23561563367371131315025331287, 89129459918830741592276195311, 80007755448230146531109991049], [101725931782652546240051403246, 122245269655257528387585919464, 25148904886314358884000450025, 131956379571572400281047331208], [77184721100821758352721635008, 23443704023301133526258892264, 126015734690066978831626944889, 14739616191107947733730993240], [168672270135780077501505662280, 155453376860644199163257536831, 23939027330404002438524419728, 188358933750177233329807503048], [99412284034826770784427358974, 34332782134089489160600128385, 154620149197146764346569135761, 166672322098914120365976792841]], 'aut_group': None, 'aut_hash': 8823543877612885203, 'aut_nilpotency_class': -1, 'aut_nilpotent': False, 'aut_order': 2985984, 'aut_permdeg': 936, 'aut_perms': [275343449632718278723339669677525717657820981468110611951775851075484061718404792764027922692855503561708978484287630279266393686343454264667776358790280060606994843106925436715790205005580098601301032476272522233616009056671469409387530934364380060980025147845874476265022451952939343911872335097776422656845775102801680623389337769640980978281371479018462559130858047659121631223340601864912504886403409608406013153983468520593589296880970191406581415564844490289225524634050907905186381256821823998438774130891816727147800028324137300648939625843061194113903044130992287509275022124772554906903974803196269047344048015457622804820476948239105802830681574409147099900468797132282582031232447375242957183173676520962042339497404543702744777971421571516417794399189610377743547191239202512274464145899778807309510469071222138593697891072580537698944082141869694029530290705075950949757310856812152171789864139702644448671410800105793584021016762339254576901732744311333666128319747039844100347212910001411148528562001625002880959405818917805677957069176678183037575471649882829727991674716018966738920027426562226662729777537421239887801836585939244395036197180153959925054218376668679778405878386965615465442773811930769782409105184508700983359642723531704979014860897570227520421897904528252092108088312786061647129712864525997993257693351891232705092804300788463874948500817126843754439670841019932563938977842794788012212898942697731409926885413401119881065084642756913527781370113927205696828135688727334290751737545452334712267134349274763245759692749424835470042186280962423749931405805357164272124767532871823043761541703082104816473455024914554281861552322349309742187095579974891743565427753329883888982802296975000310629447206640129921370775750039787027489237841756794197411407298792244024161458629793866433465875905350056875393701137196966073905301235869491101725152680617856807904378074035545994258323441927576855684965370658218765675165775086845893632551618137879841254927623097224991458155362623548276598211062072242901452159047548273564911070556232516530809916480306234105126856582518163334057305451619646581546184469283066861033521406853866767997501270478826319505496200221618811469189248954184791623224058950951855805322640159847279241922918148003338983252630345405432791255540517759723897311540699236072479409980774613085128694284751806448478595813155584488, 