-
gps_subgroup_search • Show schema
Hide schema
{'Agroup': True, 'Zgroup': False, 'abelian': True, 'ambient': '222336.a', 'ambient_counter': 1, 'ambient_order': 222336, 'ambient_tex': 'C_6\\times F_{193}', 'central': False, 'central_factor': False, 'centralizer_order': 1152, 'characteristic': False, 'core_order': 6, 'counter': 202, 'cyclic': False, 'direct': None, 'hall': 0, 'label': '222336.a.18528.a1.a1', 'maximal': False, 'maximal_normal': False, 'metabelian': True, 'metacyclic': True, 'minimal': False, 'minimal_normal': False, 'nilpotent': True, 'normal': False, 'old_label': '18528.a1.a1', 'outer_equivalence': False, 'perfect': False, 'proper': True, 'quotient': None, 'quotient_Agroup': None, 'quotient_abelian': None, 'quotient_cyclic': None, 'quotient_hash': None, 'quotient_metabelian': None, 'quotient_nilpotent': None, 'quotient_order': 18528, 'quotient_simple': None, 'quotient_solvable': None, 'quotient_supersolvable': None, 'quotient_tex': None, 'simple': False, 'solvable': True, 'special_labels': [], 'split': None, 'standard_generators': False, 'stem': False, 'subgroup': '12.5', 'subgroup_hash': 5, 'subgroup_order': 12, 'subgroup_tex': 'C_2\\times C_6', 'supersolvable': True, 'sylow': 0}
-
gps_subgroup_data • Show schema
Hide schema
{'ambient': '222336.a', 'aut_centralizer_order': None, 'aut_label': '18528.a1', 'aut_quo_index': None, 'aut_stab_index': None, 'aut_weyl_group': None, 'aut_weyl_index': None, 'centralizer': '193.a1.a1', 'complements': None, 'conjugacy_class_count': 1, 'contained_in': ['96.a1.a1', '6176.a1.a1', '9264.a1.a1'], 'contains': ['37056.a1.a1', '37056.c1.a1', '37056.e1.a1', '55584.a1.a1'], 'core': '37056.a1.a1', 'coset_action_label': None, 'count': 193, 'diagramx': [1189, -1, 2033, -1, 2661, -1, 2718, -1], 'generators': [96, 111168, 74112], 'label': '222336.a.18528.a1.a1', 'mobius_quo': None, 'mobius_sub': 0, 'normal_closure': '96.a1.a1', 'normal_contained_in': None, 'normal_contains': None, 'normalizer': '193.a1.a1', 'old_label': '18528.a1.a1', 'projective_image': '37056.a', 'quotient_action_image': None, 'quotient_action_kernel': None, 'quotient_action_kernel_order': None, 'quotient_fusion': None, 'short_label': '18528.a1.a1', 'subgroup_fusion': None, 'weyl_group': '1.1'}
-
gps_groups • Show schema
Hide schema
{'Agroup': True, 'Zgroup': False, 'abelian': True, 'abelian_quotient': '12.5', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 2, 'aut_exponent': 6, 'aut_gen_orders': [2, 6], 'aut_gens': [[1, 2], [6, 9], [6, 11]], 'aut_group': '12.4', 'aut_hash': 4, 'aut_nilpotency_class': -1, 'aut_nilpotent': False, 'aut_order': 12, 'aut_permdeg': 5, 'aut_perms': [6, 31], 'aut_phi_ratio': 3.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 1, 3, 1], [3, 1, 2, 1], [6, 1, 6, 1]], 'aut_supersolvable': True, 'aut_tex': 'D_6', 'autcent_abelian': False, 'autcent_cyclic': False, 'autcent_exponent': 6, 'autcent_group': '12.4', 'autcent_hash': 4, 'autcent_nilpotent': False, 'autcent_order': 12, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': True, 'autcent_tex': 'D_6', 'autcentquo_abelian': True, 'autcentquo_cyclic': True, 'autcentquo_exponent': 1, 'autcentquo_group': '1.1', 'autcentquo_hash': 1, 'autcentquo_nilpotent': True, 'autcentquo_order': 1, 'autcentquo_solvable': True, 'autcentquo_supersolvable': True, 'autcentquo_tex': 'C_1', 'cc_stats': [[1, 1, 1], [2, 1, 3], [3, 1, 2], [6, 1, 6]], 'center_label': '12.5', 'center_order': 12, 'central_product': True, 'central_quotient': '1.1', 'commutator_count': 0, 'commutator_label': '1.1', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1', '2.1', '3.1'], 'composition_length': 3, 'conjugacy_classes_known': True, 'counter': 5, 'cyclic': False, 'derived_length': 1, 'dihedral': False, 'direct_factorization': [['2.1', 2], ['3.1', 1]], 'direct_product': True, 'div_stats': [[1, 1, 1, 1], [2, 1, 1, 3], [3, 1, 2, 1], [6, 1, 2, 3]], 'element_repr_type': 'PC', 'elementary': 2, 'eulerian_function': 4, 