-
gps_subgroup_search • Show schema
Hide schema
{'Agroup': True, 'Zgroup': False, 'abelian': True, 'ambient': '256.26468', 'ambient_counter': 26468, 'ambient_order': 256, 'ambient_tex': '(D_4\\times C_{16}):C_2', 'central': False, 'central_factor': False, 'centralizer_order': 64, 'characteristic': False, 'core_order': 16, 'counter': 149, 'cyclic': False, 'direct': False, 'hall': 0, 'label': '256.26468.16.s1.a1', 'maximal': False, 'maximal_normal': False, 'metabelian': True, 'metacyclic': True, 'minimal': False, 'minimal_normal': False, 'nilpotent': True, 'normal': True, 'old_label': '16.s1.a1', 'outer_equivalence': False, 'perfect': False, 'proper': True, 'quotient': '16.10', 'quotient_Agroup': True, 'quotient_abelian': True, 'quotient_cyclic': False, 'quotient_hash': 10, 'quotient_metabelian': True, 'quotient_nilpotent': True, 'quotient_order': 16, 'quotient_simple': False, 'quotient_solvable': True, 'quotient_supersolvable': True, 'quotient_tex': 'C_2^2\\times C_4', 'simple': False, 'solvable': True, 'special_labels': [], 'split': False, 'standard_generators': False, 'stem': False, 'subgroup': '16.5', 'subgroup_hash': 5, 'subgroup_order': 16, 'subgroup_tex': 'C_2\\times C_8', 'supersolvable': True, 'sylow': 0}
-
gps_subgroup_data • Show schema
Hide schema
{'ambient': '256.26468', 'aut_centralizer_order': 128, 'aut_label': '16.s1', 'aut_quo_index': 96, 'aut_stab_index': 2, 'aut_weyl_group': '8.5', 'aut_weyl_index': 256, 'centralizer': '4.k1.a1', 'complements': [], 'conjugacy_class_count': 1, 'contained_in': ['8.g1.a1', '8.j1.a1', '8.m1.b1', '8.t1.a1', '8.x1.a1', '8.z1.a1', '8.ba1.b1'], 'contains': ['32.c1.a1', '32.ba1.a1'], 'core': '16.s1.a1', 'coset_action_label': None, 'count': 1, 'diagramx': [5347, 4466, 5067, 4390, 5367, 4449, 5046, 4379], 'generators': [311919, 557585], 'label': '256.26468.16.s1.a1', 'mobius_quo': 0, 'mobius_sub': 0, 'normal_closure': '16.s1.a1', 'normal_contained_in': ['8.g1.a1', '8.j1.a1', '8.m1.b1', '8.t1.a1', '8.x1.a1', '8.ba1.b1', '8.z1.a1'], 'normal_contains': ['32.c1.a1'], 'normalizer': '1.a1.a1', 'old_label': '16.s1.a1', 'projective_image': '32.45', 'quotient_action_image': '4.2', 'quotient_action_kernel': '4.1', 'quotient_action_kernel_order': 4, 'quotient_fusion': None, 'short_label': '16.s1.a1', 'subgroup_fusion': None, 'weyl_group': '4.2'}
-
gps_groups • Show schema
Hide schema
{'Agroup': True, 'Zgroup': False, 'abelian': True, 'abelian_quotient': '16.5', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 2, 'aut_exponent': 4, 'aut_gen_orders': [2, 2, 2, 2], 'aut_gens': [[1, 2], [1, 3], [9, 14], [1, 6], [1, 10]], 'aut_group': '16.11', 'aut_hash': 11, 'aut_nilpotency_class': 2, 'aut_nilpotent': True, 'aut_order': 16, 'aut_permdeg': 6, 'aut_perms': [126, 55, 289, 288], 'aut_phi_ratio': 2.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [2, 1, 2, 1], [4, 1, 2, 2], [8, 1, 8, 1]], 'aut_supersolvable': True, 'aut_tex': 'C_2\\times D_4', 'autcent_abelian': False, 'autcent_cyclic': False, 'autcent_exponent': 4, 'autcent_group': '16.11', 'autcent_hash': 11, 'autcent_nilpotent': True, 'autcent_order': 16, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': True, 'autcent_tex': 'C_2\\times D_4', 'autcentquo_abelian': True, 'autcentquo_cyclic': True, 'autcentquo_exponent': 1, 'autcentquo_group': '1.1', 'autcentquo_hash': 1, 'autcentquo_nilpotent': True, 'autcentquo_order': 1, 'autcentquo_solvable': True, 'autcentquo_supersolvable': True, 'autcentquo_tex': 'C_1', 'cc_stats': [[1, 1, 1], [2, 1, 3], [4, 1, 4], [8, 1, 8]], 