-
gps_subgroup_search • Show schema
Hide schema
{'Agroup': True, 'Zgroup': True, 'abelian': True, 'ambient': '26620.g', 'ambient_counter': 7, 'ambient_order': 26620, 'ambient_tex': 'C_{11}\\times C_{22}:F_{11}', 'central': True, 'central_factor': False, 'centralizer_order': 26620, 'characteristic': True, 'core_order': 11, 'counter': 53, 'cyclic': True, 'direct': True, 'hall': 0, 'label': '26620.g.2420.a1', 'maximal': False, 'maximal_normal': False, 'metabelian': True, 'metacyclic': True, 'minimal': True, 'minimal_normal': True, 'nilpotent': True, 'normal': True, 'old_label': '2420.a1', 'outer_equivalence': True, 'perfect': False, 'proper': True, 'quotient': '2420.r', 'quotient_Agroup': True, 'quotient_abelian': False, 'quotient_cyclic': False, 'quotient_hash': 2157492669750725759, 'quotient_metabelian': True, 'quotient_nilpotent': False, 'quotient_order': 2420, 'quotient_simple': False, 'quotient_solvable': True, 'quotient_supersolvable': True, 'quotient_tex': 'C_{22}:F_{11}', 'simple': True, 'solvable': True, 'special_labels': [], 'split': True, 'standard_generators': False, 'stem': False, 'subgroup': '11.1', 'subgroup_hash': 1, 'subgroup_order': 11, 'subgroup_tex': 'C_{11}', 'supersolvable': True, 'sylow': 0}
-
gps_subgroup_data • Show schema
Hide schema
{'ambient': '26620.g', 'aut_centralizer_order': None, 'aut_label': '2420.a1', 'aut_quo_index': None, 'aut_stab_index': None, 'aut_weyl_group': None, 'aut_weyl_index': None, 'centralizer': '1.a1', 'complements': ['11.a1'], 'conjugacy_class_count': 1, 'contained_in': ['220.a1', '220.c1', '484.a1', '1210.a1', '1210.f1'], 'contains': ['26620.a1'], 'core': '2420.a1', 'coset_action_label': None, 'count': 1, 'diagramx': [5501, 1987, 5248, 1682], 'generators': [10], 'label': '26620.g.2420.a1', 'mobius_quo': -1, 'mobius_sub': -242, 'normal_closure': '2420.a1', 'normal_contained_in': ['220.a1', '1210.a1'], 'normal_contains': ['26620.a1'], 'normalizer': '1.a1', 'old_label': '2420.a1', 'projective_image': '2420.r', 'quotient_action_image': '1.1', 'quotient_action_kernel': '2420.r', 'quotient_action_kernel_order': 2420, 'quotient_fusion': None, 'short_label': '2420.a1', 'subgroup_fusion': None, 'weyl_group': '1.1'}
-
gps_groups • Show schema
Hide schema
{'Agroup': True, 'Zgroup': True, 'abelian': True, 'abelian_quotient': '11.1', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': True, 'aut_cyclic': True, 'aut_derived_length': 1, 'aut_exponent': 10, 'aut_gen_orders': [10], 'aut_gens': [[1], [2]], 'aut_group': '10.2', 'aut_hash': 2, 'aut_nilpotency_class': 1, 'aut_nilpotent': True, 'aut_order': 10, 'aut_permdeg': 7, 'aut_perms': [753], 'aut_phi_ratio': 1.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [11, 1, 10, 1]], 'aut_supersolvable': True, 'aut_tex': 'C_{10}', 'autcent_abelian': True, 'autcent_cyclic': True, 'autcent_exponent': 10, 'autcent_group': '10.2', 'autcent_hash': 2, 'autcent_nilpotent': True, 'autcent_order': 10, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': True, 'autcent_tex': 'C_{10}', 'autcentquo_abelian': True, 'autcentquo_cyclic': True, 'autcentquo_exponent': 1, 'autcentquo_group': '1.1', 'autcentquo_hash': 1, 'autcentquo_nilpotent': True, 'autcentquo_order': 1, 'autcentquo_solvable': True, 'autcentquo_supersolvable': True, 'autcentquo_tex': 'C_1', 'cc_stats': [[1, 1, 1], [11, 1, 10]], 'center_label': '11.1', 'center_order': 11, 'central_product': False, 'central_quotient': '1.1', 'commutator_count': 0, 'commutator_label': '1.1', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['11.1'], 'composition_length': 1, 'conjugacy_classes_known': True, 'counter': 1, 'cyclic': True, 'derived_length': 1, 'dihedral': False, 'direct_factorization': [], 'direct_product': False, 'div_stats': [[1, 1, 1, 1], [11, 1, 10, 1]], 'element_repr_type': 'PC', 'elementary': 11, 'eulerian_function': 1, 'exponent': 11, 'exponents_of_order': [1], 