-
gps_subgroup_search • Show schema
Hide schema
{'Agroup': True, 'Zgroup': False, 'abelian': False, 'ambient': '288.684', 'ambient_counter': 684, 'ambient_order': 288, 'ambient_tex': 'C_{24}:D_6', 'central': False, 'central_factor': False, 'centralizer_order': 24, 'characteristic': True, 'core_order': 72, 'counter': 11, 'cyclic': False, 'direct': False, 'hall': 0, 'label': '288.684.4.a1.a1', 'maximal': False, 'maximal_normal': False, 'metabelian': True, 'metacyclic': None, 'minimal': False, 'minimal_normal': False, 'nilpotent': False, 'normal': True, 'old_label': '4.a1.a1', 'outer_equivalence': False, 'perfect': False, 'proper': True, 'quotient': '4.2', 'quotient_Agroup': True, 'quotient_abelian': True, 'quotient_cyclic': False, 'quotient_hash': 2, 'quotient_metabelian': True, 'quotient_nilpotent': True, 'quotient_order': 4, 'quotient_simple': False, 'quotient_solvable': True, 'quotient_supersolvable': True, 'quotient_tex': 'C_2^2', 'simple': False, 'solvable': True, 'special_labels': [], 'split': False, 'standard_generators': False, 'stem': False, 'subgroup': '72.27', 'subgroup_hash': 27, 'subgroup_order': 72, 'subgroup_tex': 'S_3\\times C_{12}', 'supersolvable': True, 'sylow': 0}
-
gps_subgroup_data • Show schema
Hide schema
{'ambient': '288.684', 'aut_centralizer_order': 8, 'aut_label': '4.a1', 'aut_quo_index': 6, 'aut_stab_index': 1, 'aut_weyl_group': '48.51', 'aut_weyl_index': 8, 'centralizer': '12.f1.a1', 'complements': [], 'conjugacy_class_count': 1, 'contained_in': ['2.a1.a1', '2.b1.a1', '2.c1.a1'], 'contains': ['8.a1.a1', '8.b1.a1', '8.c1.a1', '12.a1.a1', '12.l1.a1'], 'core': '4.a1.a1', 'coset_action_label': None, 'count': 1, 'diagramx': [4232, 1079, 4725, 1379, 4241, 309, 3804, 309], 'generators': [6, 96, 216, 4, 144], 'label': '288.684.4.a1.a1', 'mobius_quo': 0, 'mobius_sub': 2, 'normal_closure': '4.a1.a1', 'normal_contained_in': ['2.a1.a1', '2.b1.a1', '2.c1.a1'], 'normal_contains': ['8.a1.a1', '8.b1.a1', '8.c1.a1', '12.a1.a1'], 'normalizer': '1.a1.a1', 'old_label': '4.a1.a1', 'projective_image': '48.38', 'quotient_action_image': None, 'quotient_action_kernel': None, 'quotient_action_kernel_order': None, 'quotient_fusion': None, 'short_label': '4.a1.a1', 'subgroup_fusion': None, 'weyl_group': '12.4'}
-
gps_groups • Show schema
Hide schema
{'Agroup': True, 'Zgroup': False, 'abelian': False, 'abelian_quotient': '24.9', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 2, 'aut_exponent': 6, 'aut_gen_orders': [2, 2, 2, 2, 3], 'aut_gens': [[1, 6], [37, 66], [1, 42], [41, 6], [5, 42], [25, 6]], 'aut_group': '48.51', 'aut_hash': 51, 'aut_nilpotency_class': -1, 'aut_nilpotent': False, 'aut_order': 48, 'aut_permdeg': 9, 'aut_perms': [41041, 90720, 24, 131784, 3], 'aut_phi_ratio': 2.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [2, 3, 2, 1], [3, 1, 2, 1], [3, 2, 1, 1], [3, 2, 2, 1], [4, 1, 2, 1], [4, 3, 2, 1], [6, 1, 2, 1], [6, 2, 1, 1], [6, 2, 2, 1], [6, 3, 4, 1], [12, 1, 4, 1], [12, 2, 2, 1], [12, 2, 4, 1], [12, 3, 4, 1]], 'aut_supersolvable': True, 'aut_tex': 'C_2^2\\times D_6', 'autcent_abelian': True, 'autcent_cyclic': False, 'autcent_exponent': 2, 'autcent_group': '8.5', 'autcent_hash': 5, 'autcent_nilpotent': True, 'autcent_order': 8, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': True, 'autcent_tex': 'C_2^3', 'autcentquo_abelian': False, 'autcentquo_cyclic': False, 'autcentquo_exponent': 6, 'autcentquo_group': '6.1', 