-
gps_subgroup_search • Show schema
Hide schema
{'Agroup': True, 'Zgroup': True, 'abelian': True, 'ambient': '37044.e', 'ambient_counter': 5, 'ambient_order': 37044, 'ambient_tex': '\\He_7:(C_3^2\\times D_6)', 'central': False, 'central_factor': False, 'centralizer_order': 126, 'characteristic': False, 'core_order': 7, 'counter': 170, 'cyclic': True, 'direct': None, 'hall': 0, 'label': '37044.e.1764.i1', 'maximal': False, 'maximal_normal': False, 'metabelian': True, 'metacyclic': True, 'minimal': False, 'minimal_normal': False, 'nilpotent': True, 'normal': False, 'old_label': '1764.i1', 'outer_equivalence': True, 'perfect': False, 'proper': True, 'quotient': None, 'quotient_Agroup': None, 'quotient_abelian': None, 'quotient_cyclic': None, 'quotient_hash': None, 'quotient_metabelian': None, 'quotient_nilpotent': None, 'quotient_order': 1764, 'quotient_simple': None, 'quotient_solvable': None, 'quotient_supersolvable': None, 'quotient_tex': None, 'simple': False, 'solvable': True, 'special_labels': [], 'split': None, 'standard_generators': False, 'stem': False, 'subgroup': '21.2', 'subgroup_hash': 2, 'subgroup_order': 21, 'subgroup_tex': 'C_{21}', 'supersolvable': True, 'sylow': 0}
-
gps_subgroup_data • Show schema
Hide schema
{'ambient': '37044.e', 'aut_centralizer_order': None, 'aut_label': '1764.i1', 'aut_quo_index': None, 'aut_stab_index': None, 'aut_weyl_group': None, 'aut_weyl_index': None, 'centralizer': '294.a1', 'complements': None, 'conjugacy_class_count': 1, 'contained_in': ['252.f1', '588.a1', '588.l1', '882.d1'], 'contains': ['5292.a1', '12348.d1'], 'core': '5292.a1', 'coset_action_label': None, 'count': 98, 'diagramx': [3340, -1, 4363, -1], 'generators': [16807270434870, 14230002226939], 'label': '37044.e.1764.i1', 'mobius_quo': None, 'mobius_sub': 0, 'normal_closure': '12.a1', 'normal_contained_in': None, 'normal_contains': None, 'normalizer': '98.a1', 'old_label': '1764.i1', 'projective_image': '37044.e', 'quotient_action_image': None, 'quotient_action_kernel': None, 'quotient_action_kernel_order': None, 'quotient_fusion': None, 'short_label': '1764.i1', 'subgroup_fusion': None, 'weyl_group': '3.1'}
-
gps_groups • Show schema
Hide schema
{'Agroup': True, 'Zgroup': True, 'abelian': True, 'abelian_quotient': '21.2', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': True, 'aut_cyclic': False, 'aut_derived_length': 1, 'aut_exponent': 6, 'aut_gen_orders': [2, 6], 'aut_gens': [[1], [13], [11]], 'aut_group': '12.5', 'aut_hash': 5, 'aut_nilpotency_class': 1, 'aut_nilpotent': True, 'aut_order': 12, 'aut_permdeg': 7, 'aut_perms': [24, 723], 'aut_phi_ratio': 1.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [3, 1, 2, 1], [7, 1, 6, 1], [21, 1, 12, 1]], 'aut_supersolvable': True, 'aut_tex': 'C_2\\times C_6', 'autcent_abelian': True, 'autcent_cyclic': False, 'autcent_exponent': 6, 'autcent_group': '12.5', 'autcent_hash': 5, 'autcent_nilpotent': True, 'autcent_order': 12, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': True, 'autcent_tex': 'C_2\\times C_6', 'autcentquo_abelian': True, 'autcentquo_cyclic': True, 'autcentquo_exponent': 1, 'autcentquo_group': '1.1', 'autcentquo_hash': 1, 'autcentquo_nilpotent': True, 'autcentquo_order': 1, 'autcentquo_solvable': True, 'autcentquo_supersolvable': True, 'autcentquo_tex': 'C_1', 'cc_stats': [[1, 1, 1], [3, 1, 2], [7, 1, 6], [21, 1, 12]], 'center_label': '21.2', 'center_order': 21, 'central_product': True, 'central_quotient': '1.1', 'commutator_count': 0, 