'factors_of_aut_order': [2, 5], 'factors_of_order': [11], 'faithful_reps': [[1, 0, 10]], 'familial': True, 'frattini_label': '1.1', 'frattini_quotient': '11.1', 'hash': 1, 'hyperelementary': 11, 'inner_abelian': True, 'inner_cyclic': True, 'inner_exponent': 1, 'inner_gen_orders': [1], 'inner_gens': [[1]], 'inner_hash': 1, 'inner_nilpotent': True, 'inner_order': 1, 'inner_split': True, 'inner_tex': 'C_1', 'inner_used': [], 'irrC_degree': 1, 'irrQ_degree': 10, 'irrQ_dim': 10, 'irrR_degree': 2, 'irrep_stats': [[1, 11]], 'label': '11.1', 'linC_count': 10, 'linC_degree': 1, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': 10, 'linQ_degree_count': 1, 'linQ_dim': 10, 'linQ_dim_count': 1, 'linR_count': 5, 'linR_degree': 2, 'maximal_subgroups_known': True, 'metabelian': True, 'metacyclic': True, 'monomial': True, 'name': 'C11', 'ngens': 1, 'nilpotency_class': 1, 'nilpotent': True, 'normal_counts': [0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 2, 'number_characteristic_subgroups': 2, 'number_conjugacy_classes': 11, 'number_divisions': 2, 'number_normal_subgroups': 2, 'number_subgroup_autclasses': 2, 'number_subgroup_classes': 2, 'number_subgroups': 2, 'old_label': None, 'order': 11, 'order_factorization_type': 1, 'order_stats': [[1, 1], [11, 10]], 'outer_abelian': True, 'outer_cyclic': True, 'outer_equivalence': False, 'outer_exponent': 10, 'outer_gen_orders': [10], 'outer_gen_pows': [0], 'outer_gens': [[2]], 'outer_group': '10.2', 'outer_hash': 2, 'outer_nilpotent': True, 'outer_order': 10, 'outer_permdeg': 7, 'outer_perms': [753], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'C_{10}', 'pc_rank': 1, 'perfect': False, 'permutation_degree': 11, 'pgroup': 11, 'primary_abelian_invariants': [11], 'quasisimple': False, 'rank': 1, 'rational': False, 'rational_characters_known': True, 'ratrep_stats': [[1, 1], [10, 1]], 'representations': {'PC': {'code': 0, 'gens': [1], 'pres': [1, -11]}, 'Lie': [{'d': 1, 'q': 11, 'gens': [4037913], 'family': 'ASigmaL'}], 'GLFp': {'d': 2, 'p': 11, 'gens': [1343]}, 'Perm': {'d': 11, 'gens': [36288000]}}, 'schur_multiplier': [], 'semidirect_product': False, 'simple': True, 'smith_abelian_invariants': [11], 'solvability_type': 0, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': True, 'sylow_subgroups_known': True, 'tex_name': 'C_{11}', 'transitive_degree': 11, 'wreath_data': None, 'wreath_product': False}
-
gps_groups • Show schema
Hide schema
{'Agroup': True, 'Zgroup': False, 'abelian': False, 'abelian_quotient': '220.15', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 3, 'aut_exponent': 220, 'aut_gen_orders': [10, 20, 10, 10, 10], 'aut_gens': [[1, 110, 1210], [9401, 12540, 15730], [15329, 5610, 18480], [16079, 4950, 25630], [7589, 5060, 11330], [9501, 550, 6050]], 'aut_group': None, 'aut_hash': 7721490425071638488, 'aut_nilpotency_class': -1, 'aut_nilpotent': False, 'aut_order': 484000, 'aut_permdeg': 494, 'aut_perms': [74863886224563671360667300582030666371693745809756661612486466921987074486683480149210769126244263564751575994060363881277380281144727687667355543235337116749242801614490180163070218882249776024172881932292861318006632999649072758574366739265574823302715519937254131283205920319715070540485209369435249324873253319876173359060665783293142431614466886084506416199151675879595357132969342826431829969333417319687482476389211414887407404346215329160660896290125864324516941666532068365747051734370465709453977691679846353989452237718880661045766225396615346428483744687278254173574541734370265616188445507430051176816072423858141691976770220091671867489979718586537002039269505236933950892842484706388620684022747385778928525039693250367144936706527534074047204390145654187917980307649615028352075622973500151135633968703152502437071624337462779144323637228600632041464000739343242267662115048820968202298536938677800574945481818485976946242813132666922401290011349008551849539654039643760162007104554066118614832105633144114600669663774968693807550885287272131940447028310060006378659364822726089901895822646517354150786, 