'center_label': '16.5', 'center_order': 16, 'central_product': True, 'central_quotient': '1.1', 'commutator_count': 0, 'commutator_label': '1.1', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1', '2.1', '2.1', '2.1'], 'composition_length': 4, 'conjugacy_classes_known': True, 'counter': 5, 'cyclic': False, 'derived_length': 1, 'dihedral': False, 'direct_factorization': [['2.1', 1], ['8.1', 1]], 'direct_product': True, 'div_stats': [[1, 1, 1, 1], [2, 1, 1, 3], [4, 1, 2, 2], [8, 1, 4, 2]], 'element_repr_type': 'PC', 'elementary': 2, 'eulerian_function': 6, 'exponent': 8, 'exponents_of_order': [4], 'factors_of_aut_order': [2], 'factors_of_order': [2], 'faithful_reps': [], 'familial': False, 'frattini_label': '4.1', 'frattini_quotient': '4.2', 'hash': 5, 'hyperelementary': 2, 'inner_abelian': True, 'inner_cyclic': True, 'inner_exponent': 1, 'inner_gen_orders': [1, 1], 'inner_gens': [[1, 2], [1, 2]], 'inner_hash': 1, 'inner_nilpotent': True, 'inner_order': 1, 'inner_split': True, 'inner_tex': 'C_1', 'inner_used': [], 'irrC_degree': -1, 'irrQ_degree': -1, 'irrQ_dim': -1, 'irrR_degree': -1, 'irrep_stats': [[1, 16]], 'label': '16.5', 'linC_count': 48, 'linC_degree': 2, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': 5, 'linQ_degree_count': 4, 'linQ_dim': 5, 'linQ_dim_count': 4, 'linR_count': 8, 'linR_degree': 3, 'maximal_subgroups_known': True, 'metabelian': True, 'metacyclic': True, 'monomial': True, 'name': 'C2*C8', 'ngens': 2, 'nilpotency_class': 1, 'nilpotent': True, 'normal_counts': [0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 6, 'number_characteristic_subgroups': 7, 'number_conjugacy_classes': 16, 'number_divisions': 8, 'number_normal_subgroups': 11, 'number_subgroup_autclasses': 9, 'number_subgroup_classes': 11, 'number_subgroups': 11, 'old_label': None, 'order': 16, 'order_factorization_type': 3, 'order_stats': [[1, 1], [2, 3], [4, 4], [8, 8]], 'outer_abelian': False, 'outer_cyclic': False, 'outer_equivalence': False, 'outer_exponent': 4, 'outer_gen_orders': [2, 2, 2, 2], 'outer_gen_pows': [0, 0, 0, 0], 'outer_gens': [[1, 3], [9, 14], [1, 6], [1, 10]], 'outer_group': '16.11', 'outer_hash': 11, 'outer_nilpotent': True, 'outer_order': 16, 'outer_permdeg': 6, 'outer_perms': [126, 55, 289, 288], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'C_2\\times D_4', 'pc_rank': 2, 'perfect': False, 'permutation_degree': 10, 'pgroup': 2, 'primary_abelian_invariants': [2, 8], 'quasisimple': False, 'rank': 2, 'rational': False, 'rational_characters_known': True, 'ratrep_stats': [[1, 4], [2, 2], [4, 2]], 'representations': {'PC': {'code': 9222, 'gens': [1, 2], 'pres': [4, -2, 2, -2, -2, 21, 34]}, 'GLZ': {'b': 3, 'd': 5, 'gens': [141602720900, 706304316034]}, 'GLFp': {'d': 2, 'p': 17, 'gens': [19665, 44226]}, 'Perm': {'d': 10, 'gens': [40176, 362880, 16582, 5167]}}, 'schur_multiplier': [2], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [2, 8], 'solvability_type': 1, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': True, 'sylow_subgroups_known': True, 'tex_name': 'C_2\\times C_8', 'transitive_degree': 16, 'wreath_data': None, 'wreath_product': False}
-
gps_groups • Show schema
Hide schema
