-
gps_subgroup_search • Show schema
Hide schema
{'Agroup': True, 'Zgroup': False, 'abelian': False, 'ambient': '319440.x', 'ambient_counter': 24, 'ambient_order': 319440, 'ambient_tex': 'C_{11}^3:(C_{10}\\times D_{12})', 'central': False, 'central_factor': False, 'centralizer_order': None, 'characteristic': False, 'core_order': 13310, 'counter': 77, 'cyclic': False, 'direct': None, 'hall': 0, 'label': '319440.x.24._.C', 'maximal': False, 'maximal_normal': False, 'metabelian': True, 'metacyclic': False, 'minimal': False, 'minimal_normal': False, 'nilpotent': False, 'normal': True, 'old_label': '24.C', 'outer_equivalence': False, 'perfect': False, 'proper': True, 'quotient': '24.6', 'quotient_Agroup': False, 'quotient_abelian': False, 'quotient_cyclic': False, 'quotient_hash': None, 'quotient_metabelian': True, 'quotient_nilpotent': False, 'quotient_order': 24, 'quotient_simple': False, 'quotient_solvable': True, 'quotient_supersolvable': True, 'quotient_tex': 'D_{12}', 'simple': False, 'solvable': True, 'special_labels': [], 'split': None, 'standard_generators': False, 'stem': False, 'subgroup': '13310.bv', 'subgroup_hash': None, 'subgroup_order': 13310, 'subgroup_tex': 'C_{11}^3:C_{10}', 'supersolvable': True, 'sylow': 0}
-
gps_subgroup_data • Show schema
Hide schema
{'ambient': '319440.x', 'aut_centralizer_order': None, 'aut_label': None, 'aut_quo_index': None, 'aut_stab_index': None, 'aut_weyl_group': None, 'aut_weyl_index': None, 'centralizer': None, 'complements': None, 'conjugacy_class_count': 1, 'contained_in': None, 'contains': None, 'core': None, 'coset_action_label': None, 'count': 1, 'diagramx': None, 'generators': [43718074150397584, 4622959461834174, 37595466963011736, 7061686783493871, 5356356801680985], 'label': '319440.x.24._.C', 'mobius_quo': None, 'mobius_sub': None, 'normal_closure': None, 'normal_contained_in': None, 'normal_contains': None, 'normalizer': None, 'old_label': '24.C', 'projective_image': None, 'quotient_action_image': None, 'quotient_action_kernel': None, 'quotient_action_kernel_order': None, 'quotient_fusion': None, 'short_label': '24._.C', 'subgroup_fusion': None, 'weyl_group': None}
-
gps_groups • Show schema
Hide schema
{'Agroup': True, 'Zgroup': False, 'abelian': False, 'abelian_quotient': '10.2', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 1, 'aut_exponent': 175560, 'aut_gen_orders': [2660, 10, 30], 'aut_gens': [[1, 10, 110, 1210], [6893, 1550, 4030, 13100], [12829, 80, 280, 9620], [9019, 1370, 3200, 3870]], 'aut_group': None, 'aut_hash': 3405692464592397592, 'aut_nilpotency_class': -1, 'aut_nilpotent': False, 'aut_order': 11309645424000, 'aut_permdeg': 1335, 'aut_perms': [2648265435142784973245270065796694875673960855577220989395883347898571206486114589338310362329703445658194802494655855732724616584052404930887019580878593807190259871132020325225213251436161953622964069323025906392203753064181112737291503779317415154336455511690134289007923194936453726169492247310959616178103546725454733016963066871065435733730091420248636525102597956767275161574767591958487769769041890805785905387960962412558720798522180694493981636448695053884603064570478595184830964820769333526965802363380718764616987278257438499537855441934763347325255358683699327029861988061969300777721485180009037183461533357988478459833926294237741571023869047373278566351604404327830700813878690156849678269546137165072442263056386559914451777559056458380395288290405397892992354172770523854433613943282467096919396682327130260832889099015754593197989997227830660005776536696162071578176741827008503325918630444142930265179574575269128963485089000781816179566874671371048341349410745118510698678631898098424847129527615063861989693327840798879418061380126356500788052851541657701794110945434648441970107220013831288931548765052318604996953919032831331136338903620420390587847706648878226617710182098649162179760497874548197779821359840667207891796682098894063261637007098499366938688883339066755348344135046511425533556462133820925254470475242445415513706791769967180807519290253452086071657244182744861384614521312942505905279133619438568548364391374655601362137343035700878737909048524656039531953138136412261454786203392658258020655647219923088300517504837320907658922123883131172624770726601894092938579322872879192647925368972835143347776724430402313