14349600182993001088974500254979406704608455299527524914582350176016314000210262524838768764657080270470475940233558970519580500036353933839857086484732288778144560992020911034361033583751108824585384514956352134548130864915014614789271081825782517180715614918447086916909169224296316364352509177044608276039758089034104372322413681382807940672996795538280766592932546341182199381745189988743109332825764348487295017564018929257234680707824751465651169690642582351361733015905477248422836644813119380421167286078908410550105604402657048353868943622623651873218231525781027074332321920354900043811870177692106281361804028789108964338108500027975205050471513781526764078517619890541378956562132922962263076555166068188868447213265998727807178039636401799629413607345533321423467787973863388915033838850186021602797941703543372286840425666252311409337486796284381421122193583651015541057595506386000196055554074640613182687447053326431694016932111025236441079087649316071628104177450507464258586462687082539078445692369287486880649756768996026559817017662503445346244352713083325770831397265380991053755247885760505571436, 65278051705402642564648958947062173689352107519119942668631703097668396120463296556498200756679758099540871697878898993851888683415617082363666879879309738847378757581300727343198945740013201378781126983212001850706017962277766043611296836914290528307057002838343025259752017279914248376717796244667293132117700689003475811593652479767740704642948863455251801696409620336520504690339673035323085079842177554257778330333621280718591722550208464229750217794643608937440255179398521577592950998425814470748854175872319932331103045025093242015482686859795321685851632708221346248044791850360403488610321310738281428922782692290877362359238259197825639495349522450145836080925503666784470830482500480376697184666943706817470852885876404196264315534189733112655182970314135378966779118555588763890635830660061302516682966792475054722230263924347398833628563339751800325537040069947957477000398401601368708643369423847791277479450140648393113681408330660188552735320901508797388261345411129180435216369927827960343206038394071037338735390213930420627625160057441716902275649618871857240395193565590023689123247257735582734507, 71093456008790992067585005823742600020091610896659362442151348621398658635455197201853822099895372345647673089281199742675801095797615547997696969678103381380490532958847772322714968855443129888479392358611457673775322581642458129544084734283530324263429612072765249506078490370547255374141926126140805201312150502618341286343850572614820663561192621633746455002278611257086924439619473798770931916861144985100498074999588286991987115541078612354197827333878351185683524646300730545858993104758485820155934034228736874915097082768868483509481982964251796394183836847933401399153815847894020326335909275626073483438728443774852612929912568037300977555304580591586861044321242911059537941091136682175686286191153862099422340246055616128779384836404686823480557894263566589024746232746632467152622023217770358390206177810595188405310327219354237124061088779479907482307825959107610512865960818593695919316119858116796714061670602686313518004878782320283362265866639320960607065815768799669239761520106464597800486161442514779647948505247014031348367056074654178467416722493400614226370747945745010374984858552361936233427, 