'commutator_label': '1.1', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['3.1', '7.1'], 'composition_length': 2, 'conjugacy_classes_known': True, 'counter': 2, 'cyclic': True, 'derived_length': 1, 'dihedral': False, 'direct_factorization': [['3.1', 1], ['7.1', 1]], 'direct_product': True, 'div_stats': [[1, 1, 1, 1], [3, 1, 2, 1], [7, 1, 6, 1], [21, 1, 12, 1]], 'element_repr_type': 'PC', 'elementary': 21, 'eulerian_function': 1, 'exponent': 21, 'exponents_of_order': [1, 1], 'factors_of_aut_order': [2, 3], 'factors_of_order': [3, 7], 'faithful_reps': [[1, 0, 12]], 'familial': True, 'frattini_label': '1.1', 'frattini_quotient': '21.2', 'hash': 2, 'hyperelementary': 21, 'inner_abelian': True, 'inner_cyclic': True, 'inner_exponent': 1, 'inner_gen_orders': [1], 'inner_gens': [[1]], 'inner_hash': 1, 'inner_nilpotent': True, 'inner_order': 1, 'inner_split': True, 'inner_tex': 'C_1', 'inner_used': [], 'irrC_degree': 1, 'irrQ_degree': 12, 'irrQ_dim': 12, 'irrR_degree': 2, 'irrep_stats': [[1, 21]], 'label': '21.2', 'linC_count': 12, 'linC_degree': 1, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': 8, 'linQ_degree_count': 1, 'linQ_dim': 8, 'linQ_dim_count': 1, 'linR_count': 6, 'linR_degree': 2, 'maximal_subgroups_known': True, 'metabelian': True, 'metacyclic': True, 'monomial': True, 'name': 'C21', 'ngens': 2, 'nilpotency_class': 1, 'nilpotent': True, 'normal_counts': [0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 4, 'number_characteristic_subgroups': 4, 'number_conjugacy_classes': 21, 'number_divisions': 4, 'number_normal_subgroups': 4, 'number_subgroup_autclasses': 4, 'number_subgroup_classes': 4, 'number_subgroups': 4, 'old_label': None, 'order': 21, 'order_factorization_type': 11, 'order_stats': [[1, 1], [3, 2], [7, 6], [21, 12]], 'outer_abelian': True, 'outer_cyclic': False, 'outer_equivalence': False, 'outer_exponent': 6, 'outer_gen_orders': [2, 6], 'outer_gen_pows': [0, 0], 'outer_gens': [[13], [11]], 'outer_group': '12.5', 'outer_hash': 5, 'outer_nilpotent': True, 'outer_order': 12, 'outer_permdeg': 7, 'outer_perms': [24, 723], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'C_2\\times C_6', 'pc_rank': 1, 'perfect': False, 'permutation_degree': 10, 'pgroup': 0, 'primary_abelian_invariants': [3, 7], 'quasisimple': False, 'rank': 1, 'rational': False, 'rational_characters_known': True, 'ratrep_stats': [[1, 1], [2, 1], [6, 1], [12, 1]], 'representations': {'PC': {'code': 191, 'gens': [1], 'pres': [2, -3, -7, 6]}, 'GLFp': {'d': 2, 'p': 7, 'gens': [351, 1376]}, 'Perm': {'d': 10, 'gens': [725760, 4320]}}, 'schur_multiplier': [], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [21], 'solvability_type': 0, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': True, 'sylow_subgroups_known': True, 'tex_name': 'C_{21}', 'transitive_degree': 21, 'wreath_data': None, 'wreath_product': False}
-
gps_groups • Show schema
Hide schema
{'Agroup': False, 'Zgroup': False, 'abelian': False, 'abelian_quotient': '36.14', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 4, 'aut_exponent': 84, 'aut_gen_orders': [14, 14, 6, 12], 'aut_gens': [[9136408354495, 9567391489514, 11810182508209, 21940152462727, 9495688004000, 31584908075045, 7394473631462, 28186167033742], [19125156069853, 3071306945005, 23337298129670, 9353313845575, 18991376008000, 30937847535514, 18140428511610, 20081273301458], [27943184661968, 8066376848598, 24773747668640, 24796747146699, 18991376008000, 4872587944260, 22047655452128, 28186167033742], [20854056837171, 