'exponent': 6, 'exponents_of_order': [2, 1], 'factors_of_aut_order': [2, 3], 'factors_of_order': [2, 3], 'faithful_reps': [], 'familial': False, 'frattini_label': '1.1', 'frattini_quotient': '12.5', 'hash': 5, 'hyperelementary': 2, 'inner_abelian': True, 'inner_cyclic': True, 'inner_exponent': 1, 'inner_gen_orders': [1, 1], 'inner_gens': [[1, 2], [1, 2]], 'inner_hash': 1, 'inner_nilpotent': True, 'inner_order': 1, 'inner_split': True, 'inner_tex': 'C_1', 'inner_used': [], 'irrC_degree': -1, 'irrQ_degree': -1, 'irrQ_dim': -1, 'irrR_degree': -1, 'irrep_stats': [[1, 12]], 'label': '12.5', 'linC_count': 24, 'linC_degree': 2, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': 3, 'linQ_degree_count': 6, 'linQ_dim': 3, 'linQ_dim_count': 6, 'linR_count': 6, 'linR_degree': 3, 'maximal_subgroups_known': True, 'metabelian': True, 'metacyclic': True, 'monomial': True, 'name': 'C2*C6', 'ngens': 3, 'nilpotency_class': 1, 'nilpotent': True, 'normal_counts': [0, 0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 4, 'number_characteristic_subgroups': 4, 'number_conjugacy_classes': 12, 'number_divisions': 8, 'number_normal_subgroups': 10, 'number_subgroup_autclasses': 6, 'number_subgroup_classes': 10, 'number_subgroups': 10, 'old_label': None, 'order': 12, 'order_factorization_type': 22, 'order_stats': [[1, 1], [2, 3], [3, 2], [6, 6]], 'outer_abelian': False, 'outer_cyclic': False, 'outer_equivalence': False, 'outer_exponent': 6, 'outer_gen_orders': [2, 6], 'outer_gen_pows': [0, 0], 'outer_gens': [[6, 9], [6, 11]], 'outer_group': '12.4', 'outer_hash': 4, 'outer_nilpotent': False, 'outer_order': 12, 'outer_permdeg': 5, 'outer_perms': [6, 31], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'D_6', 'pc_rank': 2, 'perfect': False, 'permutation_degree': 7, 'pgroup': 0, 'primary_abelian_invariants': [2, 2, 3], 'quasisimple': False, 'rank': 2, 'rational': False, 'rational_characters_known': True, 'ratrep_stats': [[1, 4], [2, 4]], 'representations': {'PC': {'code': 273, 'gens': [1, 2], 'pres': [3, -2, -2, -3, 16]}, 'GLZ': {'b': 3, 'd': 3, 'gens': [3362, 16507]}, 'GLFp': {'d': 2, 'p': 7, 'gens': [1030, 2064]}, 'Perm': {'d': 7, 'gens': [720, 24, 4]}}, 'schur_multiplier': [2], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [2, 6], 'solvability_type': 1, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': True, 'sylow_subgroups_known': True, 'tex_name': 'C_2\\times C_6', 'transitive_degree': 12, 'wreath_data': None, 'wreath_product': False}
-
gps_groups • Show schema
Hide schema
{'Agroup': True, 'Zgroup': False, 'abelian': False, 'abelian_quotient': '1152.2487', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 2, 'aut_exponent': 37056, 'aut_gen_orders': [24, 192, 96, 64], 'aut_gens': [[1, 192], [108481, 211776], [164353, 155712], [38401, 40512], [66241, 129216]], 'aut_group': None, 'aut_hash': 5408501734751148099, 'aut_nilpotency_class': -1, 'aut_nilpotent': False, 'aut_order': 444672, 'aut_permdeg': 965, 'aut_perms': [401214213846543782416823535769782763462953654186657304849925984366862761548330952544734791511244364174886783118606334857242184064699600023542254038162281327630989125239990282154155991669836698133932785205848203789503827487271922124891192730857247136191029504054564630296593012331815540400435527872035396301110993168191725347337142837471586429906440126013221283561787059350702355962059488067403224965051587578504020673267972017088368093350352404177792273590830362667618072925847930251560072949265522268682010361865500136183469260632113712709881428818360474052340555054229802197677643343441115129448017973812487886485436588040275882011749549735088845950191604140022298933895152806090627996994080909765830347543235321262467478077893030214113752098295823384192986412087077885790018188397349142770205045675085581419355326641025754244361373985708819563847871578664837845794456590059859476261937212834260924668866142883464807969134727214846396235984617186680439805011783358258777668385316