54489267292288795637652511080829707874285844192892412279162086723934980484247711504979919187945520066556656462276914061347372693065228918786625267026239179582676802401084844170600984353863825828980416679234600837367822439088871093936431313800021903932544777469339995168403070704678410902589604706891599365069508491558390010412482044888100551693405125352298343507290758998396919127263018957070890994935527390131571843008670011611223614247346718630945887383662086024724642757141293350159665622852478482302923535774402335979291038647382521532319194795278833250169750991895238941977772374716744430109208412974298870783402046126526449972981151597914682196987717391086675294987696104316750617538459114058221087402734814480186645107372044242299781100732296456492643704214776009773033671393635993040351599402741671056278985775874212481927578632606503127907968009772422450294742492988174013923255709082920198703106204531417533488705639639384770949695001909132122539839424705170328740312097762809378967336938297732351790561277908250505048154079749159219758014667027355757371986665389229339453429858017318875735596759297869366390], 'aut_phi_ratio': 50.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [2, 121, 2, 1], [5, 121, 2, 2], [10, 121, 2, 2], [10, 121, 4, 2], [11, 1, 10, 1], [11, 10, 2, 1], [11, 10, 10, 1], [11, 10, 20, 1], [11, 10, 100, 1], [22, 1, 10, 1], [22, 10, 2, 1], [22, 10, 10, 1], [22, 10, 20, 1], [22, 10, 100, 1], [22, 121, 20, 1], [55, 121, 20, 2], [110, 121, 20, 2], [110, 121, 40, 2]], 'aut_supersolvable': False, 'aut_tex': 'C_{11}^2.C_5.C_{10}^2.C_2^3', 'autcent_abelian': True, 'autcent_cyclic': False, 'autcent_exponent': 10, 'autcent_group': '20.5', 'autcent_hash': 5, 'autcent_nilpotent': True, 'autcent_order': 20, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': True, 'autcent_tex': 'C_2\\times C_{10}', 'autcentquo_abelian': False, 'autcentquo_cyclic': False, 'autcentquo_exponent': 220, 'autcentquo_group': '24200.bg', 'autcentquo_hash': 3957277396302200749, 'autcentquo_nilpotent': False, 'autcentquo_order': 24200, 'autcentquo_solvable': True, 'autcentquo_supersolvable': False, 'autcentquo_tex': 'F_{11}\\wr C_2', 'cc_stats': [[1, 1, 1], [2, 1, 1], [2, 121, 2], [5, 121, 4], [10, 121, 12], [11, 1, 10], [11, 10, 132], [22, 1, 10], [22, 10, 132], [22, 121, 20], [55, 121, 40], [110, 121, 120]], 'center_label': '22.2', 'center_order': 22, 'central_product': True, 'central_quotient': '1210.10', 'commutator_count': 1, 'commutator_label': '121.2', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1', '2.1', '5.1', '11.1', '11.1', '11.1'], 'composition_length': 6, 'conjugacy_classes_known': True, 'counter': 7, 'cyclic': False, 'derived_length': 2, 'dihedral': False, 'direct_factorization': [['11.1', 1], ['1210.10', 1], ['2.1', 1]], 'direct_product': True, 'div_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [2, 121, 1, 2], [5, 121, 4, 1], [10, 121, 4, 3], [11, 1, 10, 1], [11, 10, 1, 2], [11, 10, 5, 2], [11, 10, 10, 12], [22, 1, 10, 1], [22, 10, 1, 2], [22, 10, 5, 2], [22, 10, 10, 12], [22, 121, 10, 2], [55, 121, 40, 1], [110, 121, 40, 3]], 'element_repr_type': 'PC', 'elementary': 1, 'eulerian_function': 432, 'exponent': 110, 'exponents_of_order': [3, 2, 1], 'factors_of_aut_order': [2, 5, 11], 'factors_of_order': [2, 5, 11], 'faithful_reps': [[10, 0, 100]], 'familial': False, 'frattini_label': '1.1', 'frattini_quotient': '26620.g', 'hash': 2427916003340982652, 'hyperelementary': 1, 'inner_abelian': False, 'inner_cyclic': False, 'inner_exponent': 110, 'inner_gen_orders': [10, 11, 11], 'inner_gens': [[1, 2640, 20570], [25301, 110, 1210], [7261, 110, 1210]], 'inner_hash': 10, 'inner_nilpotent': False, 'inner_order': 1210, 'inner_split': False, 'inner_tex': 'C_{11}:F_{11}', 'inner_used': [1, 2], 'irrC_degree': 10, 'irrQ_degree': 100, 'irrQ_dim': 100, 'irrR_degree': 20, 'irrep_stats': [[1, 220], [10, 264]], 'label': '26620.g', 'linC_count': None, 'linC_degree': None, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': None, 'linQ_degree_count': None, 'linQ_dim': None, 'linQ_dim_count': None, 'linR_count': None, 'linR_degree': None, 'maximal_subgroups_known': True, 'metabelian': True, 'metacyclic': False, 'monomial': True, 'name': 'C11*C22:F11', 