227744698772464937661857841653800727784829040697565555351417435795786084946759857365506984523895503487042735523675238065551582422602507490185682392712561399524506467986866712237306290230605898909348793473820608668372078446192308002678810467563886719801567702731903708613519533498158990332729312272032533316812238792617317639075676900554897195561050903074328424741874483682098903634627700636423219248590789352812924076902864822529591978034130477490575342431564608108236683096932627905416409659291010743441786657463208231950163687849711662149393791773223681627941214339286153669316687800368994964996623737619942014054375303099613477093673490917053028324434175256669533061804497362152296110670903210140836964561845019520889737068331374095247989937753777523277054478155134093405797811648301386550575245455813819451006179658975657403979876998338152912905731275131327905969583690007954795846406183236557289336821765506702462744385926487859161371113566022111023952154200162199069969222144526779841607042572338588902939811008073337769481220970547226720452185414798107113962057381343943709548330860943269277103343944281605525077053686154637580338423785325621978411552694569907895179907641917738279269462170564561885638062907855530709374859967441116521654728307154420180118849444401034554296545018686777667810774244909522539462008386179842967412878377210813288907699480901717495079712911965490535010956842692697964410661482923291560354062859281571671135772280287225046855100568401569639658980647632833520180714436905867795326384790803013381037941927762094455932473486975083156568404323293562937000866237128262533499840619057617070128867803511774548728391234828270107450750804138796157379578421115046932850858369217490697390016217244812473121555292128081312238493788768003019750315014196835646318121660023980869916438416292276601094614436564691015302958636413799508098692452398687054801368799814688632200726952229636927483468893458257105243377470217214, 1446008342573074099998580952162493068960541099036155019342788958905819946072937748389764697538889344685496410149832846294870357538930426080442464809175728151917705067667011490739264407677481767643054929733153784788676293015865241631781992409233928901067675593106012996906046231507902188600506749230694440906121775758192275156160193238426063335183857957012131913458036457107368860799463571762182271787343555255309972117269122647536996818240177286680642193978622475489922963427440225539581499014183796102900780476278383917895355027875907497350841989128792418018409003088291460566892005938868746385613941061476394568757488569626714176521749973353498826692909398180401444950846846763768796205143150550277362896172539697315831303202042554937120457666170032300560302091689700270790372347370451813267803259743090097059842945381449058733630095142185240614920647221052876736535725732253531999285419683835145255571784668532022703058990092151518238301893899888688242913511317604495585401602289769803949207670749368856969181974682951063552375632510210542240649794660493544532146141071281246502822771991601276926319461351869037988040467135568209962456530633464453400071966820951715436523549892707408853947556548576509084472926124390762122796431320962735225391683401862816228700846384202162080558399528991231350447501677162551751654395939270453908766133068938036456489159390312657682699265693405024401586981641384673541998959809188169623787398361488570927513804989575135319904925638909799397425151690937600109355683947894240602036271695638615816234230321181261696015789868587556249750051114726675886206976910128001353732470097518429374478610862602452051516041457140834240069226839854836481085099133195328272830835815434404898183120725121311670924883918432533727810994027051544606617183996244842794898263914996300015291000529899402355727423453511543485551961859142983414622437209919187855083635716880792558127250473336726619674881435860956291126764132243491304486303386603251270564832041357708585937735483814791284924970123218093988266651647643335170119309115719386050324616332734717140400871414418378137718010914681999240740107123927806135126166821072392051463948409976026406154946056590841744701618954853934809385053586368188012924248616759505743477372080103181776769097347074034565430004707506473126943569749130892634396074497537483445686892171608150454239573956491744653559188731247832500680