934064026860884585255075661917894639999476276625034808866560833476273561824511222704912942427550725353692743182817399692230745248518153664061800914170767958614601417692102430865780208536225950870802684532270760851634937989530730170838067003987361087852589324741203291623443044097175276419511019332955593824616572814866521898400010342504821732510235400374468984921970707550066551976160508246903025560417855756543510439993259557049935468654443751972335376981755025191345411391378231317008443919729816384372530529887511557734121719929716950538473414918645461964381581183210123871610096060846619131058002552862540258506224141138691760554876455526795004020077179340693611368301023653589190885776479973534556233921294215706057616170828779594521428712403007896753375351751396785069639102146595835711707493471540394337285714243266593239952540921806979277743093378601080608638928009611989638717953264176500332777262800442157989899546864916740877361167715733795974659984820769214893589070899335791132238595214190006035327372435549241188981004386242807209333888281456635208040924210420537703264842900792551619449078782728088820730058278861469812259956679784123221130076534302190734632855181140039576527959779157001016348587750988725972257199133831572882220192839022855717575037002144579482671595070086669450456095341740949818327912288910324771727438063002678738042583454805061929144634147733568480787456435504393561316861665228597800529063673298150316380488754963657908502897308040441381694658, 638397218290939921047244615933156832165953910707857970804284079586276220100139909699487879876667600250359022950688678403995113415403201683945352952601257504683404460574499643775877525375418801767164014967719324199535039863482191781642733403336883315272477817718266447517165817849216914528536141996209243727044163197099997763809014680188631528414975898757148843697154652573189688544476290051335152711282706525900022049327031176131731342142292487193543251835843963597831654004912817528814982565192805447173285392437001841454749250225510706312542774465223500448129088069042907495091737940325568506093331975612538765135854816071741842451195168415594387192686503369631463580999137705834775539843325992454499224921762656324197720206871425085803864282062064493096102996000229735820347856152839113657551552258113302752399207965046108030320781044189545796503868988837106018704267815764467809234812634896754620047916201882629052934674020715260090589001965347915524214538589207214435540227325505946305242756585291226594054285098712759824111300672768087862608242831901336985363011633796594781282482992505055966101052324952761628825666680426109286076958156313999510705775839558784110349036912239392746007927693683867505226774384069315929102842011915219624172293028789483471901107630158686350811605829803558850899117364910418398423656882207542320595427147976614330303522305664896758918775623445331062747331427646781043692901080696731371012096418383236738604924571857717284850018108945660809379731054623727629982800219924837740114306524745821131482516646942770311449511122241323955162788791431056362412666540460952040637313359533250047935976453065977976003850353829689858102993495181509499047813065445017925721063543095206433398722751849936258075824342968069785328415487476028770130300176551983438178949696385732713854087444145568523705781923431282188451523583640908746837743208069937597724470106020171546482946844129292171012030533987186443946394287776462834645684018493158937383035752981505514706658039497622379644386723924630974638282780098772398318651316666771226585260892764920827804439840536248020252636613839267064941843471923057760944657023522437653481660097357584897741641429017985621033012221119299689205594113035678371996218311920547260194963761189078875985901032082330245738625032550118844227717592866935822146849588493132109602502619999763360282414702882888677266551662621097830050242916255590997604857809417884332828604249206443519984177491384275474661574549955994, 