'ngens': 6, 'nilpotency_class': -1, 'nilpotent': False, 'normal_counts': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 26, 'number_characteristic_subgroups': 16, 'number_conjugacy_classes': 484, 'number_divisions': 48, 'number_normal_subgroups': 32, 'number_subgroup_autclasses': 64, 'number_subgroup_classes': 148, 'number_subgroups': 3500, 'old_label': None, 'order': 26620, 'order_factorization_type': 321, 'order_stats': [[1, 1], [2, 243], [5, 484], [10, 1452], [11, 1330], [22, 3750], [55, 4840], [110, 14520]], 'outer_abelian': True, 'outer_cyclic': False, 'outer_equivalence': True, 'outer_exponent': 10, 'outer_gen_orders': [2, 2, 10, 10], 'outer_gen_pows': [0, 5, 0, 0], 'outer_gens': [[21, 15620, 1210], [89, 25080, 4180], [13411, 22880, 15730], [1, 19580, 1210]], 'outer_group': '400.221', 'outer_hash': 221, 'outer_nilpotent': True, 'outer_order': 400, 'outer_permdeg': 18, 'outer_perms': [6227020800, 39916800, 355687428504960, 1307674368037], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'C_2^2\\times C_{10}^2', 'pc_rank': 3, 'perfect': False, 'permutation_degree': 35, 'pgroup': 0, 'primary_abelian_invariants': [2, 2, 5, 11], 'quasisimple': False, 'rank': 2, 'rational': False, 'rational_characters_known': True, 'ratrep_stats': [[1, 4], [4, 4], [10, 8], [40, 4], [50, 4], [100, 24]], 'representations': {'PC': {'code': '528813456519975220209744021034204504538003039909', 'gens': [1, 4, 5], 'pres': [6, -2, -5, -11, -11, -2, -11, 12, 67, 63363, 237609, 617104, 54460, 88, 522725, 130691]}, 'GLFp': {'d': 4, 'p': 11, 'gens': [25960483174700722, 18721992341619836, 20595883671717277, 1754382938723032, 32182222080390795, 41772741070013040]}, 'Perm': {'d': 35, 'gens': [3660370560, 1, 1528272406707723354336080590416745728000, 1182569150567880324329024375814087936000, 70824919749089501245204251625763635200, 296599418055876144539989709234376192001]}}, 'schur_multiplier': [22], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [2, 110], 'solvability_type': 7, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': True, 'sylow_subgroups_known': True, 'tex_name': 'C_{11}\\times C_{22}:F_{11}', 'transitive_degree': 220, 'wreath_data': None, 'wreath_product': False}
-
gps_groups • Show schema
Hide schema
{'Agroup': True, 'Zgroup': False, 'abelian': False, 'abelian_quotient': '20.5', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 3, 'aut_exponent': 220, 'aut_gen_orders': [20, 10, 22, 22], 'aut_gens': [[1, 10, 110], [9, 1100, 1300], [61, 90, 1870], [711, 100, 110], [1261, 10, 110]], 'aut_group': '48400.l', 'aut_hash': 3341594860267235989, 'aut_nilpotency_class': -1, 'aut_nilpotent': False, 'aut_order': 48400, 'aut_permdeg': 484, 'aut_perms': [62520099086582945224664738411832045921631117340072713023410331171451972391305739211927452306870660446505355277483462481638849072450791982278665724617547577985188973685207453616552422435613290706898056489276060654705207441225118335366155093990023351107720108830179793079403782633405937515252324422315515051993274874334259286815799887682190875754118486036801038965379387627182866938537985448137043401077991826199740356650900961704965721815086264026973261117586885883894924067755952848981710206357373228113876312806188729344189538347183903010580693628471111080838724161173110901441635553845356263867970752726790360077580871148453732795491814700464064451083894753680006832863039516835323428371613295635435776152500722970780515996679588658419319448209866277785878523392508065373425886450708852410851476312071009548385808084219612877246107598223646888730339821707356951711229810819277908248078950506376099671964994962613003683753131828457740922488813271407757387583519022553323789169707539593038734684905040691854057689541563560365655040076915956105658092613633028216000747973252093433099335100659, 