249969108042287323450336921611790488534230559239873178634845616522910348740524012517200113331365721586556466576651581593755545316316484863801160118436838903299666558409212286966442382074924856782008911785158502691036240490194485416259119386599402843445629275577840959546054019281385067612056639588278079778725755556982101050264655690321291273430238186019509963664010104173217962629950693232695716351700087632943826730421936834227220049820185376096320217883127451002459211010262261566263711772935487428979274651262388130002390354275395950289120535251930393138700064517054994714564864247111175543164470347795823503170420372981632477665352173138841882025865994196451535393115228222972871363499998397248542261339140443898945220421935253635432454245277021847246283342759241870450471819449250772186429154561307606235084554794215319189864810741204832598822809262064226735647983399193955259658984974235526227867952051530068197642353609566649745133883127178166311074431702390726934038701433557366734540854332812134517617608100681931684510836694542430258183367897598884920703316231382066536643016111587887170894139558329399531213360092426702152121436097271864603456275249121758894107036908857595587803174317631862747276512272, 4887343293498827191583776998810372678578125655853569028845365188972736398383452004747739930399631681345394026373931407785142257443254032608103461242746617721536877793330379184346016395401664018453944249781046570450357954988761105261595318620699390958434009237686748019869731305722610659869019414976500683212848139969834462465847187515664391974143629784768584563308070541656979232663782676552367557489141274556677992560552181978559801050365789273281067023766574823549150900657116234416037032126384882039521645645692382510107701396678671790597355719882177058530448478179343745031529513765261136595822754842180574393208297827708767934362373792516171861824469437457284488029825606413043232395511380274215945487940691666223626237797107561055971282290724875034983855234018686601948516692043889865242435708441177269061373978978114215423981742540201082375155914371023398063069152850690595829464218285119810933413817091696172467267688695036119682387917082098111125745146851588434237493558739052946868176290411776435065052771670319815232984095311302476026970507658573039560682341718248560657609909421457727925133952012888696555375666351453102356872749909876045336903746810643797952712359457139876086079606949371424732836789049263486846508031014166147559948674698233966198313552093037903581430572335511963042607238812368430887353078617966525898689985025083695819237886511295408412424840099723876489942919523671374480067462972306499918689821635179735273253128389314318300897658632109362169281421978527825949166094699561287287554146421718660943254386568658374024467752470538935767475988576290870651857613511228068933712210422796909819855817398781484159078165641541453081008230866714997615879864533356404195581806430615980189373650204630823183925977974206901602756508779633163900562189816512418839699794302101591426345448626902005180792505782009005474841635085116317099066809310207583788812386957376510406068677275217270220887930230172648705491384855211547497787108405192399595743180026989699104582417467724773595059724920859820203798434385404538226554329067652312501669976027138021722387763528669930919954157277689875456685115462947632120906118270591239513197215614675594485220616530320306219781928933031925197213479745827766539511406772043058849681875002786539403351253634400625619139096183720521394829537179180670935768926162461526637135622300126649421550711252548028451979314583773791893569550081558361786494674993680883785512038549489411901375283698072717555278719078729356709277877095237087801693784955156977727738511029374525059110873060624269660581854627816028795237268806381677933419605548915860803793090044433919813049112759421080008447240084365450684145013949591973428883473309968202062825877339890403508087671903717522237062422152666324919668303821419686295860385371786433216922968785805196876049728411636493271601976900673122337702885697567942485093083503899885538034890580586479905334338850194058012924313434609013313760412879839711910760936723088845159497308739290865711234613144004060919960359261266220161946866669420451579334813665986622701262533421460024486285038969776257444477050911134448290537224101601066645640135413263773460820933077271602752850237472783230266275371006019616934428514427521643231948001003157065970642253351426173589408580765302939732462939952873494018441608449856451223658772043293250368772016167320461824793236733490558615030663417235012141676191507414669481277629396847227216364543700473936100260020872116122191578307088380098609871887412861481914775477159331747830349006122707561710260114697944475635150454271626812753353333465563931682458456170784384385544094407347], 