554986189787754935834498380385649573009743548740508828582761443284147641845127065031432297039760824315611960710684301965229002920560113789322829877317735644743627864725682692676356245122921515910908200177175100981179247118768192362456401973796631658167130960301241298130772031967936562738243930734310110004037860821017136830624095564339704628218563079227557968458935044190588671544140101597781212421721349596552709631686868529483812006587572769270365122557648721868742488733853873195761210738613306276995710912932439343884707260612427712551645823716584583325638912365831855620575474477349413135008330999707432359975216264603749861079151653068815381508758345866777994538063919051201147881997251242583233231651671752145461249244888776245039919731625686487667757760117373205440059169207970653979356055434836652549598015965697148010333837827968852619694552614393004501225369794915243171273951495070134188290578093547467255438680917598623232311796375603945990555436122492880939698160614478301652775428017393055309108528551638066508370735829115219403936158470565728532297863793779987655324620317427825229303407933819422550348391087502980619056514699269998581248856744454801954546219764383735060002270327444133079806551429806886048530552428986572736328115858483829023102875330952436854715748180382128716422115144850550020410538475723955013297499281233019926111623641996541977904292399941544620941523392759467893743231226878175161000125131289481090898481257722423319822473698112381477087657901190213189234205541156443664107125947282169415699052090002174992936337559659704464264006954074329098673186664509912325626090048094034550447013335701093010453055124773188365289509415228081541752276950000755782099871692400480264390060614238678143192074202663952948151122262557031642892502176691062405316799590122905150427018043484713312193704127528515223903034673924581399658450274892499306176511805098892271181298736674053766638800308788641849389832750454164592846805394202543654535973937179618358788470255004558802053941340413846026390778915549650444875029174681291466982323402349589275846262196336882854437205341773282645316718533091813400475958629703061514799761454290326113306285695735048105680555407061488481009481517358207798625646307484958375632518946222959411545235957769790747551314480301041120060975003552781326656643510241701047991960211902110288016178961784697514977813057859370044986550433924633578554177928262053249093027340636779470047112183056532761771533569163645, 11662815634697621321610675092386633150676564886663460078150284895972943355817231736605571441314342917345936078254485974765222463758566528645084571342238558216788239003410822307358762899303113831603290991607832630450813821870475707301052132657013187923784666433402394802951121917424087765810188510283256598203097486658553263837043653766493088904945987971005295319576725817609004729290585894915523970854093811859247875652318154712628458917351911995815853180000097332039430760194805975562470837591098094854435583044756876822183304402149943351964376089069077746948028960139220701158582038538825090361806075609742809721924884311313492034085235645653510038391367015113204707162566316197042535535859230084861097995052292629899273162946523750668900911374333850412860980448486644570098228538419362162546796213386219616151023864232455930327599344046001910045267621661719185278563123635212341164355812834505706475693981882115837221084179202262087795798304725815715698329420870352918494714854062157174798931583647156885929380695152550261189254607056254023635709427364752471681925919780584317924794476003731269105265657053951084935727399917757693718519995535264175709685263027620921074250120589170859286879704338799275222667073053581766354171615912457964194587629663223741875350739908874935371834495943370641279508786831381493175842175602827599389618782387340051334286202577364127659625237604194171954509520399882651134666737476545811569375942860435748716671623914999271678657278473420245