322004653890865926713788408100911282153574537922043654497444539421389692415279891348444064513122957340291778758684169541999187646534043330809536959946576470897280658727687510511355087487385167273760250963637295994820889765369508251868051231001597157889756548351242656269686865496760504284356071560113546017279929079090955552237565405152436427828467795451189660705153900075574277295619473667997579962858544554754049040520081962975102503554765805712436660605755124327599601585745286265280431611066502521536857170626525718032246841364522560073922225965791430875069467408218001951112440843246257499273740448020060048391333775717272962897574035962522149445382866114632159780320238336079220333414819097921770702389114784586362307635020898441083306887931368366416989261755103479092702068442801755850042751298666157684138910255554454514074482677579834761961692600926000218728319968735526313791623639338414516388229499583541178831550463618968742637791266108481203648104532382709343149024369546451558863410924079828305227429765772304977967043918503700690681813677842819724388292958490091056420912038033886171095570318506768365563464911239183377524161929734899080405509094910111371199422825481156806912846558614046466906243690452560774366477752898051029705449865448539773128310991588717525748671211457011518629196081490366847346584735632977037756861640746152566479082055088954479597807215545438268489723512807043528309798951240663655167755039976193379535995868012574873401148433511464422432754905332522422234341821366974916584693632289394257327404293582858927532057511476338447559636388885747381061425939703355924817759695981686225591423631338832974862589121917430149097418894511724712254485809391239906546814095429162078392375766246937113231061190715787279369262082333241702488606699774595568162601485349262790087796893164892474069435309973090374522577008527636839344611105590320388361453024931667203956058025376682275525256709343985033028679584663525857603998932118819781217857612321684561573665656757678554427458084416857518557475481052618344073337058533534412522988791399839040993464978849293162284265652504400820075959037603948799074947849876605665845955679388238398173884219945556471646431279425406985705066899832571802827046782242919686745209335423703958632913792919773410216173897589580419539213178017909530712495334980884686182837537633080334554236394694166235230492203444133068, 891713625377025976526563823608393005494471918542685630210614544399319530582080887287220846314844210929853420618892199789513165956495665825863274419550208449222373685811008634971111861453863810195139866347460226536111856467157183157600101895108704867485060678127025508180792657736263703707554304151150578725580931289281611373828033975405401283018726653639657776362095023136099211036636549269451371278018189341720642462769785110818987816141078434372516496407452601226859522244534021353512484795791733348803089405813430487359753042635882172420908723983972051770323828277370612141731678257839922369158211138316424982591001480426222850898810214049649100359609741820003573418428152265693062912228920055337216780330261580841522894454530000428946917970103141772240185852044659033421009631782928940442428017465591124922537414463294019752637316088409948464280819251555073565248303836230710973994904760278424771748820566527220070995454747895382670535835329183485567634394255914225738280828160404301781319583629565214332313420171835327068290525334305387636058755999419310952738435927746139540165984367452184637681782601815793895524424563814776587657355745765823837465240679045008686212694529567750460338820668213445531696268574621131001582531712181136265009547481470232879830412272668943333623305259744658257686963049160546134951653953650751633333943945430975023883144640550123303766734052027667738276492878286401027317473800995733830041926689705376964022186565534594390038878246852343962568230149204443437105147377139070584742102905593825744449232680398364529300444134111283703868706121900175065678104517350278874877769092308456879860486907942404146893987845951700396664385463682620