'aut_phi_ratio': 2336703600.0, 'aut_solvable': False, 'aut_stats': [[1, 1, 1, 1], [2, 1331, 1, 1], [5, 1, 4, 1], [10, 1331, 4, 1], [11, 2, 665, 1], [55, 2, 2660, 1]], 'aut_supersolvable': False, 'aut_tex': 'C_4\\times C_{11}^3.C_{10}.\\PSL(3,11)', 'autcent_abelian': True, 'autcent_cyclic': True, 'autcent_exponent': 4, 'autcent_group': '4.1', 'autcent_hash': 1, 'autcent_nilpotent': True, 'autcent_order': 4, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': True, 'autcent_tex': 'C_4', 'autcentquo_abelian': False, 'autcentquo_cyclic': False, 'autcentquo_exponent': 175560, 'autcentquo_group': None, 'autcentquo_hash': 4977165058291360190, 'autcentquo_nilpotent': False, 'autcentquo_order': 2827411356000, 'autcentquo_solvable': False, 'autcentquo_supersolvable': False, 'autcentquo_tex': 'C_{11}^3.C_{10}.\\PSL(3,11)', 'cc_stats': [[1, 1, 1], [2, 1331, 1], [5, 1, 4], [10, 1331, 4], [11, 2, 665], [55, 2, 2660]], 'center_label': '5.1', 'center_order': 5, 'central_product': True, 'central_quotient': '2662.12', 'commutator_count': 1, 'commutator_label': '1331.5', 'complements_known': True, 'complete': False, 'complex_characters_known': False, 'composition_factors': ['2.1', '5.1', '11.1', '11.1', '11.1'], 'composition_length': 5, 'conjugacy_classes_known': True, 'counter': 48, 'cyclic': False, 'derived_length': 2, 'dihedral': False, 'direct_factorization': [['2662.12', 1], ['5.1', 1]], 'direct_product': True, 'div_stats': [[1, 1, 1, 1], [2, 1331, 1, 1], [5, 1, 4, 1], [10, 1331, 4, 1], [11, 2, 5, 133], [55, 2, 20, 133]], 'element_repr_type': 'PC', 'elementary': 1, 'eulerian_function': 2340, 'exponent': 110, 'exponents_of_order': [3, 1, 1], 'factors_of_aut_order': [2, 3, 5, 7, 11, 19], 'factors_of_order': [2, 5, 11], 'faithful_reps': [], 'familial': False, 'frattini_label': '1.1', 'frattini_quotient': '13310.bv', 'hash': 3094167567471054012, 'hyperelementary': 1, 'inner_abelian': False, 'inner_cyclic': False, 'inner_exponent': 22, 'inner_gen_orders': [2, 11, 11, 11], 'inner_gens': [[1, 100, 1100, 12100], [21, 10, 110, 1210], [221, 10, 110, 1210], [2421, 10, 110, 1210]], 'inner_hash': 12, 'inner_nilpotent': False, 'inner_order': 2662, 'inner_split': True, 'inner_tex': 'C_{11}^3:C_2', 'inner_used': [1, 2, 3, 4], 'irrC_degree': -1, 'irrQ_degree': -1, 'irrQ_dim': -1, 'irrR_degree': None, 'irrep_stats': [[1, 10], [2, 3325]], 'label': '13310.bv', 'linC_count': None, 'linC_degree': None, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': None, 'linQ_degree_count': None, 'linQ_dim': None, 'linQ_dim_count': None, 'linR_count': None, 'linR_degree': None, 'maximal_subgroups_known': True, 'metabelian': True, 'metacyclic': False, 'monomial': True, 'name': 'C11^3:C10', 'ngens': 5, 'nilpotency_class': -1, 'nilpotent': False, 'normal_counts': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 6, 'number_characteristic_subgroups': 6, 'number_conjugacy_classes': 3335, 'number_divisions': 270, 'number_normal_subgroups': 538, 'number_subgroup_autclasses': 16, 'number_subgroup_classes': 1072, 'number_subgroups': 38312, 'old_label': None, 'order': 13310, 'order_factorization_type': 311, 'order_stats': [[1, 1], [2, 1331], [5, 4], [10, 5324], [11, 1330], [55, 5320]], 'outer_abelian': False, 'outer_cyclic': False, 'outer_equivalence': True, 'outer_exponent': 175560, 'outer_gen_orders': [532, 1330], 'outer_gen_pows': [0, 0], 'outer_gens': [[3, 5330, 12840, 1070], [9, 1850, 2120, 2320]], 'outer_group': None, 'outer_hash': 4009647696620411150, 'outer_nilpotent': False, 'outer_order': 4248552000, 'outer_permdeg': 142, 'outer_perms': [21915043435026896782159260352298638765894793732063781672029769076217294086660934603415049024986867319086214735014348031960739682294206853883750597446497979477348823865190090949811646353517368857014522080856740983221256853610419858677454139168009, 