'autcentquo_hash': 1, 'autcentquo_nilpotent': False, 'autcentquo_order': 6, 'autcentquo_solvable': True, 'autcentquo_supersolvable': True, 'autcentquo_tex': 'S_3', 'cc_stats': [[1, 1, 1], [2, 1, 1], [2, 3, 2], [3, 1, 2], [3, 2, 3], [4, 1, 2], [4, 3, 2], [6, 1, 2], [6, 2, 3], [6, 3, 4], [12, 1, 4], [12, 2, 6], [12, 3, 4]], 'center_label': '12.2', 'center_order': 12, 'central_product': True, 'central_quotient': '6.1', 'commutator_count': 1, 'commutator_label': '3.1', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1', '2.1', '2.1', '3.1', '3.1'], 'composition_length': 5, 'conjugacy_classes_known': True, 'counter': 27, 'cyclic': False, 'derived_length': 2, 'dihedral': False, 'direct_factorization': [['3.1', 1], ['4.1', 1], ['6.1', 1]], 'direct_product': True, 'div_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [2, 3, 1, 2], [3, 1, 2, 1], [3, 2, 1, 1], [3, 2, 2, 1], [4, 1, 2, 1], [4, 3, 2, 1], [6, 1, 2, 1], [6, 2, 1, 1], [6, 2, 2, 1], [6, 3, 2, 2], [12, 1, 4, 1], [12, 2, 2, 1], [12, 2, 4, 1], [12, 3, 4, 1]], 'element_repr_type': 'PC', 'elementary': 1, 'eulerian_function': 24, 'exponent': 12, 'exponents_of_order': [3, 2], 'factors_of_aut_order': [2, 3], 'factors_of_order': [2, 3], 'faithful_reps': [[2, 0, 4]], 'familial': False, 'frattini_label': '2.1', 'frattini_quotient': '36.12', 'hash': 27, 'hyperelementary': 1, 'inner_abelian': False, 'inner_cyclic': False, 'inner_exponent': 6, 'inner_gen_orders': [2, 3], 'inner_gens': [[1, 30], [49, 6]], 'inner_hash': 1, 'inner_nilpotent': False, 'inner_order': 6, 'inner_split': True, 'inner_tex': 'S_3', 'inner_used': [1, 2], 'irrC_degree': 2, 'irrQ_degree': 8, 'irrQ_dim': 8, 'irrR_degree': 4, 'irrep_stats': [[1, 24], [2, 12]], 'label': '72.27', 'linC_count': 4, 'linC_degree': 2, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': 6, 'linQ_degree_count': 28, 'linQ_dim': 6, 'linQ_dim_count': 28, 'linR_count': 10, 'linR_degree': 4, 'maximal_subgroups_known': True, 'metabelian': True, 'metacyclic': True, 'monomial': True, 'name': 'S3*C12', 'ngens': 5, 'nilpotency_class': -1, 'nilpotent': False, 'normal_counts': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 16, 'number_characteristic_subgroups': 18, 'number_conjugacy_classes': 36, 'number_divisions': 18, 'number_normal_subgroups': 22, 'number_subgroup_autclasses': 31, 'number_subgroup_classes': 35, 'number_subgroups': 58, 'old_label': None, 'order': 72, 'order_factorization_type': 32, 'order_stats': [[1, 1], [2, 7], [3, 8], [4, 8], [6, 20], [12, 28]], 'outer_abelian': True, 'outer_cyclic': False, 'outer_equivalence': False, 'outer_exponent': 2, 'outer_gen_orders': [2, 2, 2], 'outer_gen_pows': [0, 0, 0], 'outer_gens': [[5, 6], [1, 42], [37, 6]], 'outer_group': '8.5', 'outer_hash': 5, 'outer_nilpotent': True, 'outer_order': 8, 'outer_permdeg': 6, 'outer_perms': [1, 6, 120], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'C_2^3', 'pc_rank': 2, 'perfect': False, 'permutation_degree': 10, 'pgroup': 0, 'primary_abelian_invariants': [2, 4, 3], 'quasisimple': False, 'rank': 2, 'rational': False, 'rational_characters_known': True, 'ratrep_stats': [[1, 4], [2, 8], [4, 5], [8, 1]], 'representations': {'PC': {'code': 1042831902776745, 'gens': [1, 3], 'pres': [5, -2, -3, -2, -2, -3, 10, 452, 42, 1203, 58, 1204]}, 'GLZ': {'b': 3, 'd': 6, 'gens': [125101739926298686, 41624330840588829]}, 'GLFp': {'d': 2, 'p': 13, 'gens': [182, 21974, 4396]}, 'Perm': {'d': 10, 'gens': [367921, 811440, 144, 367920, 3]}}, 'schur_multiplier': [2], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [2, 12], 'solvability_type': 6, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': True, 'sylow_subgroups_known': True, 'tex_name': 'S_3\\times C_{12}', 'transitive_degree': 24, 'wreath_data': None, 'wreath_product': False}