7123095234355, 24766649562356, 28654602347963, 18991376008000, 4393599959002, 11454005438155, 1487683265364], [20702030637967, 14690582783695, 4668081670517, 25671161683103, 18991376008000, 30152601068257, 8834902986995, 13544849055836]], 'aut_group': None, 'aut_hash': 1912888100653018415, 'aut_nilpotency_class': -1, 'aut_nilpotent': False, 'aut_order': 148176, 'aut_permdeg': 588, 'aut_perms': [1809082996663872003808948183011940889764208490525034066413911081352832202920247893157613416869811168200201059662703840726220008728853710745439630556029727868645857448514333848090343281260521563848718305706746822991000855163687282498744624782302266839252711117329633831895778465998769035086567550019886096485870072836674147508124349275269590147779383468221867124462578185911693778601141706978831829225327002835166641168614318219970835306030334169220580841295203487670615646020097006828111088883938998495942230060363376915238741827467035357244863097974505322593266848080642327503939513938339674428229830329621528847322309474659200288362510163510082507073063561873390036981682509013910758343836041687334517996597641504571232625475215856956818850684980234982527756796092267688106824695105148696288011290130191423418361353374597312681461771986759859942973400157909984211333875031838600013678872258676034476555896059598174625294020446566721305137573125472658223496519312601054528047216279738488884121609740826493909507862369787932387061186712304710310766791195178570292057493626457353096937074176600238516715720733024609195407981741770522607823728034555350710416685082973490335377530899640375413458934513339597719432894044600988604207274967446410987882577132756915344482474927478503430214245744393464759339558550431816329594246288057479028085011263307894474781721082487594165049015, 6178251817688559456256427133767286272230329638168426099330183074826702903317013604832619361949264098786351553162263287680387916835535635687514782954182769082470221434083465799001322659762221583087945953441287205247517377437235267369612086359486252874544277163326084285064710346680285208110439207028812202355302404436368440841857107595420542047170216604061491909145790321113481143988559758424829921591173118682038449140493698375387987511696612669201923169972128779329958822589140982321949710643321801702415307776641261654907725663504251859124503066412255332841529631552249944528819981146457456986222041387923178194674307690690812429892213142785289947700562818965193226305150662520197797953899277989861956505745266593531121100602992455629695688765662095359927041741451070978104075780777754441088184706515508473075462035577638353379451773504720109096117704479249589478270897329559031221886579336664129906912013791463106406202581031063416934389464649831793611519554217659553923076940639839012234189388946807837061709487569546301972153847604017765009934499480279210453873103263316853456087756539257492735367377133016286903405187742766928279680385808267891851180801747969345526985035569646694281037401096396952558019588155061233187770260900952957676957717861061567140560329216131052702832690208353173416797290502973210072909339802396322150103080484557269246767519818717297088605573, 