-
gps_subgroup_search • Show schema
Hide schema
{'Agroup': True, 'Zgroup': False, 'abelian': True, 'ambient': '320.1525', 'ambient_counter': 1525, 'ambient_order': 320, 'ambient_tex': 'C_2^2:Q_8\\times C_{10}', 'central': False, 'central_factor': False, 'centralizer_order': 80, 'characteristic': False, 'core_order': 20, 'counter': 33, 'cyclic': False, 'direct': None, 'hall': 0, 'label': '320.1525.8.m1', 'maximal': False, 'maximal_normal': False, 'metabelian': True, 'metacyclic': True, 'minimal': False, 'minimal_normal': False, 'nilpotent': True, 'normal': False, 'old_label': '8.m1', 'outer_equivalence': True, 'perfect': False, 'proper': True, 'quotient': None, 'quotient_Agroup': None, 'quotient_abelian': None, 'quotient_cyclic': None, 'quotient_hash': None, 'quotient_metabelian': None, 'quotient_nilpotent': None, 'quotient_order': 8, 'quotient_simple': None, 'quotient_solvable': None, 'quotient_supersolvable': None, 'quotient_tex': None, 'simple': False, 'solvable': True, 'special_labels': [], 'split': None, 'standard_generators': False, 'stem': False, 'subgroup': '40.9', 'subgroup_hash': 9, 'subgroup_order': 40, 'subgroup_tex': 'C_2\\times C_{20}', 'supersolvable': True, 'sylow': 0}
-
gps_subgroup_data • Show schema
Hide schema
{'ambient': '320.1525', 'aut_centralizer_order': 64, 'aut_label': '8.m1', 'aut_quo_index': None, 'aut_stab_index': 8, 'aut_weyl_group': '32.25', 'aut_weyl_index': 512, 'centralizer': '4.d1', 'complements': None, 'conjugacy_class_count': 4, 'contained_in': ['4.d1'], 'contains': ['16.e1', '16.l1', '40.m1'], 'core': '16.e1', 'coset_action_label': None, 'count': 8, 'diagramx': [9622, -1, 9823, -1], 'generators': [253, 64, 160, 2], 'label': '320.1525.8.m1', 'mobius_quo': None, 'mobius_sub': 0, 'normal_closure': '4.d1', 'normal_contained_in': None, 'normal_contains': None, 'normalizer': '2.e1', 'old_label': '8.m1', 'projective_image': '16.13', 'quotient_action_image': None, 'quotient_action_kernel': None, 'quotient_action_kernel_order': None, 'quotient_fusion': None, 'short_label': '8.m1', 'subgroup_fusion': None, 'weyl_group': '2.1'}
-
gps_groups • Show schema
Hide schema
{'Agroup': True, 'Zgroup': False, 'abelian': True, 'abelian_quotient': '40.9', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 2, 'aut_exponent': 4, 'aut_gen_orders': [2, 4, 4], 'aut_gens': [[1, 2], [21, 2], [1, 14], [21, 19]], 'aut_group': '32.25', 'aut_hash': 25, 'aut_nilpotency_class': 2, 'aut_nilpotent': True, 'aut_order': 32, 'aut_permdeg': 8, 'aut_perms': [11527, 17, 11647], 'aut_phi_ratio': 2.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [2, 1, 2, 1], [4, 1, 4, 1], [5, 1, 4, 1], [10, 1, 4, 1], [10, 1, 8, 1], [20, 1, 16, 1]], 'aut_supersolvable': True, 'aut_tex': 'C_4\\times D_4', 'autcent_abelian': False, 'autcent_cyclic': False, 'autcent_exponent': 4, 'autcent_group': '32.25', 'autcent_hash': 25, 'autcent_nilpotent': True, 'autcent_order': 32, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': True, 'autcent_tex': 'C_4\\times D_4', 'autcentquo_abelian': True, 'autcentquo_cyclic': True, 'autcentquo_exponent': 1, 'autcentquo_group': '1.1', 'autcentquo_hash': 1, 'autcentquo_nilpotent': True, 'autcentquo_order': 1, 'autcentquo_solvable': True, 'autcentquo_supersolvable': True, 'autcentquo_tex': 'C_1', 'cc_stats': [[1, 1, 1], [2, 1, 3], [4, 1, 4], [5, 1, 4], [10, 1, 12], [20, 1, 16]], 'center_label': '40.9', 'center_order': 40, 'central_product': True, 'central_quotient': '1.1', 'commutator_count': 0, 'commutator_label': '1.1', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1', '2.1', '2.1', '5.1'], 'composition_length': 4, 'conjugacy_classes_known': True, 'counter': 9, 'cyclic': False, 'derived_length': 1, 'dihedral': False, 'direct_factorization': [['2.1', 1], ['4.1', 1], ['5.1', 1]], 'direct_product': True, 'div_stats': [[1, 1, 1, 1], [2, 1, 1, 3], [4, 1, 2, 2], [5, 1, 4, 1], [10, 1, 4, 3], [20, 1, 8, 2]], 'element_repr_type': 