- 
              gps_subgroup_search •   Show schema
  Hide schema
   
        
{'Agroup': False, 'Zgroup': False, 'abelian': False, 'ambient': '256.507', 'ambient_counter': 507, 'ambient_order': 256, 'ambient_tex': '(C_4\\times C_8).D_4', 'central': False, 'central_factor': False, 'centralizer_order': 2, 'characteristic': False, 'core_order': 8, 'counter': 22, 'cyclic': False, 'direct': None, 'hall': 0, 'label': '256.507.8.k1.a1', 'maximal': False, 'maximal_normal': False, 'metabelian': True, 'metacyclic': False, 'minimal': False, 'minimal_normal': False, 'nilpotent': True, 'normal': False, 'old_label': '8.k1.a1', 'outer_equivalence': False, 'perfect': False, 'proper': True, 'quotient': None, 'quotient_Agroup': None, 'quotient_abelian': None, 'quotient_cyclic': None, 'quotient_hash': None, 'quotient_metabelian': None, 'quotient_nilpotent': None, 'quotient_order': 8, 'quotient_simple': None, 'quotient_solvable': None, 'quotient_supersolvable': None, 'quotient_tex': None, 'simple': False, 'solvable': True, 'special_labels': [], 'split': None, 'standard_generators': False, 'stem': False, 'subgroup': '32.6', 'subgroup_hash': 6, 'subgroup_order': 32, 'subgroup_tex': 'C_2^3:C_4', 'supersolvable': True, 'sylow': 0}
           
      - 
              gps_subgroup_data •   Show schema
  Hide schema
   
        
{'ambient': '256.507', 'aut_centralizer_order': 4, 'aut_label': '8.k1', 'aut_quo_index': None, 'aut_stab_index': 4, 'aut_weyl_group': '64.138', 'aut_weyl_index': 16, 'centralizer': '128.a1.a1', 'complements': None, 'conjugacy_class_count': 1, 'contained_in': ['4.f1.a1'], 'contains': ['16.g1.a1', '16.i1.a1'], 'core': '32.a1.a1', 'coset_action_label': None, 'count': 4, 'diagramx': [6115, -1, 3116, -1, 6092, -1, 3127, -1], 'generators': [2, 80], 'label': '256.507.8.k1.a1', 'mobius_quo': None, 'mobius_sub': 0, 'normal_closure': '2.b1.a1', 'normal_contained_in': None, 'normal_contains': None, 'normalizer': '4.f1.a1', 'old_label': '8.k1.a1', 'projective_image': '128.134', 'quotient_action_image': None, 'quotient_action_kernel': None, 'quotient_action_kernel_order': None, 'quotient_fusion': None, 'short_label': '8.k1.a1', 'subgroup_fusion': None, 'weyl_group': '32.6'}
           