164009035136120551564590284182003334369357930995268334710127851998166877715290581503247061531384225266174894324848626575893558306325486518180980344632852739867184643969169015392770187500789946601034706664221690272508151795600504673277096847842576], 'outer_solvable': False, 'outer_supersolvable': False, 'outer_tex': 'C_{20}\\times \\PSL(3,11)', 'pc_rank': 4, 'perfect': False, 'permutation_degree': 38, 'pgroup': 0, 'primary_abelian_invariants': [2, 5], 'quasisimple': False, 'rank': 4, 'rational': False, 'rational_characters_known': False, 'ratrep_stats': [[1, 2], [4, 2], [10, 133], [40, 133]], 'representations': {'PC': {'code': '34798112225396348903999', 'gens': [1, 3, 4, 5], 'pres': [5, -2, -5, -11, -11, -11, 10, 1502, 22003, 302504]}, 'GLFp': {'d': 4, 'p': 11, 'gens': [12531822321003912, 41725369603789104, 44509179942611006, 1977210383605740, 36687300164533435]}, 'Perm': {'d': 38, 'gens': [14879759122079716194687946629899895124838446, 63, 372289110536814240177545247145793091529517, 27538430075611354098608948951783797146470463, 42067131891856665007034158202550831861898188]}}, 'schur_multiplier': [11, 11, 11], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [10], 'solvability_type': 7, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': True, 'sylow_subgroups_known': True, 'tex_name': 'C_{11}^3:C_{10}', 'transitive_degree': 6655, 'wreath_data': None, 'wreath_product': False}
-
gps_groups • Show schema
Hide schema
{'Agroup': False, 'Zgroup': False, 'abelian': False, 'abelian_quotient': '40.14', 'all_subgroups_known': False, 'almost_simple': False, 'aut_abelian': None, 'aut_cyclic': None, 'aut_derived_length': None, 'aut_exponent': None, 'aut_gen_orders': None, 'aut_gens': [[35715392747806643, 19063078487671420, 3519921862562674, 17298483428108842, 45842145882403683, 41608089875869718, 12531822321003912, 33418192856010432, 4764541194236758], [35564740259935813, 18946948711944521, 30612033140022726, 16502600281671387, 34040965705109643, 37165754801746531, 12531822321003912, 33418192856010432, 3973183186977819], [35715392747806643, 19063078487671420, 4870457795763859, 22951256970770724, 1181466045481482, 6874134118865165, 12531822321003912, 33418192856010432, 17475997798440211], [20539705140219756, 3887105568413922, 19874692145181020, 19155564770985712, 1555446791673916, 37165754801746531, 12531822321003912, 33418192856010432, 21271430602705840], [35715392747806643, 19063078487671420, 3519921862562674, 17298483428108842, 45842145882403683, 41608089875869718, 12531822321003912, 33418192856010432, 4764541194236758], [35715392747806643, 19063078487671420, 3519921862562674, 17298483428108842, 45842145882403683, 41608089875869718, 12531822321003912, 33418192856010432, 4764541194236758], [26152754368917588, 9120376668156221, 29432440190671409, 22951256970770724, 19620317354834069, 30489729317839423, 12531822321003912, 33418192856010432, 27418699635685661], [23654314194561672, 19063078487671420, 3519921862562674, 17298483428108842, 25957053260218303, 39935675520312130, 12531822321003912, 33418192856010432, 4764541194236758], [30595061147653963, 19063078487671420, 1016251838993157, 17298483428108842, 39011673831712076, 36139105057878574, 12531822321003912, 33418192856010432, 4764541194236758], [34390493953691153, 19063078487671420, 32433744327791203, 17298483428108842, 2507719367478906, 39934511926491163, 12531822321003912, 33418192856010432, 4764541194236758], [1149082265945834, 30480735269856092, 36229176919484153, 16801134840411034, 5772623004182094, 32346810680217984, 12531822321003912, 33418192856010432, 38155218892913015], [33892126636285635, 17239527064479801, 8754221728460728, 42568624234005174, 3686988505511065, 18953903158374654, 12531822321003912, 33418192856010432, 30035389480921159], [24184459519204595, 7532145259069372, 32434591790418528, 25565826899594807, 14265458779092270, 44589234511166488, 12531822321003912, 33418192856010432, 5296018809406952], [26359958017282609, 7532145259069372, 32434591790418528, 25565826899594807, 36279243854706664, 5955442401338276, 12531822321003912, 33418192856010432, 5296018809406952], [6735663244327742, 23596485072782074, 42582086064442726, 9914453460290471, 6171648344656957, 37273298901009897, 20886370535006520, 25063644642007824, 15090864729501011], [19594895668738452, 10977774126138813, 43595709749380329, 