'PC', 'elementary': 2, 'eulerian_function': 18, 'exponent': 20, 'exponents_of_order': [3, 1], 'factors_of_aut_order': [2], 'factors_of_order': [2, 5], 'faithful_reps': [], 'familial': False, 'frattini_label': '2.1', 'frattini_quotient': '20.5', 'hash': 9, 'hyperelementary': 2, 'inner_abelian': True, 'inner_cyclic': True, 'inner_exponent': 1, 'inner_gen_orders': [1, 1], 'inner_gens': [[1, 2], [1, 2]], 'inner_hash': 1, 'inner_nilpotent': True, 'inner_order': 1, 'inner_split': True, 'inner_tex': 'C_1', 'inner_used': [], 'irrC_degree': -1, 'irrQ_degree': -1, 'irrQ_dim': -1, 'irrR_degree': -1, 'irrep_stats': [[1, 40]], 'label': '40.9', 'linC_count': 288, 'linC_degree': 2, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': 6, 'linQ_degree_count': 4, 'linQ_dim': 6, 'linQ_dim_count': 4, 'linR_count': 16, 'linR_degree': 3, 'maximal_subgroups_known': True, 'metabelian': True, 'metacyclic': True, 'monomial': True, 'name': 'C2*C20', 'ngens': 4, 'nilpotency_class': 1, 'nilpotent': True, 'normal_counts': [0, 0, 0, 0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 8, 'number_characteristic_subgroups': 8, 'number_conjugacy_classes': 40, 'number_divisions': 12, 'number_normal_subgroups': 16, 'number_subgroup_autclasses': 12, 'number_subgroup_classes': 16, 'number_subgroups': 16, 'old_label': None, 'order': 40, 'order_factorization_type': 31, 'order_stats': [[1, 1], [2, 3], [4, 4], [5, 4], [10, 12], [20, 16]], 'outer_abelian': False, 'outer_cyclic': False, 'outer_equivalence': False, 'outer_exponent': 4, 'outer_gen_orders': [2, 4, 4], 'outer_gen_pows': [0, 0, 0], 'outer_gens': [[21, 2], [1, 14], [21, 19]], 'outer_group': '32.25', 'outer_hash': 25, 'outer_nilpotent': True, 'outer_order': 32, 'outer_permdeg': 8, 'outer_perms': [11527, 17, 11647], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'C_4\\times D_4', 'pc_rank': 2, 'perfect': False, 'permutation_degree': 11, 'pgroup': 0, 'primary_abelian_invariants': [2, 4, 5], 'quasisimple': False, 'rank': 2, 'rational': False, 'rational_characters_known': True, 'ratrep_stats': [[1, 4], [2, 2], [4, 4], [8, 2]], 'representations': {'PC': {'code': 5899779, 'gens': [1, 2], 'pres': [4, -2, -2, -2, -5, 21, 34]}, 'GLZ': {'b': 3, 'd': 6, 'gens': [125101729074815868, 91655853488337157]}, 'GLFp': {'d': 2, 'p': 41, 'gens': [1585222, 2756880]}, 'Perm': {'d': 11, 'gens': [131040, 3628800, 96, 41040]}}, 'schur_multiplier': [2], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [2, 20], 'solvability_type': 1, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': True, 'sylow_subgroups_known': True, 'tex_name': 'C_2\\times C_{20}', 'transitive_degree': 40, 'wreath_data': None, 'wreath_product': False}
-
gps_groups • Show schema
Hide schema
{'Agroup': False, 'Zgroup': False, 'abelian': False, 'abelian_quotient': '80.52', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 2, 'aut_exponent': 4, 'aut_gen_orders': [4, 4, 4, 4, 4, 4, 4], 'aut_gens': [[1, 2, 4, 16], [161, 170, 166, 218], [171, 170, 12, 149], [11, 162, 14, 149], [169, 170, 14, 309], [169, 170, 12, 157], [1, 170, 166, 216], [171, 170, 4, 215]], 'aut_group': None, 'aut_hash': 161445847492853209, 'aut_nilpotency_class': 3, 'aut_nilpotent': True, 'aut_order': 16384, 'aut_permdeg': 28, 'aut_perms': [39910677511831552591329263367, 256970762521151592744522062099, 236620582406845154996824832281, 143886887501751577063455466906, 151611661492202911273474015159, 3367747775500899509728959634, 251402577868001308202197870112], 'aut_phi_ratio': 128.