506724453053640000166619282047321994504626364556301492710852054559473920473366164545501325193970681665975707517741259546578116024646366377196153197305621928473753581446806936689329806178801131540807331282001606333395051731103726480309503141852797125255883087064381340866062723404951707122079377204384460593733612263017254557182230739295766049855843614456393012276123845836137021137986830125864881809191164752737802720588979276493616696870502140208721827332410067236230299152042922073635248540337546848027474065822138194565879490518650928798294129393801267502934710313027644431452721371383747638159131045127250645813203159575465159042011309227104545749742820537659713054278536654560602133599487117369813677, 1366717438954739705809009958672060580180552420575346541203955113236314638510588172120803312337944871877514942107501746866806785628528961525948898677483711915925988187952791336897963845358354622023441168740381116135669553037304633974725179602536903765298653098089480538045863534000264170924541663732017179543578316091151672607094650007515459738032494148525885350001081605116710967931624385689817665227676295197242069973239877570533542237985824558977987327327080244097447271670665282719971017625048255799149536047835612592560953010010654717882999035556494631612823196804365153352766432045709598640901573901549646409991775802565432682605985570980262278210565606346781567990054902849166420168269180398195472243378922208206520927464909447054683597949544830668212295049817389834876012236582364587546688721019841528106814157570000666476124344844704567745239908607353351098730204371392991845445740511423203426425515410013418826931307700347964162648328948723252813966166900281867598072402527872271321008231282423245351193764944973095862964443736408027633405919679665223228810585735194446548001805634707726303348866134555442014958455867320661281464598992387033423260439649272169240375082638105985469443388834130311112743799946461396025219178004978443096477728401639369653750251636846772857469137853909176952898654247861132451805046695134011165613162463950474726733155716897094068812424738587559008989065243843031136609764594246255898149101784404038058745527770367232158943237483791152904460844923411143927601073592082366842061557981667184126352606196821091062816464751043127050471423454552586871657329055937408091596888486896088544118433251916701539111086847825503054067550297617055547083240016464838713430403368625715908978463096857836185142301917105697454347331151446401365621573992808576615124144059785250685315219853149406123261001688990147725834084466885294015891899787377604640880796075581961219884526939161680126216682266359246036405349156978233877185383841789861530702873659686930275352984908145811081379954201210065032277823646344156203068659358610534804647945754910782900589252316030244864417945361966175140368783216206343355589864366038955729121763578649560018056439806579808818476095660232881270510433932923908642493542371084240868696685844403346083015311952336941550641726192909711936055277042089394964136038538551263986015441032869149881293598879965478564071613236889638562, 