      - 
              gps_groups •   Show schema
  Hide schema
   
        
{'Agroup': False, 'Zgroup': False, 'abelian': False, 'abelian_quotient': '8.2', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 2, 'aut_exponent': 4, 'aut_gen_orders': [2, 2, 2, 2, 2, 2], 'aut_gens': [[1, 4, 8], [19, 20, 8], [19, 4, 28], [27, 4, 12], [1, 4, 24], [5, 4, 24], [17, 4, 8]], 'aut_group': '64.138', 'aut_hash': 138, 'aut_nilpotency_class': 3, 'aut_nilpotent': True, 'aut_order': 64, 'aut_permdeg': 8, 'aut_perms': [3036, 111, 5612, 3758, 18619, 13798], 'aut_phi_ratio': 4.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [2, 2, 1, 1], [2, 2, 2, 1], [2, 4, 1, 1], [4, 4, 1, 1], [4, 4, 4, 1]], 'aut_supersolvable': True, 'aut_tex': 'C_2\\wr C_2^2', 'autcent_abelian': True, 'autcent_cyclic': False, 'autcent_exponent': 2, 'autcent_group': '4.2', 'autcent_hash': 2, 'autcent_nilpotent': True, 'autcent_order': 4, 'autcent_solvable': True, 'autcent_split': False, 'autcent_supersolvable': True, 'autcent_tex': 'C_2^2', 'autcentquo_abelian': False, 'autcentquo_cyclic': False, 'autcentquo_exponent': 4, 'autcentquo_group': '16.11', 'autcentquo_hash': 11, 'autcentquo_nilpotent': True, 'autcentquo_order': 16, 'autcentquo_solvable': True, 'autcentquo_supersolvable': True, 'autcentquo_tex': 'C_2\\times D_4', 'cc_stats': [[1, 1, 1], [2, 1, 1], [2, 2, 3], [2, 4, 1], [4, 4, 5]], 'center_label': '2.1', 'center_order': 2, 'central_product': False, 'central_quotient': '16.3', 'commutator_count': 1, 'commutator_label': '4.2', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1', '2.1', '2.1', '2.1', '2.1'], 'composition_length': 5, 'conjugacy_classes_known': True, 'counter': 6, 'cyclic': False, 'derived_length': 2, 'dihedral': False, 'direct_factorization': [], 'direct_product': False, 'div_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [2, 2, 1, 3], [2, 4, 1, 1], [4, 4, 1, 1], [4, 4, 2, 2]], 'element_repr_type': 'PC', 'elementary': 2, 'eulerian_function': 6, 'exponent': 4, 'exponents_of_order': [5], 'factors_of_aut_order': [2], 'factors_of_order': [2], 'faithful_reps': [[4, 1, 1]], 'familial': False, 'frattini_label': '8.5', 'frattini_quotient': '4.2', 'hash': 6, 'hyperelementary': 2, 'inner_abelian': False, 'inner_cyclic': False, 'inner_exponent': 4, 'inner_gen_orders': [4, 2, 2], 'inner_gens': [[1, 20, 12], [17, 4, 8], [5, 4, 8]], 'inner_hash': 3, 'inner_nilpotent': True, 'inner_order': 16, 'inner_split': True, 'inner_tex': 'C_2^2:C_4', 'inner_used': [1, 2, 3], 'irrC_degree': 4, 'irrQ_degree': 4, 'irrQ_dim': 4, 'irrR_degree': 4, 'irrep_stats': [[1, 8], [2, 2], [4, 1]], 'label': '32.6', 'linC_count': 1, 'linC_degree': 4, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': 4, 'linQ_degree_count': 1, 'linQ_dim': 4, 'linQ_dim_count': 1, 'linR_count': 1, 'linR_degree': 4, 'maximal_subgroups_known': True, 'metabelian': True, 'metacyclic': False, 'monomial': True, 'name': 'C2^3:C4', 'ngens': 2, 'nilpotency_class': 3, 'nilpotent': True, 'normal_counts': [0, 0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 7, 'number_characteristic_subgroups': 8, 'number_conjugacy_classes': 11, 'number_divisions': 9, 'number_normal_subgroups': 12, 'number_subgroup_autclasses': 20, 'number_subgroup_classes': 26, 'number_subgroups': 50, 'old_label': None, 'order': 32, 'order_factorization_type': 3, 'order_stats': [[1, 1], [2, 11], [4, 20]], 'outer_abelian': True, 'outer_cyclic': False, 'outer_equivalence': False, 'outer_exponent': 2, 'outer_gen_orders': [2, 2], 'outer_gen_pows': [0, 0], 'outer_gens': [[3, 20, 8], [27, 4, 12]], 'outer_group': '4.2', 'outer_hash': 2, 'outer_nilpotent': True, 'outer_order': 4, 'outer_permdeg': 4, 'outer_perms': [1, 6], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'C_2^2', 'pc_rank': 3, 'perfect': False, 'permutation_degree': 8, 'pgroup': 2, 'primary_abelian_invariants': [2, 4], 'quasisimple': False, 'rank': 2, 'rational': False, 'rational_characters_known': True, 'ratrep_stats': [[1, 4], [2, 4], [4, 1]], 'representations': {'PC': {'code': 19344786025, 'gens': [1, 3, 4], 'pres': [5, 2, 2, 2, 2, 2, 10, 302, 243, 248, 58]}, 'GLZ': {'b': 3, 'd': 4, 'gens': [20707527, 17252914]}, 'GLFp': {'d': 4, 'p': 2, 'gens': [33837, 18465, 18659, 27369, 34029]}, 'Perm': {'d': 8, 'gens': [23753, 23616, 11536, 11543, 5167]}}, 'schur_multiplier': [2, 2], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [2, 4], 'solvability_type': 4, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': True, 'sylow_subgroups_known': True, 'tex_name': 'C_2^3:C_4', 'transitive_degree': 8, 'wreath_data': None, 'wreath_product': False}
           