14476054218388935, 29841011746899935, 9196140234579193, 16709096428005216, 29240918749009128, 31390550493308157]], 'aut_group': None, 'aut_hash': None, 'aut_nilpotency_class': None, 'aut_nilpotent': None, 'aut_order': 51110400, 'aut_permdeg': None, 'aut_perms': None, 'aut_phi_ratio': None, 'aut_solvable': None, 'aut_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [2, 66, 2, 1], [2, 726, 2, 1], [2, 1331, 2, 1], [3, 242, 1, 1], [4, 22, 1, 1], [4, 242, 1, 1], [5, 1, 4, 1], [6, 242, 1, 1], [6, 2662, 2, 1], [10, 1, 4, 1], [10, 66, 8, 1], [10, 726, 8, 1], [10, 1331, 8, 1], [11, 2, 5, 1], [11, 6, 10, 1], [11, 12, 5, 1], [11, 12, 50, 1], [11, 24, 25, 1], [12, 242, 2, 1], [12, 2662, 2, 1], [15, 242, 4, 1], [20, 22, 4, 1], [20, 242, 4, 1], [22, 2, 5, 1], [22, 6, 10, 1], [22, 12, 5, 1], [22, 12, 50, 1], [22, 24, 25, 1], [22, 132, 10, 2], [22, 132, 100, 1], [22, 1452, 10, 1], [30, 242, 4, 1], [30, 2662, 8, 1], [33, 484, 5, 1], [44, 132, 10, 2], [44, 484, 5, 1], [55, 2, 20, 1], [55, 6, 40, 1], [55, 12, 20, 1], [55, 12, 200, 1], [55, 24, 100, 1], [60, 242, 8, 1], [60, 2662, 8, 1], [66, 484, 5, 1], [110, 2, 20, 1], [110, 6, 40, 1], [110, 12, 20, 1], [110, 12, 200, 1], [110, 24, 100, 1], [110, 132, 40, 2], [110, 132, 400, 1], [110, 1452, 40, 1], [132, 484, 10, 1], [165, 484, 20, 1], [220, 132, 40, 2], [220, 484, 20, 1], [330, 484, 20, 1], [660, 484, 40, 1]], 'aut_supersolvable': None, 'aut_tex': None, 'autcent_abelian': None, 'autcent_cyclic': None, 'autcent_exponent': None, 'autcent_group': None, 'autcent_hash': None, 'autcent_nilpotent': None, 'autcent_order': None, 'autcent_solvable': None, 'autcent_split': None, 'autcent_supersolvable': None, 'autcent_tex': None, 'autcentquo_abelian': None, 'autcentquo_cyclic': None, 'autcentquo_exponent': None, 'autcentquo_group': None, 'autcentquo_hash': None, 'autcentquo_nilpotent': None, 'autcentquo_order': None, 'autcentquo_solvable': None, 'autcentquo_supersolvable': None, 'autcentquo_tex': None, 'cc_stats': [[1, 1, 1], [2, 1, 1], [2, 66, 2], [2, 726, 2], [2, 1331, 2], [3, 242, 1], [4, 22, 1], [4, 242, 1], [5, 1, 4], [6, 242, 1], [6, 2662, 2], [10, 1, 4], [10, 66, 8], [10, 726, 8], [10, 1331, 8], [11, 2, 5], [11, 6, 10], [11, 12, 55], [11, 24, 25], [12, 242, 2], [12, 2662, 2], [15, 242, 4], [20, 22, 4], [20, 242, 4], [22, 2, 5], [22, 6, 10], [22, 12, 55], [22, 24, 25], [22, 132, 120], [22, 1452, 10], [30, 242, 4], [30, 2662, 8], [33, 484, 5], [44, 132, 20], [44, 484, 5], [55, 2, 20], [55, 6, 40], [55, 12, 220], [55, 24, 100], [60, 242, 8], [60, 2662, 8], [66, 484, 5], [110, 2, 20], [110, 6, 40], [110, 12, 220], [110, 24, 100], [110, 132, 480], [110, 1452, 40], [132, 484, 10], [165, 484, 20], [220, 132, 80], [220, 484, 20], [330, 484, 20], [660, 484, 40]], 'center_label': '10.2', 'center_order': 10, 'central_product': None, 'central_quotient': None, 'commutator_count': 1, 'commutator_label': '7986.b', 'complements_known': False, 'complete': False, 'complex_characters_known': False, 'composition_factors': ['2.1', '2.1', '2.1', '2.1', '3.1', '5.1', '11.1', '11.1', '11.1'], 'composition_length': 9, 'conjugacy_classes_known': False, 'counter': 24, 'cyclic': False, 'derived_length': 3, 'dihedral': False, 'direct_factorization': None, 'direct_product': True, 'div_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [2, 66, 1, 2], [2, 726, 1, 2], [2, 1331, 1, 2], [3, 242, 1, 1], [4, 22, 1, 1], [4, 242, 1, 1], [5, 1, 4, 1], [6, 242, 1, 1], [6, 2662, 1, 2], [10, 1, 4, 1], [10, 66, 4, 2], [10, 726, 4, 2], [10, 1331, 4, 2], [11, 2, 5, 1], [11, 6, 5, 2], [11, 12, 5, 11], [11, 24, 5, 5], [12, 242, 2, 1], [12, 2662, 2, 1], [15, 242, 4, 1], [20, 22, 4, 1], [20, 242, 4, 1], [22, 2, 5, 1], [22, 6, 5, 2], [22, 12, 5, 11], [22, 24, 5, 5], [22, 132, 5, 24], [22, 1452, 5, 2], [30, 242, 4, 1], [30, 2662, 4, 2], [33, 484, 5, 1], [44, 132, 5, 2], [44, 132, 10, 1], [44, 484, 5, 1], [55, 2, 20, 1], [55, 6, 20, 2], [55, 12, 20, 11], [55, 24, 20, 5], [60, 242, 8, 1], [60, 2662, 8, 1], [66, 484, 5, 1], [110, 2, 20, 1], [110, 6, 20, 2], [110, 12, 20, 11], [110, 24, 20, 5], [110, 132, 20, 24], [110, 1452, 20, 2], [132, 484, 10, 1], [165, 484, 20, 1], [220, 132, 20, 2], [220, 132, 40, 1], [220, 484, 20, 1], [330, 484, 20, 1], [660, 484, 40, 1]], 'element_repr_type': 'GLFp', 'elementary': 1, 'eulerian_function': None, 'exponent': 660, 'exponents_of_order': [4, 