2546156155614536163225149077606812169403201232889417343467785886200401477592215058963253032517847827953923956845256298446378222168267071987704734018003985579221874615308595868982114374113014038354299267844931449943437779898850087991789906084469519142357498472122117768165045290877057064835933774842959965629917962387334078622221458004877281496630825520627220609802051289597222010565923684096290898235836118448947296627776244054977032954262767813428494099692742888544558847620917811948286208399207675428591234745094087843786011333040886462162244577363793521745367191837968811046222094569289578167317932764010395196291887562163658813341328425296144169883388663549441286731138424204660918899022895362117930041350680368400830788470010219699115840047566634120774391815280705214698425691500766939318344478740178799503599915019653186356616962770343262884275383274875081998213269109779772254554169425007557622757948791780934503295191639248706972256458759627869553962320006282722432657997110236429156684263925865525171094685393704172815338527899597772215499804688754621507869444895014556304875030409677299581870834570107641279154793033167471096274855314688843868473618056088596775731862589690984642742728461044340014213968127362556919888647573143356127661436738380518648853681393123872495106996583942438115551660471414607191343057589998803234989556155048887518496318599424450231543722118960570794174176783961559988802520865200608054309970322806954548681722349326790084350924012019385020775025829185624436893087633880550152853316347820896052227607965696247172449580359581514097880906956844173086906445826830434837531081451078299870047823827024354988191773698667203947427656445065494813774060952749237435972313525496213023506932482599400147475948898747933608561752929258566397027706039324016113696635705578489046917078523972903039187457694903426538240807168881096544217313536449766998028998900697286889768128141080391292258841801327809849192777470755322186050811850776284900026233038667129991088383576068434022837390721174166003217413407073578632242092963114752137323883339306951157428625581376639743881761152240933712434339219769503504613897281567062130542836604114401621168197818548102795348595746989760373721831748174732616021571988582640925932438280156814554519480054925217289503138206536624484971680501208151729095962397616075215124831597035235040223051582200519283253734448202467954, 1324757295585037902067698025544561725685212731717223649139641396267583938782247512792318727359371077572290972882044656612133327856444747531077190106822593502226048756454751361537705877898829375478565051103690253871193775727400042108801812869114956683489556072956124672946952865398171589157122983122426926136723926245571452992566376230140789777047686396695541387491328399944547568296167222555651680578959851059458120349390689605348293003811171344403495222534701817245476890358410070446454715889359725986620741161189040195731032635480412009659011715755602381745895269145265178693729422350296979183254013603490350751643197443744413791980613535802221131282855145891860186057963064557721796562707626230833443871132359023657640156898842662370860610603746322198978846976362449254497757168338173219460461879267088230965226719702130881451296748747890937675381985900938814930465531000631445983446085508440000808417698372161043326165565049235068786290468180761772016528881237053684609671619416026607625374371635205682003696085514024341896889053126960994989898097333688093935839696576506758164846623984044751003676581712682001955556196296755657500770624503758731858780862897823629068617288252948253729433250263264795822525552431021898446361695517777782014089761828268093561350404772219436260097780137971120310053892805862243118649947605409141565824761751314054176564952591809437993792350081126886888665147381543261967958750164861423971344295529062231554041529887368970867359606435531710821522074130989190132340338818310657029295246871460968084844157541363336994766159078538284669793003977288752873426405838928476383896968456656079261991953386089011327418261554190364582692617474021265587354300531553779890846651684291177552070918556911590