      - 
              gps_groups •   Show schema
  Hide schema
   
        
{'Agroup': False, 'Zgroup': False, 'abelian': False, 'abelian_quotient': '8.2', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 3, 'aut_exponent': 8, 'aut_gen_orders': [2, 2, 2, 2, 2, 2], 'aut_gens': [[1, 2, 8, 32], [125, 134, 200, 224], [17, 130, 8, 160], [145, 134, 24, 40], [17, 190, 8, 248], [129, 2, 8, 32], [237, 142, 88, 160]], 'aut_group': '1024.djj', 'aut_hash': 354343342895453903, 'aut_nilpotency_class': 5, 'aut_nilpotent': True, 'aut_order': 1024, 'aut_permdeg': 18, 'aut_perms': [1963543686, 774230404148766, 358739684439888, 3759350070633175, 774406205003527, 210941814595800], 'aut_phi_ratio': 8.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [2, 2, 1, 1], [2, 16, 1, 2], [4, 4, 1, 3], [4, 8, 2, 1], [4, 16, 1, 1], [4, 32, 2, 1], [8, 4, 2, 1], [8, 8, 1, 1], [8, 16, 2, 1], [16, 16, 4, 1]], 'aut_supersolvable': True, 'aut_tex': 'D_4^2.C_2^4', 'autcent_abelian': True, 'autcent_cyclic': False, 'autcent_exponent': 2, 'autcent_group': '4.2', 'autcent_hash': 2, 'autcent_nilpotent': True, 'autcent_order': 4, 'autcent_solvable': True, 'autcent_split': False, 'autcent_supersolvable': True, 'autcent_tex': 'C_2^2', 'autcentquo_abelian': False, 'autcentquo_cyclic': False, 'autcentquo_exponent': 8, 'autcentquo_group': '256.26531', 'autcentquo_hash': 26531, 'autcentquo_nilpotent': True, 'autcentquo_order': 256, 'autcentquo_solvable': True, 'autcentquo_supersolvable': True, 'autcentquo_tex': 'D_4^2:C_2^2', 'cc_stats': [[1, 1, 1], [2, 1, 1], [2, 2, 1], [2, 16, 2], [4, 4, 3], [4, 8, 2], [4, 16, 1], [4, 32, 2], [8, 4, 2], [8, 8, 1], [8, 16, 2], [16, 16, 4]], 'center_label': '2.1', 'center_order': 2, 'central_product': False, 'central_quotient': '128.134', 'commutator_count': 1, 'commutator_label': '32.35', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1', '2.1', '2.1', '2.1', '2.1', '2.1', '2.1', '2.1'], 'composition_length': 8, 'conjugacy_classes_known': True, 'counter': 507, 'cyclic': False, 'derived_length': 3, 'dihedral': False, 'direct_factorization': [], 'direct_product': False, 'div_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [2, 2, 1, 1], [2, 16, 1, 2], [4, 4, 1, 3], [4, 8, 2, 1], [4, 16, 1, 1], [4, 32, 2, 1], [8, 4, 2, 1], [8, 8, 1, 1], [8, 16, 2, 1], [16, 16, 4, 1]], 'element_repr_type': 'PC', 'elementary': 2, 'eulerian_function': 24, 'exponent': 16, 'exponents_of_order': [8], 'factors_of_aut_order': [2], 'factors_of_order': [2], 'faithful_reps': [[4, 0, 4], [8, 1, 1]], 'familial': False, 'frattini_label': '64.173', 'frattini_quotient': '4.2', 'hash': 507, 