-
gps_groups • Show schema
Hide schema
{'Agroup': False, 'Zgroup': False, 'abelian': False, 'abelian_quotient': '24.15', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 2, 'aut_exponent': 12, 'aut_gen_orders': [2, 2, 2, 2, 2, 12], 'aut_gens': [[1, 2, 12], [1, 146, 12], [1, 2, 156], [1, 10, 12], [1, 2, 228], [1, 2, 204], [73, 98, 12]], 'aut_group': '384.20133', 'aut_hash': 20133, 'aut_nilpotency_class': -1, 'aut_nilpotent': False, 'aut_order': 384, 'aut_permdeg': 16, 'aut_perms': [6632296362304, 54215089944, 363289110, 66190896144, 11863030647033, 9698979190731], 'aut_phi_ratio': 4.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [2, 3, 2, 1], [2, 4, 1, 1], [2, 12, 1, 1], [3, 1, 2, 1], [3, 2, 1, 1], [3, 2, 2, 1], [4, 2, 1, 1], [4, 4, 1, 1], [4, 6, 1, 1], [4, 12, 1, 1], [6, 1, 2, 1], [6, 2, 1, 1], [6, 2, 2, 1], [6, 3, 4, 1], [6, 4, 2, 1], [6, 8, 1, 1], [6, 8, 2, 1], [6, 12, 2, 1], [8, 2, 2, 1], [8, 6, 2, 1], [12, 2, 2, 1], [12, 4, 1, 1], [12, 4, 2, 2], [12, 6, 2, 1], [12, 8, 1, 1], [12, 8, 2, 1], [12, 12, 2, 1], [24, 2, 4, 1], [24, 4, 2, 1], [24, 4, 4, 1], [24, 6, 4, 1]], 'aut_supersolvable': True, 'aut_tex': 'C_{12}:C_2^5', 'autcent_abelian': True, 'autcent_cyclic': False, 'autcent_exponent': 2, 'autcent_group': '16.14', 'autcent_hash': 14, 'autcent_nilpotent': True, 'autcent_order': 16, 'autcent_solvable': True, 'autcent_split': False, 'autcent_supersolvable': True, 'autcent_tex': 'C_2^4', 'autcentquo_abelian': False, 'autcentquo_cyclic': False, 'autcentquo_exponent': 6, 'autcentquo_group': '24.14', 'autcentquo_hash': 14, 'autcentquo_nilpotent': False, 'autcentquo_order': 24, 'autcentquo_solvable': True, 'autcentquo_supersolvable': True, 'autcentquo_tex': 'C_2\\times D_6', 'cc_stats': [[1, 1, 1], [2, 1, 1], [2, 3, 2], [2, 4, 1], [2, 12, 1], [3, 1, 2], [3, 2, 3], [4, 2, 1], [4, 4, 1], [4, 6, 1], [4, 12, 1], [6, 1, 2], [6, 2, 3], [6, 3, 4], [6, 4, 2], [6, 8, 3], [6, 12, 2], [8, 2, 2], [8, 6, 2], [12, 2, 2], [12, 4, 5], [12, 6, 2], [12, 8, 3], [12, 12, 2], [24, 2, 4], [24, 4, 6], [24, 6, 4]], 'center_label': '6.2', 'center_order': 6, 'central_product': True, 'central_quotient': '48.38', 'commutator_count': 1, 'commutator_label': '12.2', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1', '2.1', '2.1', '2.1', '2.1', '3.1', '3.1'], 'composition_length': 7, 'conjugacy_classes_known': True, 'counter': 684, 'cyclic': False, 'derived_length': 2, 'dihedral': False, 'direct_factorization': [['16.8', 1], ['3.1', 1], ['6.1', 1]], 'direct_product': True, 'div_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [2, 3, 1, 2], [2, 4, 1, 1], [2, 12, 1, 1], [3, 1, 2, 1], [3, 2, 1, 1], [3, 2, 2, 1], [4, 2, 1, 1], [4, 4, 1, 1], [4, 6, 1, 1], [4, 12, 1, 1], [6, 1, 2, 1], [6, 2, 1, 1], [6, 2, 2, 1], [6, 3, 2, 2], [6, 4, 2, 1], [6, 8, 1, 1], [6, 8, 2, 1], [6, 12, 2, 1], [8, 2, 2, 1], [8, 6, 2, 1], [12, 2, 2, 1], [12, 4, 1, 1], [12, 4, 2, 2], [12, 6, 2, 1], [12, 8, 1, 1], [12, 8, 2, 1], [12, 12, 2, 1], [24, 2, 4, 1], [24, 4, 2, 1], [24, 4, 4, 1], [24, 6, 4, 1]], 'element_repr_type': 'PC', 'elementary': 1, 