916242891251567130263812629725059915655900815038148046557926904067824714320181688718355060285589716022209938990724015411663600317742064278648000783743136522170271509208560327691347707544956842812685522624210098710267031339836602416232274296513721928247292141742504183485457780526638417722542737152675301484350535097550800339289156849683090472188036555997479698720764413126141705344132583732601253751467561055295750761477850571875804434469626488347448974158332969033453469447489882324363453737747905923684323875759948820499619264643267341846178175833108391443700345886173886538870794701372772923109910860004960486083938831995757705777100268709123553304], 'aut_phi_ratio': 24.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [2, 6, 1, 2], [2, 9, 1, 2], [2, 36, 2, 1], [2, 81, 2, 1], [2, 108, 2, 1], [2, 216, 4, 1], [2, 324, 1, 2], [2, 324, 2, 2], [2, 486, 2, 1], [2, 729, 2, 1], [2, 972, 2, 1], [3, 4, 1, 2], [3, 12, 1, 1], [3, 18, 2, 1], [3, 24, 1, 1], [3, 48, 1, 1], [3, 96, 1, 2], [3, 192, 1, 1], [3, 288, 1, 1], [3, 288, 2, 1], [3, 576, 1, 1], [3, 1152, 2, 1], [3, 2304, 1, 1], [4, 36, 2, 1], [4, 108, 2, 1], [4, 324, 1, 2], [4, 324, 2, 2], [4, 648, 1, 2], [4, 648, 2, 1], [4, 648, 4, 1], [4, 972, 2, 1], [4, 3888, 4, 1], [6, 4, 1, 2], [6, 12, 1, 7], [6, 18, 2, 3], [6, 24, 1, 7], [6, 36, 1, 8], [6, 36, 2, 2], [6, 48, 1, 3], [6, 72, 1, 6], [6, 72, 2, 8], [6, 96, 1, 2], [6, 144, 1, 4], [6, 144, 2, 1], [6, 192, 1, 1], [6, 216, 2, 4], [6, 216, 4, 2], [6, 288, 1, 7], [6, 288, 2, 3], [6, 432, 2, 2], [6, 432, 4, 2], [6, 576, 1, 5], [6, 576, 2, 2], [6, 648, 2, 3], [6, 864, 2, 1], [6, 1152, 2, 1], [6, 1296, 1, 2], [6, 1296, 2, 3], [6, 1296, 4, 1], [6, 1728, 2, 2], [6, 1728, 4, 1], [6, 1944, 2, 1], [6, 2304, 1, 1], [6, 2592, 2, 1], [6, 3888, 2, 1], [6, 5184, 2, 2], [6, 5184, 4, 1], [6, 10368, 4, 1], [8, 3888, 4, 1], [12, 72, 2, 2], [12, 144, 2, 1], [12, 216, 2, 4], [12, 216, 4, 2], [12, 432, 2, 2], [12, 432, 4, 1], [12, 648, 2, 3], [12, 864, 2, 1], [12, 1296, 1, 6], [12, 1296, 2, 6], [12, 1296, 4, 2], [12, 1728, 2, 2], [12, 1728, 4, 1], [12, 1944, 2, 1], [12, 2592, 2, 2], [12, 2592, 4, 1], [12, 5184, 2, 1], [12, 7776, 4, 1], [24, 7776, 4, 1]], 'aut_supersolvable': False, 'aut_tex': 'C_6^4.C_3^2.C_2^6.C_2^2', 'autcent_abelian': True, 'autcent_cyclic': False, 'autcent_exponent': 2, 'autcent_group': '8.5', 'autcent_hash': 5, 'autcent_nilpotent': True, 'autcent_order': 8, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': True, 'autcent_tex': 'C_2^3', 'autcentquo_abelian': False, 'autcentquo_cyclic': False, 'autcentquo_exponent': 24, 'autcentquo_group': '373248.cq', 'autcentquo_hash': 3227870960273308787, 'autcentquo_nilpotent': False, 'autcentquo_order': 373248, 'autcentquo_solvable': True, 'autcentquo_supersolvable': False, 'autcentquo_tex': 'C_6^4.D_6\\wr C_2', 'cc_stats': [[1, 1, 1], [2, 1, 1], [2, 6, 2], [2, 9, 2], [2, 36, 2], [2, 81, 2], [2, 108, 2], [2, 216, 4], [2, 324, 6], [2, 486, 2], [2, 729, 2], [2, 972, 2], [3, 4, 2], [3, 12, 1], [3, 18, 2], [3, 24, 1], [3, 48, 1], [3, 96, 2], [3, 192, 1], [3, 288, 3], [3, 576, 1], [3, 1152, 2], [3, 2304, 1], [4, 36, 2], [4, 108, 2], [4, 324, 6], [4, 648, 8], [4, 972, 2], [4, 3888, 4], [6, 4, 2], [6, 12, 7], [6, 18, 6], [6, 24, 7], [6, 36, 12], [6, 48, 3], [6, 72, 22], [6, 96, 2], [6, 144, 6], [6, 192, 1], [6, 216, 16], [6, 288, 13], [6, 432, 12], [6, 576, 9], [6, 648, 6], [6, 864, 2], [6, 1152, 2], [6, 1296, 12], [6, 1728, 8], [6, 1944, 2], [6, 2304, 1], [6, 2592, 2], [6, 3888, 2], [6, 5184, 8], [6, 10368, 4], [8, 3888, 4], [12, 72, 4], [12, 144, 2], [12, 216, 16], [12, 432, 8], [12, 648, 6], [12, 864, 2], [12, 