'hyperelementary': 2, 'inner_abelian': False, 'inner_cyclic': False, 'inner_exponent': 8, 'inner_gen_orders': [2, 4, 4, 4], 'inner_gens': [[1, 254, 8, 120], [125, 2, 88, 40], [1, 210, 8, 32], [201, 26, 8, 32]], 'inner_hash': 134, 'inner_nilpotent': True, 'inner_order': 128, 'inner_split': True, 'inner_tex': 'C_4^2.D_4', 'inner_used': [1, 2], 'irrC_degree': 4, 'irrQ_degree': 8, 'irrQ_dim': 8, 'irrR_degree': 8, 'irrep_stats': [[1, 8], [2, 2], [4, 11], [8, 1]], 'label': '256.507', 'linC_count': 4, 'linC_degree': 4, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': 8, 'linQ_degree_count': 1, 'linQ_dim': 8, 'linQ_dim_count': 1, 'linR_count': 3, 'linR_degree': 8, 'maximal_subgroups_known': True, 'metabelian': False, 'metacyclic': False, 'monomial': True, 'name': '(C4*C8).D4', 'ngens': 2, 'nilpotency_class': 6, 'nilpotent': True, 'normal_counts': [0, 0, 0, 0, 0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 15, 'number_characteristic_subgroups': 15, 'number_conjugacy_classes': 22, 'number_divisions': 15, 'number_normal_subgroups': 15, 'number_subgroup_autclasses': 79, 'number_subgroup_classes': 81, 'number_subgroups': 407, 'old_label': None, 'order': 256, 'order_factorization_type': 7, 'order_stats': [[1, 1], [2, 35], [4, 108], [8, 48], [16, 64]], 'outer_abelian': True, 'outer_cyclic': False, 'outer_equivalence': False, 'outer_exponent': 2, 'outer_gen_orders': [2, 2, 2], 'outer_gen_pows': [0, 0, 0], 'outer_gens': [[129, 2, 8, 32], [145, 2, 8, 160], [1, 6, 24, 168]], 'outer_group': '8.5', 'outer_hash': 5, 'outer_nilpotent': True, 'outer_order': 8, 'outer_permdeg': 6, 'outer_perms': [1, 6, 120], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'C_2^3', 'pc_rank': 4, 'perfect': False, 'permutation_degree': 16, 'pgroup': 2, 'primary_abelian_invariants': [2, 4], 'quasisimple': False, 'rank': 2, 'rational': False, 'rational_characters_known': True, 'ratrep_stats': [[1, 4], [2, 4], [4, 3], [8, 3], [16, 1]], 'representations': {'PC': {'code': 179821621970010437332604147871094127120062954, 'gens': [1, 2, 4, 6], 'pres': [8, 2, 2, 2, 2, 2, 2, 2, 2, 4065, 41, 5282, 1419, 211, 91, 2892, 5765, 973, 1173, 141, 11654, 2254, 2710, 166]}, 'Perm': {'d': 16, 'gens': [11219135155200, 40308463, 6920136138823, 6314112136, 1313941680142, 4097467152142, 1313941668480, 1313941673647]}}, 'schur_multiplier': [4], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [2, 4], 'solvability_type': 5, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': True, 'sylow_subgroups_known': True, 'tex_name': '(C_4\\times C_8).D_4', 'transitive_degree': 16, 'wreath_data': None, 'wreath_product': False}