58545762571423547493642474770586878489741176112508464630106739859275516496440451824418444435402875690761132381321487802980209733820092314970817251013309579520563078738464174764269820279314568499290010398034252246201749982697887326979359242860159017742200822275079795235220767051772439307441980325581610170994407548884819747499206013703618110770615058455094553958256844772872503148579857899798250773744320896598568631763544691891878322153731328497390823586582772451727968981641537366627130433469368066529568018918325606030140033450938351742121699170139271692190461919539847973954750627381140813295310842518061334767923344638147827502127581102411203141604031799092090295924793096714300606322605777227781378908440888512833662771253789472692817098361617198201294671907529481662465305716534842058541990595098981773776763526513824144474834988858919414187983634309103165571421134040963316480983043092108907227359518177615237757210921922288667927147768502323048557379319753364009978489340516087230624031420203616258287880952416357042971210815433410579915776305367425115798565739799486963644608321683, 9525733051992548275726466967551101922846700992630997132956032472406050691238973022609770540699387046772386910188520664113734949300276573237224030396747849716444124420601654335021460402631730379142469751309832822511090363840815658714011058338926325861427001926824964120929965164958621681730837036595391761939290846226662845701093299884789272999789743336099575548014998211184261256450602327407555218128147029491529630367320660524985851709325080362628104375941402453611939117794707961038730113299902629573747581766850631135869439650263414536455643206787654314900917137557077488728597954972006828147024625763952842642004273312945926068392890902719711197549172270627022307511492070329149852439048950454776132969344246556911291227072078718326352704958971552418842272038549621113356092027078594309041709234482359809571257942497113410850164717906815868663279755721092353678481804051155043683461509349039482686572267780074409575615481338415254929083515293798625544261505312653651034607263882152342620633470169409918114799286404193036742488946555644833502919551624106032038220003715904389434529904874, 28705869740709713601502419771555517175209060056855865138982252546225426857126412797374400386111640014908661469506672377644342365016029740267044935806253593951467195724579028752119686914501787122740342993575568015467602992044541292931377748802854147457693347777941426352935072154453363635486771594311376534690396034896892748492358738743446896634998645116259032829941678192100979313886372089138966580604083760739658969940510185809298276351481807222579766109291079506293368058040640119536055163380740908980563622198035824245414246027473400446036629486015757327722468666661148452620440568915510783905467586432966033419413024569418170366620769107080880174281057816393190441391840966537364225114760469963479339529149321792305960291369776381038805091233445785586446422721240125565506588636864611734333581444734097434929933425294351647924769301622076969461916245867838631099410430309377407897308997382203049361860495513873069912804883428533917834026738696333937089198782077551651230678488937579413390779901808255211325410658972596831291640588391911876521088135367477666646538549384283956452721640754], 'aut_phi_ratio': 55.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [2, 121, 2, 1], [5, 121, 2, 2], [10, 121, 2, 2], [10, 121, 4, 2], [11, 10, 2, 1], [11, 10, 10, 1], [22, 10, 2, 1], [22, 10, 10, 1]], 'aut_supersolvable': False, 'aut_tex': 'F_{11}^2:C_2^2', 'autcent_abelian': True, 'autcent_cyclic': True, 'autcent_exponent': 2, 'autcent_group': '2.1', 'autcent_hash': 1, 'autcent_nilpotent': True, 'autcent_order': 2, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': True, 'autcent_tex': 'C_2', 'autcentquo_abelian': False, 'autcentquo_cyclic': False, 'autcentquo_exponent': 220, 'autcentquo_group': '24200.bg', 'autcentquo_hash': 3957277396302200749, 