1296, 26], [12, 1728, 8], [12, 1944, 2], [12, 2592, 8], [12, 5184, 2], [12, 7776, 4], [24, 7776, 4]], 'center_label': '2.1', 'center_order': 2, 'central_product': True, 'central_quotient': '186624.dt', 'commutator_count': 1, 'commutator_label': None, 'complements_known': False, 'complete': False, 'complex_characters_known': False, 'composition_factors': ['2.1', '2.1', '2.1', '2.1', '2.1', '2.1', '2.1', '2.1', '2.1', '3.1', '3.1', '3.1', '3.1', '3.1', '3.1'], 'composition_length': 15, 'conjugacy_classes_known': True, 'counter': 39, 'cyclic': False, 'derived_length': 4, 'dihedral': False, 'direct_factorization': [['186624.dt', 1], ['2.1', 1]], 'direct_product': True, 'div_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [2, 6, 1, 2], [2, 9, 1, 2], [2, 36, 1, 2], [2, 81, 1, 2], [2, 108, 1, 2], [2, 216, 1, 4], [2, 324, 1, 6], [2, 486, 1, 2], [2, 729, 1, 2], [2, 972, 1, 2], [3, 4, 1, 2], [3, 12, 1, 1], [3, 18, 1, 2], [3, 24, 1, 1], [3, 48, 1, 1], [3, 96, 1, 2], [3, 192, 1, 1], [3, 288, 1, 3], [3, 576, 1, 1], [3, 1152, 1, 2], [3, 2304, 1, 1], [4, 36, 1, 2], [4, 108, 1, 2], [4, 324, 1, 6], [4, 648, 1, 8], [4, 972, 1, 2], [4, 3888, 1, 4], [6, 4, 1, 2], [6, 12, 1, 7], [6, 18, 1, 6], [6, 24, 1, 7], [6, 36, 1, 12], [6, 48, 1, 3], [6, 72, 1, 22], [6, 96, 1, 2], [6, 144, 1, 6], [6, 192, 1, 1], [6, 216, 1, 16], [6, 288, 1, 13], [6, 432, 1, 12], [6, 576, 1, 9], [6, 648, 1, 6], [6, 864, 1, 2], [6, 1152, 1, 2], [6, 1296, 1, 12], [6, 1728, 1, 8], [6, 1944, 1, 2], [6, 2304, 1, 1], [6, 2592, 1, 2], [6, 3888, 1, 2], [6, 5184, 1, 8], [6, 10368, 1, 4], [8, 3888, 1, 4], [12, 72, 1, 4], [12, 144, 1, 2], [12, 216, 1, 16], [12, 432, 1, 8], [12, 648, 1, 6], [12, 864, 1, 2], [12, 1296, 1, 26], [12, 1728, 1, 8], [12, 1944, 1, 2], [12, 2592, 1, 8], [12, 5184, 1, 2], [12, 7776, 1, 4], [24, 7776, 1, 4]], 'element_repr_type': 'Perm', 'elementary': 1, 'eulerian_function': None, 'exponent': 24, 'exponents_of_order': [9, 6], 'factors_of_aut_order': [2, 3], 'factors_of_order': [2, 3], 'faithful_reps': [[12, 1, 4], [24, 1, 10], [36, 1, 12], [48, 1, 4], [72, 1, 16], [144, 1, 2]], 'familial': False, 'frattini_label': '9.2', 'frattini_quotient': '41472.et', 'hash': 1201881843971238203, 'hyperelementary': 1, 'inner_abelian': False, 'inner_cyclic': False, 'inner_exponent': 24, 'inner_gen_orders': [8, 6, 12, 6], 'inner_gens': [[12147347173586427137412864385, 153033610963705928578168282104, 34423368938491541472841695366, 56220183238772776601438583270], [58609764695119002673348818055, 1710820164043610883405366726, 93222553687211767375965247254, 54652542864075418898704050384], [130746472789140502266041816785, 125462354187768947218733819910, 23892491726920618711608728406, 99693346037303449649096970528], [175453639899093476866354485649, 33070782688570641463508573430, 90104837631048763309603003206, 11776940190719642451726783654]], 'inner_hash': 6672558604723196619, 'inner_nilpotent': False, 'inner_order': 186624, 'inner_split': True, 'inner_tex': 'C_3^3.S_4^2:D_6', 'inner_used': [1, 2, 3], 'irrC_degree': 12, 'irrQ_degree': 12, 'irrQ_dim': None, 'irrR_degree': None, 'irrep_stats': [[1, 16], [2, 20], [4, 28], [6, 16], [8, 24], [9, 16], [12, 56], [16, 2], [18, 20], [24, 44], [36, 44], [48, 10], [72, 32], [144, 4]], 'label': '373248.bm', 'linC_count': None, 'linC_degree': None, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': None, 'linQ_degree_count': None, 'linQ_dim': None, 'linQ_dim_count': None, 'linR_count': None, 'linR_degree': None, 'maximal_subgroups_known': True, 'metabelian': False, 'metacyclic': False, 'monomial': None, 'name': 'C6^4.C6^2:D4', 'ngens': 4, 