3, 1, 1], 'factors_of_aut_order': [2, 3, 5, 11], 'factors_of_order': [2, 3, 5, 11], 'faithful_reps': [[12, 0, 400], [24, 0, 100]], 'familial': False, 'frattini_label': '2.1', 'frattini_quotient': None, 'hash': 4185823851600239521, 'hyperelementary': 1, 'inner_abelian': None, 'inner_cyclic': None, 'inner_exponent': None, 'inner_gen_orders': None, 'inner_gens': None, 'inner_hash': None, 'inner_nilpotent': None, 'inner_order': 31944, 'inner_split': None, 'inner_tex': None, 'inner_used': None, 'irrC_degree': 12, 'irrQ_degree': 240, 'irrQ_dim': None, 'irrR_degree': None, 'irrep_stats': [[1, 40], [2, 150], [4, 125], [6, 200], [12, 1150], [24, 250]], 'label': '319440.x', 'linC_count': None, 'linC_degree': None, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': None, 'linQ_degree_count': None, 'linQ_dim': None, 'linQ_dim_count': None, 'linR_count': None, 'linR_degree': None, 'maximal_subgroups_known': True, 'metabelian': False, 'metacyclic': False, 'monomial': None, 'name': 'C11^3:(C10*D12)', 'ngens': 9, 'nilpotency_class': -1, 'nilpotent': False, 'normal_counts': [1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 3, 1, 0, 1, 0, 3, 1, 1, 1, 0, 3, 0, 1, 3, 3, 0, 1, 3, 1, 7, 1, 0, 3, 0, 7, 3, 1, 1, 7, 0, 7, 1], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 64, 'number_characteristic_subgroups': 54, 'number_conjugacy_classes': 1915, 'number_divisions': 174, 'number_normal_subgroups': 82, 'number_subgroup_autclasses': None, 'number_subgroup_classes': None, 'number_subgroups': None, 'old_label': None, 'order': 319440, 'order_factorization_type': 321, 'order_stats': [[1, 1], [2, 4247], [3, 242], [4, 264], [5, 4], [6, 5566], [10, 16988], [11, 1330], [12, 5808], [15, 968], [20, 1056], [22, 31690], [30, 22264], [33, 2420], [44, 5060], [55, 5320], [60, 23232], [66, 2420], [110, 126760], [132, 4840], [165, 9680], [220, 20240], [330, 9680], [660, 19360]], 'outer_abelian': None, 'outer_cyclic': None, 'outer_equivalence': False, 'outer_exponent': None, 'outer_gen_orders': None, 'outer_gen_pows': None, 'outer_gens': None, 'outer_group': '1600.9725', 'outer_hash': None, 'outer_nilpotent': None, 'outer_order': 1600, 'outer_permdeg': None, 'outer_perms': None, 'outer_solvable': None, 'outer_supersolvable': None, 'outer_tex': 'C_4^2:C_{10}^2', 'pc_rank': 5, 'perfect': False, 'permutation_degree': 53, 'pgroup': 0, 'primary_abelian_invariants': [2, 2, 2, 5], 'quasisimple': False, 'rank': 3, 'rational': False, 'rational_characters_known': False, 'ratrep_stats': [[1, 8], [2, 6], [4, 10], [8, 6], [10, 4], [16, 2], [20, 3], [30, 8], [40, 5], [60, 44], [80, 3], [120, 19], [160, 1], [240, 44], [480, 11]], 'representations': {'PC': {'code': '1052856233766732433237675855687326067142310701469027458468355603583007084539484946945180735498283858164987330433596180720808438545138753535541030900199', 'gens': [1, 3, 5, 8, 9], 'pres': [9, -2, -5, -2, -11, -2, -2, -3, -11, 11, 18, 3926072, 74, 7203, 2148304, 1068232, 83686, 130, 6866645, 539375, 143780, 158, 10699926, 826080, 992409, 1900807, 90763, 44980, 5893, 23522408, 2352266, 73916, 31643, 13670]}, 'GLFp': {'d': 4, 'p': 11, 'gens': [35715392747806643, 19063078487671420, 3519921862562674, 17298483428108842, 45842145882403683, 41608089875869718, 12531822321003912, 33418192856010432, 4764541194236758]}, 'Perm': {'d': 53, 'gens': [90153581084939059608260573105376257375173290945031274148945189568223, 2889816652800, 172449869891412836091442928440406949365273195890681624273935925507324, 251555002641641925793755298194142521301321426698085407686362564548866, 122003677653580800, 335134112179633897906986081465545605165048026154912430962776210962827, 404846876183785111435375840910340253070913926877650843474383497672376, 10985012109560724119573357411371438194049572430424672610431824385174, 498216305262746722318331122824386819374027122828493771080605607393976]}}, 'schur_multiplier': [2, 2, 2], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [2, 2, 10], 'solvability_type': 17, 'solvable': True, 'subgroup_inclusions_known': False, 'subgroup_index_bound': 2904, 'supersolvable': False, 'sylow_subgroups_known': False, 'tex_name': 'C_{11}^3:(C_{10}\\times D_{12})', 'transitive_degree': 660, 'wreath_data': None, 'wreath_product': False}
-
gps_groups • Show schema
Hide schema