{'Agroup': False, 'Zgroup': False, 'abelian': False, 'abelian_quotient': '64.246', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 2, 'aut_exponent': 4, 'aut_gen_orders': [4, 2, 4, 4, 4, 4, 4, 2, 4], 'aut_gens': [[49153, 753943, 1016659, 311543], [49153, 230151, 1016523, 836327], [49665, 230151, 1016283, 312055], [49665, 229639, 1016387, 311543], [573457, 229639, 1016387, 835815], [573457, 753943, 1016283, 492081], [573457, 230151, 1016011, 311543], [49153, 229639, 1016387, 1016353], [49665, 753943, 1016795, 311543], [49665, 753943, 491979, 1015841]], 'aut_group': None, 'aut_hash': 9045006922249749083, 'aut_nilpotency_class': 2, 'aut_nilpotent': True, 'aut_order': 2048, 'aut_permdeg': 28, 'aut_perms': [123842904325570000876854522838, 293516091103627614002860368428, 56363394317425900875365051387, 157331822297660469599940172100, 293451565163225185104125051948, 259655121288976432310123995460, 45394513466531447761876610625, 90385223940584254069337000898, 282416864435168747734677455586], 'aut_phi_ratio': 16.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 1, 1, 3], [2, 2, 2, 1], [2, 4, 2, 1], [4, 1, 2, 2], [4, 2, 2, 5], [4, 4, 2, 3], [8, 1, 4, 2], [8, 2, 4, 3], [8, 4, 4, 2], [16, 1, 16, 1], [16, 2, 8, 3], [16, 4, 8, 2]], 'aut_supersolvable': True, 'aut_tex': 'C_2^4.C_2^6.C_2', 'autcent_abelian': True, 'autcent_cyclic': False, 'autcent_exponent': 4, 'autcent_group': None, 'autcent_hash': 1718285292446712972, 'autcent_nilpotent': True, 'autcent_order': 1024, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': True, 'autcent_tex': 'C_2^8\\times C_4', 'autcentquo_abelian': True, 'autcentquo_cyclic': True, 'autcentquo_exponent': 2, 'autcentquo_group': '2.1', 'autcentquo_hash': 1, 'autcentquo_nilpotent': True, 'autcentquo_order': 2, 'autcentquo_solvable': True, 'autcentquo_supersolvable': True, 'autcentquo_tex': 'C_2', 'cc_stats': [[1, 1, 1], [2, 1, 3], [2, 2, 2], [2, 4, 2], [4, 1, 4], [4, 2, 10], [4, 4, 6], [8, 1, 8], [8, 2, 12], [8, 4, 8], [16, 1, 16], [16, 2, 24], [16, 4, 16]], 'center_label': '32.16', 'center_order': 32, 'central_product': True, 'central_quotient': '8.5', 'commutator_count': 1, 'commutator_label': '4.2', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1', '2.1', '2.1', '2.1', '2.1', '2.1', '2.1', '2.1'], 'composition_length': 8, 'conjugacy_classes_known': True, 'counter': 26468, 'cyclic': False, 'derived_length': 2, 'dihedral': False, 'direct_factorization': [], 'direct_product': False, 'div_stats': [[1, 1, 1, 1], [2, 1, 1, 3], [2, 2, 1, 2], [2, 4, 1, 2], [4, 1, 2, 2], [4, 2, 1, 2], [4, 2, 2, 4], [4, 4, 1, 6], [8, 1, 4, 2], [8, 2, 2, 2], [8, 2, 4, 2], [8, 4, 2, 4], [16, 1, 8, 2], [16, 2, 4, 2], [16, 2, 8, 2], [16, 4, 4, 4]], 'element_repr_type': 'GLZq', 'elementary': 2, 'eulerian_function': 645120, 'exponent': 16, 'exponents_of_order': [8], 'factors_of_aut_order': [2], 'factors_of_order': [2], 'faithful_reps': [], 'familial': False, 'frattini_label': '16.5', 'frattini_quotient': '16.14', 'hash': 26468, 'hyperelementary': 2, 'inner_abelian': True, 'inner_cyclic': False, 'inner_exponent': 2, 'inner_gen_orders': [2, 2, 1, 2], 'inner_gens': [[49153, 753943, 1016659, 835815], [49153, 753943, 1016659, 312055], [49153, 753943, 1016659, 311543], [573969, 754455, 1016659, 311543]], 'inner_hash': 5, 'inner_nilpotent': True, 'inner_order': 8, 'inner_split': False, 'inner_tex': 'C_2^3', 'inner_used': [1, 2, 4], 'irrC_degree': -1, 'irrQ_degree': -1, 'irrQ_dim': -1, 'irrR_degree': -1, 'irrep_stats': [[1, 64], [2, 48]], 'label': '256.26468', 'linC_count': 768, 'linC_degree': 4, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': 20, 'linQ_degree_count': 16, 'linQ_dim': 20, 'linQ_dim_count': 16, 'linR_count': 192, 'linR_degree': 8, 'maximal_subgroups_known': True, 'metabelian': True, 'metacyclic': False, 'monomial': True, 'name': '(D4*C16):C2', 'ngens': 4, 'nilpotency_class': 2, 'nilpotent': True, 