'nilpotency_class': -1, 'nilpotent': False, 'normal_counts': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 187, 'number_characteristic_subgroups': 34, 'number_conjugacy_classes': 332, 'number_divisions': 332, 'number_normal_subgroups': 150, 'number_subgroup_autclasses': None, 'number_subgroup_classes': None, 'number_subgroups': None, 'old_label': None, 'order': 373248, 'order_factorization_type': 33, 'order_stats': [[1, 1], [2, 7663], [3, 6560], [4, 24912], [6, 160736], [8, 15552], [12, 126720], [24, 31104]], 'outer_abelian': False, 'outer_cyclic': False, 'outer_equivalence': True, 'outer_exponent': 4, 'outer_gen_orders': [2, 2, 2, 2], 'outer_gen_pows': [0, 0, 0, 0], 'outer_gens': [[12210714865408754893791456385, 3339491790795034784171363526, 24295778541223570999805586006, 11759649981764200658595654054], [15793136514795230114340557184, 3339491790795034784171363527, 111885048158396244681298347606, 15019402453109659795941798054], [15793136514795230114340557184, 3339491790795034784171363526, 111885048158396244681298347607, 15019402453109659795941798054], [15793136514795230114340557184, 3339491790795034784171363526, 111885048158396244681298347606, 15019402453109659795941798055]], 'outer_group': '16.11', 'outer_hash': 11, 'outer_nilpotent': True, 'outer_order': 16, 'outer_permdeg': 6, 'outer_perms': [289, 7, 127, 126], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'C_2\\times D_4', 'pc_rank': None, 'perfect': False, 'permutation_degree': 28, 'pgroup': 0, 'primary_abelian_invariants': [2, 2, 2, 2], 'quasisimple': False, 'rank': 4, 'rational': True, 'rational_characters_known': False, 'ratrep_stats': [[1, 16], [2, 20], [4, 28], [6, 16], [8, 24], [9, 16], [12, 56], [16, 2], [18, 20], [24, 44], [36, 44], [48, 10], [72, 32], [144, 4]], 'representations': {'PC': {'code': '2505245573632509054435682060261579312015856771052399473920409678548549263873840639406678415064796256368065244976171686190671520256895008804301516350278065433543134822519868752509453359197786740406058360836780410691818077065402556075306147088522231592594922622099982222673122601494981072666039784330213987989377519011152507049826736008282620662526190308527374451419140180060577534541455261142720941552954810116513073301622155972248257502264527443243060304116870872207043585664858298750292', 'gens': [1, 2, 4, 6, 8, 10, 12, 14, 15], 'pres': [15, 2, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 2, 2464920, 1851061, 76, 13026782, 1545917, 4113363, 4930938, 3888213, 168, 6028204, 9106219, 4795684, 315964, 16183805, 12303920, 4809815, 255470, 330815, 260, 31207686, 6214341, 9329076, 1068531, 125436, 68136, 12182407, 15837142, 64837, 21652, 38242, 45817, 352, 2916023, 58358, 19493, 81083, 5076009, 20628024, 12992439, 1663254, 1447269, 318684, 253899, 444, 4752010, 10062385, 9230800, 4728295, 2435470, 665365, 326800, 47304011, 12778586, 15357641, 1684856, 1833911, 395366, 262541, 536, 16061772, 14503347, 9645522, 5166777, 2330712, 856527, 421302, 9797773, 5715388, 14696683, 22828, 7723, 3958, 1453, 1749614, 874829, 5248859, 874889, 8249, 12314, 1529, 2219]}, 'Perm': {'d': 28, 'gens': [12147347173586427137412864385, 1710820164043610883405366726, 23892491726920618711608728406, 11776940190719642451726783654]}}, 'schur_multiplier': [2, 2, 2, 2, 2, 2, 2], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [2, 2, 2, 2], 'solvability_type': 17, 'solvable': True, 'subgroup_inclusions_known': False, 'subgroup_index_bound': 64, 'supersolvable': False, 'sylow_subgroups_known': True, 'tex_name': 'C_6^4.C_6^2:D_4', 'transitive_degree': 36, 'wreath_data': None, 'wreath_product': False}