'eulerian_function': 17472, 'exponent': 24, 'exponents_of_order': [5, 2], 'factors_of_aut_order': [2, 3], 'factors_of_order': [2, 3], 'faithful_reps': [[4, 0, 4]], 'familial': False, 'frattini_label': '4.1', 'frattini_quotient': '72.48', 'hash': 684, 'hyperelementary': 1, 'inner_abelian': False, 'inner_cyclic': False, 'inner_exponent': 12, 'inner_gen_orders': [2, 2, 12], 'inner_gens': [[1, 2, 228], [1, 2, 204], [73, 98, 12]], 'inner_hash': 38, 'inner_nilpotent': False, 'inner_order': 48, 'inner_split': True, 'inner_tex': 'S_3\\times D_4', 'inner_used': [1, 2, 3], 'irrC_degree': 4, 'irrQ_degree': 16, 'irrQ_dim': 16, 'irrR_degree': 8, 'irrep_stats': [[1, 24], [2, 30], [4, 9]], 'label': '288.684', 'linC_count': 132, 'linC_degree': 4, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': 8, 'linQ_degree_count': 72, 'linQ_dim': 8, 'linQ_dim_count': 72, 'linR_count': 16, 'linR_degree': 6, 'maximal_subgroups_known': True, 'metabelian': True, 'metacyclic': False, 'monomial': True, 'name': 'C24:D6', 'ngens': 7, 'nilpotency_class': -1, 'nilpotent': False, 'normal_counts': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 34, 'number_characteristic_subgroups': 54, 'number_conjugacy_classes': 63, 'number_divisions': 36, 'number_normal_subgroups': 58, 'number_subgroup_autclasses': 138, 'number_subgroup_classes': 146, 'number_subgroups': 402, 'old_label': None, 'order': 288, 'order_factorization_type': 32, 'order_stats': [[1, 1], [2, 23], [3, 8], [4, 24], [6, 76], [8, 16], [12, 84], [24, 56]], 'outer_abelian': True, 'outer_cyclic': False, 'outer_equivalence': False, 'outer_exponent': 2, 'outer_gen_orders': [2, 2, 2], 'outer_gen_pows': [0, 0, 0], 'outer_gens': [[1, 10, 12], [1, 2, 156], [1, 146, 12]], 'outer_group': '8.5', 'outer_hash': 5, 'outer_nilpotent': True, 'outer_order': 8, 'outer_permdeg': 6, 'outer_perms': [1, 6, 120], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'C_2^3', 'pc_rank': 3, 'perfect': False, 'permutation_degree': 14, 'pgroup': 0, 'primary_abelian_invariants': [2, 2, 2, 3], 'quasisimple': False, 'rank': 3, 'rational': False, 'rational_characters_known': True, 'ratrep_stats': [[1, 8], [2, 14], [4, 9], [8, 4], [16, 1]], 'representations': {'PC': {'code': 67913400484763461094497878616939921, 'gens': [1, 2, 4], 'pres': [7, -2, -2, -3, -2, -2, -2, -3, 1008, 36, 6387, 2866, 80, 5884, 2111, 102, 5052, 124, 4717]}, 'GLZN': {'d': 2, 'p': 18, 'gens': [99161, 40831, 5849, 67003, 96397, 57321, 5995]}, 'Perm': {'d': 14, 'gens': [6314117329, 572, 12460, 13971242880, 18523, 5329, 20122058880]}}, 'schur_multiplier': [2, 2], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [2, 2, 6], 'solvability_type': 7, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': True, 'sylow_subgroups_known': True, 'tex_name': 'C_{24}:D_6', 'transitive_degree': 48, 'wreath_data': None, 'wreath_product': False}
-
gps_groups • Show schema
Hide schema
{'Agroup': True, 'Zgroup': False, 'abelian': True, 'abelian_quotient': '4.2', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 2, 'aut_exponent': 6, 'aut_gen_orders': [2, 3], 'aut_gens': [[1, 2], [3, 2], [2, 3]], 'aut_group': '6.1', 'aut_hash': 1, 'aut_nilpotency_class': -1, 'aut_nilpotent': False, 'aut_order': 6, 'aut_permdeg': 3, 'aut_perms': [1, 4], 'aut_phi_ratio': 3.