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 1, 1, 3], [2, 1, 4, 1], [2, 2, 4, 1], [4, 2, 4, 2], [4, 4, 4, 2], [5, 1, 4, 1], [10, 1, 4, 3], [10, 1, 16, 1], [10, 2, 16, 1], [20, 2, 16, 2], [20, 4, 16, 2]], 'aut_supersolvable': True, 'aut_tex': 'C_2^8.C_2^6', 'autcent_abelian': False, 'autcent_cyclic': False, 'autcent_exponent': 4, 'autcent_group': None, 'autcent_hash': 7903657167058653875, 'autcent_nilpotent': True, 'autcent_order': 8192, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': True, 'autcent_tex': 'C_4\\times C_2^8.C_2^3', 'autcentquo_abelian': True, 'autcentquo_cyclic': True, 'autcentquo_exponent': 2, 'autcentquo_group': '2.1', 'autcentquo_hash': 1, 'autcentquo_nilpotent': True, 'autcentquo_order': 2, 'autcentquo_solvable': True, 'autcentquo_supersolvable': True, 'autcentquo_tex': 'C_2', 'cc_stats': [[1, 1, 1], [2, 1, 7], [2, 2, 4], [4, 2, 8], [4, 4, 8], [5, 1, 4], [10, 1, 28], [10, 2, 16], [20, 2, 32], [20, 4, 32]], 'center_label': '40.14', 'center_order': 40, 'central_product': True, 'central_quotient': '8.5', 'commutator_count': 1, 'commutator_label': '4.2', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1', '2.1', '2.1', '2.1', '2.1', '2.1', '5.1'], 'composition_length': 7, 'conjugacy_classes_known': True, 'counter': 1525, 'cyclic': False, 'derived_length': 2, 'dihedral': False, 'direct_factorization': [['2.1', 1], ['32.29', 1], ['5.1', 1]], 'direct_product': True, 'div_stats': [[1, 1, 1, 1], [2, 1, 1, 7], [2, 2, 1, 4], [4, 2, 1, 4], [4, 2, 2, 2], [4, 4, 1, 8], [5, 1, 4, 1], [10, 1, 4, 7], [10, 2, 4, 4], [20, 2, 4, 4], [20, 2, 8, 2], [20, 4, 4, 8]], 'element_repr_type': 'PC', 'elementary': 2, 'eulerian_function': 196560, 'exponent': 20, 'exponents_of_order': [6, 1], 'factors_of_aut_order': [2], 'factors_of_order': [2, 5], 'faithful_reps': [], 'familial': False, 'frattini_label': '4.2', 'frattini_quotient': '80.52', 'hash': 1525, 'hyperelementary': 2, 'inner_abelian': True, 'inner_cyclic': False, 'inner_exponent': 2, 'inner_gen_orders': [2, 1, 2, 2], 'inner_gens': [[1, 2, 4, 184], [1, 2, 4, 16], [1, 2, 4, 176], [169, 2, 164, 16]], 'inner_hash': 5, 'inner_nilpotent': True, 'inner_order': 8, 'inner_split': False, 'inner_tex': 'C_2^3', 'inner_used': [1, 3, 4], 'irrC_degree': -1, 'irrQ_degree': -1, 'irrQ_dim': -1, 'irrR_degree': -1, 'irrep_stats': [[1, 80], [2, 60]], 'label': '320.1525', 'linC_count': None, 'linC_degree': None, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': None, 'linQ_degree_count': None, 'linQ_dim': None, 'linQ_dim_count': None, 'linR_count': None, 'linR_degree': None, 'maximal_subgroups_known': True, 'metabelian': True, 'metacyclic': False, 'monomial': True, 'name': 'C2^2:Q8*C10', 'ngens': 7, 'nilpotency_class': 2, 'nilpotent': True, 'normal_counts': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 20, 'number_characteristic_subgroups': 26, 'number_conjugacy_classes': 140, 'number_divisions': 52, 'number_normal_subgroups': 194, 'number_subgroup_autclasses': 104, 'number_subgroup_classes': 322, 'number_subgroups': 450, 'old_label': None, 'order': 320, 'order_factorization_type': 51, 'order_stats': [[1, 1], [2, 15], [4, 48], [5, 4], [10, 60], [20, 192]], 'outer_abelian': False, 'outer_cyclic': False, 'outer_equivalence': True, 'outer_exponent': 4, 'outer_gen_orders': [4, 4, 4, 4, 2, 4, 4], 'outer_gen_pows': [0, 0, 0, 0, 1, 0, 0], 'outer_gens': [[161, 170, 166, 218], [171, 170, 12, 149], [11, 162, 14, 149], [169, 170, 14, 309], [169, 170, 12, 157], [1, 170, 166, 216], [171, 170, 4, 215]], 'outer_group': None, 'outer_hash': 938950599931876664, 'outer_nilpotent': True, 'outer_order': 2048, 'outer_permdeg': 256, 'outer_perms': [3443511276905558929928078912555033447117197435204431764279528216928332403569322617953964547990041674049885373333112151832677551589662157686172021927797786531687486341717164313228447436294603685364952090652573496609754078736421600747038116450020232090489845529588414294772708268991944747445294080000390908853845798416854167748571832424330244368212628486923345387921803650567660967676716057039658545206781499332010706637166274549175355892958004595547335078808002616202973840177810112415522274075864432348660, 