'normal_counts': [0, 0, 0, 0, 0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 29, 'number_characteristic_subgroups': 73, 'number_conjugacy_classes': 112, 'number_divisions': 42, 'number_normal_subgroups': 187, 'number_subgroup_autclasses': 171, 'number_subgroup_classes': 263, 'number_subgroups': 343, 'old_label': None, 'order': 256, 'order_factorization_type': 7, 'order_stats': [[1, 1], [2, 15], [4, 48], [8, 64], [16, 128]], 'outer_abelian': True, 'outer_cyclic': False, 'outer_equivalence': False, 'outer_exponent': 4, 'outer_gen_orders': [2, 2, 2, 2, 2, 2, 4], 'outer_gen_pows': [32769, 32769, 32769, 32769, 32769, 32769, 32769], 'outer_gens': [[49153, 754455, 1016659, 311543], [49665, 753943, 1016659, 311543], [573457, 753943, 1016659, 492081], [49153, 753943, 491843, 311543], [49153, 230151, 1016659, 311543], [49153, 754455, 1016283, 311543], [49153, 753943, 1016387, 311543]], 'outer_group': '256.56082', 'outer_hash': 56082, 'outer_nilpotent': True, 'outer_order': 256, 'outer_permdeg': 16, 'outer_perms': [5040, 120, 1307674368000, 6227020800, 39916800, 362880, 362889], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'C_2^6\\times C_4', 'pc_rank': 4, 'perfect': False, 'permutation_degree': 40, 'pgroup': 2, 'primary_abelian_invariants': [2, 2, 2, 8], 'quasisimple': False, 'rank': 4, 'rational': False, 'rational_characters_known': True, 'ratrep_stats': [[1, 16], [2, 8], [4, 12], [8, 2], [16, 4]], 'representations': {'PC': {'code': 80281392208956086558778, 'gens': [1, 2, 4, 8], 'pres': [8, 2, 2, 2, 2, 2, 2, 2, 2, 41, 91, 116, 141, 8455, 6159]}, 'GLZN': {'d': 2, 'p': 85, 'gens': [1842378, 2468906, 9826016, 5527134, 29605242, 15967276, 42087393, 49744206]}, 'GLZq': {'d': 2, 'q': 32, 'gens': [33281, 33041, 557073, 770567, 573969, 32905, 32803, 491843]}, 'Perm': {'d': 40, 'gens': [22519082550398984257387739031363136719220133176, 41841882667467771978812525486066000033135972730, 64346757416448332058906461849801023885008288000, 85380283704383059886558877804586703294164087501, 24460, 106260391371215129149236054066144207389971908480, 127236735685073954008967316536289352572675722880, 41841882667467771978812525486066000033135959680]}}, 'schur_multiplier': [2, 2, 2, 2], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [2, 2, 2, 8], 'solvability_type': 4, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': True, 'sylow_subgroups_known': True, 'tex_name': '(D_4\\times C_{16}):C_2', 'transitive_degree': 128, 'wreath_data': None, 'wreath_product': False}
-
gps_groups • Show schema
Hide schema
{'Agroup': True, 'Zgroup': False, 'abelian': True, 'abelian_quotient': '16.10', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 4, 'aut_exponent': 12, 'aut_gen_orders': [2, 3, 2, 2, 2, 2, 2], 'aut_gens': [[1, 2, 4], [10, 9, 7], [10, 3, 15], [1, 2, 5], [1, 2, 14], [9, 2, 14], [1, 10, 13], [1, 2, 12]], 'aut_group': '192.1493', 'aut_hash': 1493, 'aut_nilpotency_class': -1, 'aut_nilpotent': False, 'aut_order': 192, 'aut_permdeg': 8, 'aut_perms': [17764, 31287, 5329, 40319, 37965, 21769, 12316], 'aut_phi_ratio': 24.