'autcentquo_nilpotent': False, 'autcentquo_order': 24200, 'autcentquo_solvable': True, 'autcentquo_supersolvable': False, 'autcentquo_tex': 'F_{11}\\wr C_2', 'cc_stats': [[1, 1, 1], [2, 1, 1], [2, 121, 2], [5, 121, 4], [10, 121, 12], [11, 10, 12], [22, 10, 12]], 'center_label': '2.1', 'center_order': 2, 'central_product': True, 'central_quotient': '1210.10', 'commutator_count': 1, 'commutator_label': '121.2', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1', '2.1', '5.1', '11.1', '11.1'], 'composition_length': 5, 'conjugacy_classes_known': True, 'counter': 18, 'cyclic': False, 'derived_length': 2, 'dihedral': False, 'direct_factorization': [['1210.10', 1], ['2.1', 1]], 'direct_product': True, 'div_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [2, 121, 1, 2], [5, 121, 4, 1], [10, 121, 4, 3], [11, 10, 1, 2], [11, 10, 5, 2], [22, 10, 1, 2], [22, 10, 5, 2]], 'element_repr_type': 'PC', 'elementary': 1, 'eulerian_function': 36, 'exponent': 110, 'exponents_of_order': [2, 2, 1], 'factors_of_aut_order': [2, 5, 11], 'factors_of_order': [2, 5, 11], 'faithful_reps': [[10, 1, 10]], 'familial': False, 'frattini_label': '1.1', 'frattini_quotient': '2420.r', 'hash': 2157492669750725759, 'hyperelementary': 1, 'inner_abelian': False, 'inner_cyclic': False, 'inner_exponent': 110, 'inner_gen_orders': [10, 11, 11], 'inner_gens': [[1, 70, 2090], [51, 10, 110], [441, 10, 110]], 'inner_hash': 10, 'inner_nilpotent': False, 'inner_order': 1210, 'inner_split': False, 'inner_tex': 'C_{11}:F_{11}', 'inner_used': [1, 2, 3], 'irrC_degree': 10, 'irrQ_degree': 50, 'irrQ_dim': 50, 'irrR_degree': 10, 'irrep_stats': [[1, 20], [10, 24]], 'label': '2420.r', 'linC_count': 10, 'linC_degree': 10, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': 20, 'linQ_degree_count': 3, 'linQ_dim': 20, 'linQ_dim_count': 3, 'linR_count': 10, 'linR_degree': 10, 'maximal_subgroups_known': True, 'metabelian': True, 'metacyclic': False, 'monomial': True, 'name': 'C22:F11', 'ngens': 5, 'nilpotency_class': -1, 'nilpotent': False, 'normal_counts': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 13, 'number_characteristic_subgroups': 8, 'number_conjugacy_classes': 44, 'number_divisions': 16, 'number_normal_subgroups': 16, 'number_subgroup_autclasses': 28, 'number_subgroup_classes': 50, 'number_subgroups': 1510, 'old_label': None, 'order': 2420, 'order_factorization_type': 222, 'order_stats': [[1, 1], [2, 243], [5, 484], [10, 1452], [11, 120], [22, 120]], 'outer_abelian': True, 'outer_cyclic': False, 'outer_equivalence': False, 'outer_exponent': 10, 'outer_gen_orders': [2, 2, 10], 'outer_gen_pows': [0, 6, 0], 'outer_gens': [[9, 220, 1270], [1211, 20, 1870], [1, 20, 110]], 'outer_group': '40.14', 'outer_hash': 14, 'outer_nilpotent': True, 'outer_order': 40, 'outer_permdeg': 11, 'outer_perms': [3629520, 41040, 766], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'C_2^2\\times C_{10}', 'pc_rank': 3, 'perfect': False, 'permutation_degree': 24, 'pgroup': 0, 'primary_abelian_invariants': [2, 2, 5], 'quasisimple': False, 'rank': 2, 'rational': False, 'rational_characters_known': True, 'ratrep_stats': [[1, 4], [4, 4], [10, 4], [50, 4]], 'representations': {'PC': {'code': '6372473303491881090677902743303909', 'gens': [1, 3, 4], 'pres': [5, -2, -5, -11, -2, -11, 10, 1052, 382, 41803, 9908, 58, 44004, 24759]}, 'GLFp': {'d': 4, 'p': 11, 'gens': [13240838059471336, 13669369333096837, 20595883671717277, 32182222080390795, 41772741070013040]}, 'Perm': {'d': 24, 'gens': [479001600, 10540080640000325105282, 38777365, 262160289644134033152000, 1129232178557701308856]}}, 'schur_multiplier': [22], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [2, 10], 'solvability_type': 7, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': True, 'sylow_subgroups_known': True, 'tex_name': 'C_{22}:F_{11}', 'transitive_degree': 110, 'wreath_data': None, 'wreath_product': False}