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 1, 3, 1]], 'aut_supersolvable': True, 'aut_tex': 'S_3', 'autcent_abelian': False, 'autcent_cyclic': False, 'autcent_exponent': 6, 'autcent_group': '6.1', 'autcent_hash': 1, 'autcent_nilpotent': False, 'autcent_order': 6, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': True, 'autcent_tex': 'S_3', 'autcentquo_abelian': True, 'autcentquo_cyclic': True, 'autcentquo_exponent': 1, 'autcentquo_group': '1.1', 'autcentquo_hash': 1, 'autcentquo_nilpotent': True, 'autcentquo_order': 1, 'autcentquo_solvable': True, 'autcentquo_supersolvable': True, 'autcentquo_tex': 'C_1', 'cc_stats': [[1, 1, 1], [2, 1, 3]], 'center_label': '4.2', 'center_order': 4, 'central_product': True, 'central_quotient': '1.1', 'commutator_count': 0, 'commutator_label': '1.1', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1', '2.1'], 'composition_length': 2, 'conjugacy_classes_known': True, 'counter': 2, 'cyclic': False, 'derived_length': 1, 'dihedral': True, 'direct_factorization': [['2.1', 2]], 'direct_product': True, 'div_stats': [[1, 1, 1, 1], [2, 1, 1, 3]], 'element_repr_type': 'PC', 'elementary': 2, 'eulerian_function': 1, 'exponent': 2, 'exponents_of_order': [2], 'factors_of_aut_order': [2, 3], 'factors_of_order': [2], 'faithful_reps': [], 'familial': True, 'frattini_label': '1.1', 'frattini_quotient': '4.2', 'hash': 2, 'hyperelementary': 2, 'inner_abelian': True, 'inner_cyclic': True, 'inner_exponent': 1, 'inner_gen_orders': [1, 1], 'inner_gens': [[1, 2], [1, 2]], 'inner_hash': 1, 'inner_nilpotent': True, 'inner_order': 1, 'inner_split': True, 'inner_tex': 'C_1', 'inner_used': [], 'irrC_degree': -1, 'irrQ_degree': -1, 'irrQ_dim': -1, 'irrR_degree': -1, 'irrep_stats': [[1, 4]], 'label': '4.2', 'linC_count': 3, 'linC_degree': 2, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': 2, 'linQ_degree_count': 3, 'linQ_dim': 2, 'linQ_dim_count': 3, 'linR_count': 3, 'linR_degree': 2, 'maximal_subgroups_known': True, 'metabelian': True, 'metacyclic': True, 'monomial': True, 'name': 'C2^2', 'ngens': 2, 'nilpotency_class': 1, 'nilpotent': True, 'normal_counts': [0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 2, 'number_characteristic_subgroups': 2, 'number_conjugacy_classes': 4, 'number_divisions': 4, 'number_normal_subgroups': 5, 'number_subgroup_autclasses': 3, 'number_subgroup_classes': 5, 'number_subgroups': 5, 'old_label': None, 'order': 4, 'order_factorization_type': 2, 'order_stats': [[1, 1], [2, 3]], 'outer_abelian': False, 'outer_cyclic': False, 'outer_equivalence': False, 'outer_exponent': 6, 'outer_gen_orders': [2, 3], 'outer_gen_pows': [0, 0], 'outer_gens': [[3, 2], [2, 3]], 'outer_group': '6.1', 'outer_hash': 1, 'outer_nilpotent': False, 'outer_order': 6, 'outer_permdeg': 3, 'outer_perms': [1, 4], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'S_3', 'pc_rank': 2, 'perfect': False, 'permutation_degree': 4, 'pgroup': 2, 'primary_abelian_invariants': [2, 2], 'quasisimple': False, 'rank': 2, 'rational': True, 'rational_characters_known': True, 'ratrep_stats': [[1, 4]], 'representations': {'PC': {'code': 0, 'gens': [1, 2], 'pres': [2, -2, 2]}, 'GLZ': {'b': 3, 'd': 2, 'gens': [14, 12]}, 'GLFp': {'d': 2, 'p': 3, 'gens': [55, 56]}, 'Perm': {'d': 4, 'gens': [6, 1]}}, 'schur_multiplier': [2], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [2, 2], 'solvability_type': 1, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': True, 'sylow_subgroups_known': True, 'tex_name': 'C_2^2', 'transitive_degree': 4, 'wreath_data': None, 'wreath_product': False}