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [2, 1, 6, 1], [4, 1, 8, 1]], 'aut_supersolvable': False, 'aut_tex': 'C_2^3:S_4', 'autcent_abelian': False, 'autcent_cyclic': False, 'autcent_exponent': 12, 'autcent_group': '192.1493', 'autcent_hash': 1493, 'autcent_nilpotent': False, 'autcent_order': 192, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': False, 'autcent_tex': 'C_2^3:S_4', 'autcentquo_abelian': True, 'autcentquo_cyclic': True, 'autcentquo_exponent': 1, 'autcentquo_group': '1.1', 'autcentquo_hash': 1, 'autcentquo_nilpotent': True, 'autcentquo_order': 1, 'autcentquo_solvable': True, 'autcentquo_supersolvable': True, 'autcentquo_tex': 'C_1', 'cc_stats': [[1, 1, 1], [2, 1, 7], [4, 1, 8]], 'center_label': '16.10', 'center_order': 16, 'central_product': True, 'central_quotient': '1.1', 'commutator_count': 0, 'commutator_label': '1.1', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1', '2.1', '2.1', '2.1'], 'composition_length': 4, 'conjugacy_classes_known': True, 'counter': 10, 'cyclic': False, 'derived_length': 1, 'dihedral': False, 'direct_factorization': [['2.1', 2], ['4.1', 1]], 'direct_product': True, 'div_stats': [[1, 1, 1, 1], [2, 1, 1, 7], [4, 1, 2, 4]], 'element_repr_type': 'PC', 'elementary': 2, 'eulerian_function': 7, 'exponent': 4, 'exponents_of_order': [4], 'factors_of_aut_order': [2, 3], 'factors_of_order': [2], 'faithful_reps': [], 'familial': False, 'frattini_label': '2.1', 'frattini_quotient': '8.5', 'hash': 10, 'hyperelementary': 2, 'inner_abelian': True, 'inner_cyclic': True, 'inner_exponent': 1, 'inner_gen_orders': [1, 1, 1], 'inner_gens': [[1, 2, 4], [1, 2, 4], [1, 2, 4]], 'inner_hash': 1, 'inner_nilpotent': True, 'inner_order': 1, 'inner_split': True, 'inner_tex': 'C_1', 'inner_used': [], 'irrC_degree': -1, 'irrQ_degree': -1, 'irrQ_dim': -1, 'irrR_degree': -1, 'irrep_stats': [[1, 16]], 'label': '16.10', 'linC_count': 224, 'linC_degree': 3, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': 4, 'linQ_degree_count': 48, 'linQ_dim': 4, 'linQ_dim_count': 48, 'linR_count': 48, 'linR_degree': 4, 'maximal_subgroups_known': True, 'metabelian': True, 'metacyclic': False, 'monomial': True, 'name': 'C2^2*C4', 'ngens': 3, 'nilpotency_class': 1, 'nilpotent': True, 'normal_counts': [0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 4, 'number_characteristic_subgroups': 4, 'number_conjugacy_classes': 16, 'number_divisions': 12, 'number_normal_subgroups': 27, 'number_subgroup_autclasses': 9, 'number_subgroup_classes': 27, 'number_subgroups': 27, 'old_label': None, 'order': 16, 'order_factorization_type': 3, 'order_stats': [[1, 1], [2, 7], [4, 8]], 'outer_abelian': False, 'outer_cyclic': False, 'outer_equivalence': False, 'outer_exponent': 12, 'outer_gen_orders': [2, 3, 2, 2, 2, 2, 2], 'outer_gen_pows': [0, 0, 0, 0, 0, 0, 0], 'outer_gens': [[10, 9, 7], [10, 3, 15], [1, 2, 5], [1, 2, 14], [9, 2, 14], [1, 10, 13], [1, 2, 12]], 'outer_group': '192.1493', 'outer_hash': 1493, 'outer_nilpotent': False, 'outer_order': 192, 'outer_permdeg': 8, 'outer_perms': [17764, 31287, 5329, 40319, 37965, 21769, 12316], 'outer_solvable': True, 'outer_supersolvable': False, 'outer_tex': 'C_2^3:S_4', 'pc_rank': 3, 'perfect': False, 'permutation_degree': 8, 'pgroup': 2, 'primary_abelian_invariants': [2, 2, 4], 'quasisimple': False, 'rank': 3, 'rational': False, 'rational_characters_known': True, 'ratrep_stats': [[1, 8], [2, 4]], 'representations': {'PC': {'code': 516, 'gens': [1, 2, 3], 'pres': [4, -2, 2, 2, -2, 34]}, 'GLZ': {'b': 3, 'd': 4, 'gens': [7233746, 7115326, 7115160]}, 'GLFp': {'d': 3, 'p': 5, 'gens': [1173753, 1832002, 438254, 1565004]}, 'Perm': {'d': 8, 'gens': [22, 5040, 120, 7]}}, 'schur_multiplier': [2, 2, 2], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [2, 2, 4], 'solvability_type': 2, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': True, 'sylow_subgroups_known': True, 'tex_name': 'C_2^2\\times C_4', 'transitive_degree': 16, 'wreath_data': None, 'wreath_product': False}