3287054379818189234825903194309668057472590346990158854634216956807715587024904806954515561407289254397701484371402136113158572784142571760672751956225451507128690376360839733491514608621160457681029438074998274969360489963207391784181684899223359330374850441050732123849048554018413860230704425318269602803731869166940017642910514196809805641292826669563352540085825705005541469245716308145520818792656715326574664625862519179480767333612321120623614140923242164314602831153032136258553709996169873219239189421195225167515788017520063036022534019490371894909183455041643123410807479747095850306096273612601302479347784405454269332422632880142489335266976563671528492953959469995523531682640641357939183141519680631455433285096924986651067151165437571681682219968846577995128239410028822654663915725583177416307777442016131627993701510371913008269467399417684156568192861974201883383683944822419196473668290974719289695457072781976965443220045553957590390216994376849782993987404021611984620039480716312643545366878995098246367908091208920866990045304524556945844032554252968734878625898288231439836465417934068875012338145286399321119073016998475001218620915687920407060887728867307591522899882486130026310653083943662550425194377839645254682437965259317193636290168829871143620543307399010649566998965043879415368485831030014860321527835069296742926526627335940383769250759, 5316919984910347635657778163540532379123236966745416840346745828800760048172688928511959569660811116021501828547357244992390073672840705493746242974521208691930528550039717595883304178218828275059470855183875089725301829903656318667472316611006452421947661593715982736744232314639090597816852306810780580664136425396475796754060863106377227240939518423324944821321135569242541280142611038154504236467818757883156023731509877839117963427413001513436523441166065120413176619586737343994877272170870666397407194988509416528252169327955694626349296530699831315019338333583908850054430861676131532654587096091177417727606469540444719718862074009545203178188585832606693127356672883345207877430530720714713337700809386970743931073523459626772024756900517894461214420202792988035777695509493128703400065806567722172444695946242586927797310699414913134192973742230982027600030873717028586077679262963106514025208825847446320105608061515783874097914878164923991185314783518963846830917139104655711257300770089556432599784710308974395609653239650224975203249847590681593834119514657696701972336973172633560085815538554864456684491027941783307193925626484172539591994054485308388361468097306983839291559895664281206123148544461158609439168139813575522040766156525037332920312989340058328928407228359910819019195243872582336931173215790316969464148632993746453841733607677731136222193580], 'aut_phi_ratio': 14.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 49, 1, 1], [2, 147, 2, 1], [3, 1, 2, 1], [3, 98, 1, 1], [3, 98, 2, 1], [3, 98, 3, 2], [3, 343, 3, 2], [6, 49, 2, 1], [6, 98, 1, 1], [6, 98, 2, 1], [6, 147, 4, 1], [6, 343, 3, 2], [6, 686, 3, 2], [6, 1029, 6, 2], [7, 6, 1, 1], [7, 84, 1, 1], [7, 126, 2, 1], [14, 294, 1, 1], [14, 882, 2, 1], [21, 6, 2, 1], [21, 84, 2, 1], [21, 126, 4, 1], [21, 294, 2, 1], [21, 294, 4, 1], [21, 588, 3, 2], [42, 294, 2, 2], [42, 294, 4, 1], [42, 882, 4, 1]], 'aut_supersolvable': False, 'aut_tex': '\\He_7.