{'Agroup': False, 'Zgroup': False, 'abelian': False, 'abelian_quotient': '4.2', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 2, 'aut_exponent': 12, 'aut_gen_orders': [2, 2, 12], 'aut_gens': [[1, 2], [1, 10], [1, 14], [15, 2]], 'aut_group': '48.38', 'aut_hash': 38, 'aut_nilpotency_class': -1, 'aut_nilpotent': False, 'aut_order': 48, 'aut_permdeg': 7, 'aut_perms': [745, 24, 1707], 'aut_phi_ratio': 6.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [2, 6, 2, 1], [3, 2, 1, 1], [4, 2, 1, 1], [6, 2, 1, 1], [12, 2, 2, 1]], 'aut_supersolvable': True, 'aut_tex': 'S_3\\times D_4', 'autcent_abelian': True, 'autcent_cyclic': False, 'autcent_exponent': 2, 'autcent_group': '4.2', 'autcent_hash': 2, 'autcent_nilpotent': True, 'autcent_order': 4, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': True, 'autcent_tex': 'C_2^2', 'autcentquo_abelian': False, 'autcentquo_cyclic': False, 'autcentquo_exponent': 6, 'autcentquo_group': '12.4', 'autcentquo_hash': 4, 'autcentquo_nilpotent': False, 'autcentquo_order': 12, 'autcentquo_solvable': True, 'autcentquo_supersolvable': True, 'autcentquo_tex': 'D_6', 'cc_stats': [[1, 1, 1], [2, 1, 1], [2, 6, 2], [3, 2, 1], [4, 2, 1], [6, 2, 1], [12, 2, 2]], 'center_label': '2.1', 'center_order': 2, 'central_product': False, 'central_quotient': '12.4', 'commutator_count': 1, 'commutator_label': '6.2', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1', '2.1', '2.1', '3.1'], 'composition_length': 4, 'conjugacy_classes_known': True, 'counter': 6, 'cyclic': False, 'derived_length': 2, 'dihedral': True, 'direct_factorization': [], 'direct_product': False, 'div_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [2, 6, 1, 2], [3, 2, 1, 1], [4, 2, 1, 1], [6, 2, 1, 1], [12, 2, 2, 1]], 'element_repr_type': 'PC', 'elementary': 1, 'eulerian_function': 3, 'exponent': 12, 'exponents_of_order': [3, 1], 'factors_of_aut_order': [2, 3], 'factors_of_order': [2, 3], 'faithful_reps': [[2, 1, 2]], 'familial': True, 'frattini_label': '2.1', 'frattini_quotient': '12.4', 'hash': 6, 'hyperelementary': 2, 'inner_abelian': False, 'inner_cyclic': False, 'inner_exponent': 6, 'inner_gen_orders': [2, 6], 'inner_gens': [[1, 22], [5, 2]], 'inner_hash': 4, 'inner_nilpotent': False, 'inner_order': 12, 'inner_split': True, 'inner_tex': 'D_6', 'inner_used': [1, 2], 'irrC_degree': 2, 'irrQ_degree': 4, 'irrQ_dim': 4, 'irrR_degree': 2, 'irrep_stats': [[1, 4], [2, 5]], 'label': '24.6', 'linC_count': 2, 'linC_degree': 2, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': 4, 'linQ_degree_count': 3, 'linQ_dim': 4, 'linQ_dim_count': 3, 'linR_count': 2, 'linR_degree': 2, 'maximal_subgroups_known': True, 'metabelian': True, 'metacyclic': True, 'monomial': True, 'name': 'D12', 'ngens': 4, 'nilpotency_class': -1, 'nilpotent': False, 'normal_counts': [0, 0, 0, 0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 7, 'number_characteristic_subgroups': 7, 'number_conjugacy_classes': 9, 'number_divisions': 8, 'number_normal_subgroups': 9, 'number_subgroup_autclasses': 12, 'number_subgroup_classes': 16, 'number_subgroups': 34, 'old_label': None, 'order': 24, 'order_factorization_type': 31, 'order_stats': [[1, 1], [2, 13], [3, 2], [4, 2], [6, 2], [12, 4]], 'outer_abelian': True, 'outer_cyclic': False, 'outer_equivalence': False, 'outer_exponent': 2, 'outer_gen_orders': [2, 2], 'outer_gen_pows': [6, 0], 'outer_gens': [[7, 2], [1, 14]], 'outer_group': '4.2', 'outer_hash': 2, 'outer_nilpotent': True, 'outer_order': 4, 'outer_permdeg': 4, 'outer_perms': [1, 6], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'C_2^2', 'pc_rank': 2, 'perfect': False, 'permutation_degree': 7, 'pgroup': 0, 'primary_abelian_invariants': [2, 2], 'quasisimple': False, 'rank': 2, 'rational': False, 'rational_characters_known': True, 'ratrep_stats': [[1, 4], [2, 3], [4, 1]], 'representations': {'PC': {'code': 2968216545, 'gens': [1, 2], 'pres': [4, -2, -2, -2, -3, 177, 21, 242, 34, 259]}, 'GLZ': {'b': 3, 'd': 4, 'gens': [1381251, 40593880]}, 'GLFp': {'d': 2, 'p': 11, 'gens': [11822, 13311]}, 'Perm': {'d': 7, 'gens': [745, 1464, 2424, 3]}}, 'schur_multiplier': [2], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [2, 2], 'solvability_type': 6, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': True, 'sylow_subgroups_known': True, 'tex_name': 'D_{12}', 'transitive_degree': 12, 'wreath_data': None, 'wreath_product': False}