6807554492669396384904128296979162834114115831018253978498565665930495930363808369379986037882386018232091430972391220700713904853043061081847718520546578706438938638774448026519904838752311744990609858794781308266957046669554136444046937545964137298894780228948114564422948478456696087287456208200608034669033625506065805726894861604433816690310029708650253781377386394675205656247736480569966218790277227372659520829603651234012968729348193272776316596068686253352013148338696839144096593689663708168095, 10171597708432925459149618375199744889655440273879235083410066646512762074818792083405982322728062413266051000467016622544760224001176274135203453634939593257133758517698453015874494260990638864627303222341109072500537516631189504084042976571935486287080566219803673699050358004129102220600143678165327556329173518134919449061223050201827396545821145162774284237444258245543515264068620937311212324944708349017546171241255683729457746830638037841626615681198225386789511013516797737811300094855783114625738, 13535640924196454065994203261742080978353472906204142102861547638114790783030380585029866568554690303956667126545107816925374557945927684829465983038062640234194759299841899016721088563881320146535956030966803274859286396687271697165146292309112438143854304364461108572010267584541679147581935337462316568167442470130641599172851057037306788451317776066903575205649583463046080587091364881626261170832753456329193332729898008218618186484170381573037435274505764919060386051064880035451715692689094345949075, 16899684139846830625322388716003354418825504383314848883729028837076535164876595878190234511369798145244317308103579937353081609530417663922858171825483481397385741876206561080527214109694912190157640466568510931974769568696199464962317462118268488165503813583463447714739022018005019354430131824588299061408378194396635345668241624241768493367936061449489606218536106153367001680905564241436492613186407502576762426989758014422770642997130804090284559297843556585993514671434874340289041843851194843966496, 20263727355719851011024840726372388051478690605744917208795759774042944920918210937142089317846870328659096860727775777821992641603962873038211303959150807845284374955589012489138739210336725236912689333737473067814840423731097148546817713969484868102787948204445297091039026529893424674398402925519169097432349248848713225117563002649153206107505269034676332847900222165564825577666008550367821130212008425892361840034466435432560428042084289655103902864187746341930730604504789100130313974094243115046149, 23627770571483793111896500619773792310108032582527307385479068406808405226947504261070728796966293885719468775871773952916401415549655086389735347288632540437486450882447065119424608295667244953493633906674822658163738949433449963808396337174458382011772236861466645185746166889152276938421044322296787426412339250138252090498493352283436598394877652791691272002654930868224575054054029789163555581801925934616953616291570566746952451671113166305481890117778199031331700297286928751802787212947266549389746], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'C_2^8.C_2^3', 'pc_rank': 4, 'perfect': False, 'permutation_degree': 19, 'pgroup': 0, 'primary_abelian_invariants': [2, 2, 2, 2, 5], 'quasisimple': False, 'rank': 4, 'rational': False, 'rational_characters_known': True, 'ratrep_stats': [[1, 16], [2, 8], [4, 18], [8, 8], [16, 2]], 'representations': {'PC': {'code': 163354794426385977638915, 'gens': [1, 2, 3, 5], 'pres': [7, -2, -2, -2, -2, 2, -2, -5, 58, 6444, 1558, 102, 124]}, 'GLZN': {'d': 2, 'p': 40, 'gens': [1248019, 576409, 2016201, 64801, 1344021, 1888829, 64321]}, 'Perm': {'d': 19, 'gens': [6423384248387280, 13516123354202160, 732384824371200, 13516211060876880, 96, 1614937680, 13516122267648000]}}, 'schur_multiplier': [2, 2, 2, 2, 2], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [2, 2, 2, 10], 'solvability_type': 4, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': True, 'sylow_subgroups_known': True, 'tex_name': 'C_2^2:Q_8\\times C_{10}', 'transitive_degree': 160, 'wreath_data': None, 'wreath_product': False}