(C_6\\times S_3^2).C_2', 'autcent_abelian': False, 'autcent_cyclic': False, 'autcent_exponent': 6, 'autcent_group': '6.1', 'autcent_hash': 1, 'autcent_nilpotent': False, 'autcent_order': 6, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': True, 'autcent_tex': 'S_3', 'autcentquo_abelian': False, 'autcentquo_cyclic': False, 'autcentquo_exponent': 84, 'autcentquo_group': '24696.h', 'autcentquo_hash': 6460325027391172650, 'autcentquo_nilpotent': False, 'autcentquo_order': 24696, 'autcentquo_solvable': True, 'autcentquo_supersolvable': False, 'autcentquo_tex': '\\He_7:C_6\\wr C_2', 'cc_stats': [[1, 1, 1], [2, 49, 1], [2, 147, 2], [3, 1, 2], [3, 98, 9], [3, 343, 6], [6, 49, 2], [6, 98, 3], [6, 147, 4], [6, 343, 6], [6, 686, 6], [6, 1029, 12], [7, 6, 1], [7, 84, 1], [7, 126, 2], [14, 294, 1], [14, 882, 2], [21, 6, 2], [21, 84, 2], [21, 126, 4], [21, 294, 6], [21, 588, 6], [42, 294, 8], [42, 882, 4]], 'center_label': '3.1', 'center_order': 3, 'central_product': True, 'central_quotient': '12348.s', 'commutator_count': 1, 'commutator_label': '1029.12', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1', '2.1', '3.1', '3.1', '3.1', '7.1', '7.1', '7.1'], 'composition_length': 8, 'conjugacy_classes_known': True, 'counter': 5, 'cyclic': False, 'derived_length': 4, 'dihedral': False, 'direct_factorization': [['12348.s', 1], ['3.1', 1]], 'direct_product': True, 'div_stats': [[1, 1, 1, 1], [2, 49, 1, 1], [2, 147, 1, 2], [3, 1, 2, 1], [3, 98, 1, 1], [3, 98, 2, 4], [3, 343, 2, 3], [6, 49, 2, 1], [6, 98, 1, 1], [6, 98, 2, 1], [6, 147, 2, 2], [6, 343, 2, 3], [6, 686, 2, 3], [6, 1029, 2, 6], [7, 6, 1, 1], [7, 84, 1, 1], [7, 126, 1, 2], [14, 294, 1, 1], [14, 882, 1, 2], [21, 6, 2, 1], [21, 84, 2, 1], [21, 126, 2, 2], [21, 294, 2, 1], [21, 294, 4, 1], [21, 588, 2, 3], [42, 294, 2, 2], [42, 294, 4, 1], [42, 882, 2, 2]], 'element_repr_type': 'GLFp', 'elementary': 1, 'eulerian_function': 1344, 'exponent': 42, 'exponents_of_order': [3, 3, 2], 'factors_of_aut_order': [2, 3, 7], 'factors_of_order': [2, 3, 7], 'faithful_reps': [[42, 0, 12]], 'familial': False, 'frattini_label': '7.1', 'frattini_quotient': '5292.n', 'hash': 7855798439795622267, 'hyperelementary': 1, 'inner_abelian': False, 'inner_cyclic': False, 'inner_exponent': 42, 'inner_gen_orders': [3, 21, 14, 6, 1, 7, 7, 7], 'inner_gens': [[9136408354495, 31987721837770, 16405770270200, 21940152462727, 9495688004000, 13018890495555, 15897285792898, 16807270434870], [2177346105515, 9567391489514, 30537606232365, 19980894921572, 9495688004000, 23822349130192, 27044744357397, 28186167033742], [17765321726969, 28211616471470, 11810182508209, 6632225060598, 9495688004000, 16931726136737, 11454005438155, 20081273301458], [9136408354495, 31857582747939, 9717366629131, 21940152462727, 9495688004000, 16405766752913, 3224327410054, 13544849055836], [9136408354495, 9567391489514, 11810182508209, 21940152462727, 9495688004000, 31584908075045, 7394473631462, 28186167033742], [19567949788913, 31970989164783, 27044744510117, 22217201853311, 9495688004000, 31584908075045, 25307817031564, 28186167033742], [31231305933848, 5159387320453, 4393600935216, 332310625717, 9495688004000, 12894152318439, 7394473631462, 28186167033742], [27728263067888, 9567391489514, 15084185237940, 18678014399348, 9495688004000, 31584908075045, 7394473631462, 28186167033742]], 'inner_hash': 3676818443602011658, 'inner_nilpotent': False, 'inner_order': 12348, 'inner_split': True, 'inner_tex': '\\He_7:(C_6\\times S_3)', 'inner_used': [1, 2, 3, 4], 'irrC_degree': 42, 'irrQ_degree': 84, 'irrQ_dim': 84, 'irrR_degree': 84, 'irrep_stats': [[1, 36], [2, 18], [12, 9], [18, 12], [42, 18]], 'label': '37044.e', 'linC_count': None, 'linC_degree': None, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': None, 'linQ_degree_count': None, 'linQ_dim': None, 'linQ_dim_count': None, 'linR_count': None, 'linR_degree': None, 'maximal_subgroups_known': True, 'metabelian': False, 'metacyclic': False, 'monomial': None, 'name': 'He7:(C3^2*D6)', 'ngens': 8, 'nilpotency_class': -1, 'nilpotent': False, 'normal_counts': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 36, 'number_characteristic_subgroups': 19, 'number_conjugacy_classes': 93, 'number_divisions': 51, 'number_normal_subgroups': 46, 'number_subgroup_autclasses': 216, 'number_subgroup_classes': 460, 'number_subgroups': 53984, 'old_label': None, 'order': 37044, 'order_factorization_type': 321, 'order_stats': [[1, 1], [2, 343], [3, 2942], [6, 19502], [7, 342], [14, 2058], [21, 5976], [42, 5880]], 'outer_abelian': False, 'outer_cyclic': False, 'outer_equivalence': True, 'outer_exponent': 6, 'outer_gen_orders': [2, 6], 'outer_gen_pows': [4747844002000, 4747844002000], 'outer_gens': [[13523237384241, 14570537226190, 5796127193804, 5897835401518, 18991376008000, 5398541562940, 14838904351914, 28186167033742], [21523801175276, 4676780755490, 17716154452380, 5897835401518, 9495688004000, 30661082028272, 7640036134130, 20081273301458]], 'outer_group': '12.4', 'outer_hash': 4, 'outer_nilpotent': False, 'outer_order': 12, 'outer_permdeg': 5, 'outer_perms': [6, 49], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'D_6', 'pc_rank': 5, 'perfect': False, 'permutation_degree': 101, 'pgroup': 0, 'primary_abelian_invariants': [2, 2, 3, 3], 'quasisimple': False, 'rank': 2, 'rational': False, 'rational_characters_known': True, 'ratrep_stats': [[1, 4], [2, 18], [4, 8], [12, 1], [18, 4], [24, 4], [36, 4], [42, 2], [84, 4], [168, 2]], 'representations': {'PC': {'code': '190652541535688927821789494161321337785985802547135214911279728389233704834812699521218307492187830389200427137907051937491620327935', 'gens': [1, 3, 5, 7, 8], 'pres': [8, -2, -3, -2, -3, 3, -7, 7, -7, 16, 386354, 229474, 66, 3843, 534155, 1450564, 320412, 78020, 12028, 156, 1596677, 10381, 256629, 43229, 1493862, 973742, 21190, 7086, 51782, 5926, 1016071, 338703, 112919, 112927, 18855]}, 'GLFp': {'d': 4, 'p': 7, 'gens': [9136408354495, 9567391489514, 11810182508209, 21940152462727, 9495688004000, 31584908075045, 7394473631462, 28186167033742]}, 'Perm': {'d': 101, 'gens': [98097202876273071242932883012828361348099459168994283045668001988377704000159042113240171848721215384490857431169648444283160096404164583047139701336511740064, 192366300814728093582468831107058254699291474516877634400641867595784459630430184698508327804359364900407515596642520758706552368013726145891350586807608875664, 286635587109982529534707311611665255989106039518602675801083123653954514989956221518372525718972964599754019815509336467670939096654567930136665001459335002480, 7599714176795627378165009276597172894167950141741256117417384244208723743721357332838043744277017177269362236260749287896244568158289982443813102238070425920, 3, 381837950177928444746192472352594381684555244609756523394444934505160657605089913027859578780170432023030723750178550843560358082874692542312629979996930249360, 9475586063638613970331949186488481722708622576335774921901405938261471667142670528381108178317545651868482132619731552388867142761139581995039720897253828228, 477049641826004280740007945659976971528416356327783137218138090761687049166325774246751564675654151623695198764629403642266808067026464136168494021007179345920]}}, 'schur_multiplier': [6], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [6, 6], 'solvability_type': 12, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': False, 'sylow_subgroups_known': True, 'tex_name': '\\He_7:(C_3^2\\times D_6)', 'transitive_degree': 294, 'wreath_data': None, 'wreath_product': False}