693463490443835217128708252980740279797771212404778754280295893849753254342763903533395983307111851455132838942022056037268581810530834866771345601160506849870729313365867150027546384550239485039321490371094043126685468568961501764336362883206466256357309197816189023738804624448814628157867123028828164972810293987551771577698242643939194582464953303546459150657414204198029365409249123826044120236164383342082663152805311908002229191567158881895557151543206940726354000621950399137072785335365050477496465832199799665637112660032538623121339723306248021379302978721239569858409309925609106084750137452714060879293324597693196471994184855985603501733793260640545662779524067228514576581817459981759281915163280648130996840380921073039107827073520967315648779678905602774917956237507004292239782208850282759105196659258476546746732750432592888267667982331543133837461276437003786631968383259893168917051456181737849176138069650562644868293980621592236267800370411170326608098005702638832], 'aut_phi_ratio': 6.03125, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [2, 193, 1, 2], [3, 1, 2, 1], [3, 193, 3, 2], [4, 193, 1, 4], [6, 1, 2, 1], [6, 193, 2, 2], [6, 193, 3, 6], [8, 193, 1, 8], [12, 193, 2, 4], [12, 193, 3, 8], [16, 193, 1, 16], [24, 193, 2, 8], [24, 193, 3, 16], [32, 193, 1, 32], [48, 193, 2, 16], [48, 193, 3, 32], [64, 193, 2, 32], [96, 193, 2, 32], [96, 193, 3, 64], [192, 193, 4, 32], [192, 193, 6, 64], [193, 192, 1, 1], [386, 192, 1, 1], [579, 192, 2, 1], [1158, 192, 2, 1]], 'aut_supersolvable': True, 'aut_tex': 'C_{579}.C_{96}.C_2^3', 'autcent_abelian': False, 'autcent_cyclic': False, 'autcent_exponent': 6, 'autcent_group': '12.4', 'autcent_hash': 4, 'autcent_nilpotent': False, 'autcent_order': 12, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': True, 'autcent_tex': 'D_6', 'autcentquo_abelian': False, 'autcentquo_cyclic': False, 'autcentquo_exponent': 37056, 'autcentquo_group': '37056.a', 'autcentquo_hash': 1432757702296672986, 'autcentquo_nilpotent': False, 'autcentquo_order': 37056, 'autcentquo_solvable': True, 'autcentquo_supersolvable': True, 'autcentquo_tex': 'F_{193}', 'cc_stats': [[1, 1, 1], [2, 1, 1], [2, 193, 2], [3, 1, 2], [3, 193, 6], [4, 193, 4], [6, 1, 2], [6, 193, 22], [8, 193, 8], [12, 193, 32], [16, 193, 16], [24, 193, 64], [32, 193, 32], [48, 193, 128], [64, 193, 64], [96, 193, 256], [192, 193, 512], [193, 192, 1], [386, 192, 1], [579, 192, 2], [1158, 192, 2]], 'center_label': '6.2', 'center_order': 6, 'central_product': True, 'central_quotient': '37056.a', 'commutator_count': 1, 'commutator_label': '193.1', 'complements_known': True, 'complete': False, 'complex_characters_known': False, 'composition_factors': ['2.1', '2.1', '2.1', '2.1', '2.1', '2.1', '2.1', '3.1', '3.1', '193.1'], 'composition_length': 10, 'conjugacy_classes_known': True, 'counter': 1, 'cyclic': False, 'derived_length': 2, 'dihedral': False, 'direct_factorization': [['2.1', 1], ['3.1', 1], ['37056.a', 1]], 'direct_product': True, 'div_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [2, 193, 1, 2], [3, 1, 2, 1], [3, 193, 2, 3], [4, 193, 2, 2], [6, 1, 2, 1], [6, 193, 2, 11], [8, 193, 4, 2], [12, 193, 4, 8], [16, 193, 8, 2], [24, 193, 8, 8], [32, 193, 16, 2], [48, 193, 16, 8], [64, 193, 32, 2], [96, 193, 32, 8], [192, 193, 64, 8], [193, 192, 1, 1], [386, 192, 1, 1], [579, 192, 2, 1], [1158, 192, 2, 1]], 'element_repr_type': 'PC', 'elementary': 1, 'eulerian_function': 24576, 'exponent': 37056, 'exponents_of_order': [7, 2, 1], 'factors_of_aut_order': [2, 3, 193], 'factors_of_order': [2, 3, 193], 'faithful_reps': [[192, 0, 2]], 'familial': False, 'frattini_label': '1.1', 'frattini_quotient': '222336.a', 'hash': 6561991287343693459, 'hyperelementary': 1, 'inner_abelian': False, 'inner_cyclic': False, 'inner_exponent': 37056, 'inner_gen_orders': [192, 193], 'inner_gens': [[1, 124608], [97921, 192]], 'inner_hash': 1432757702296672986, 'inner_nilpotent': False, 'inner_order': 37056, 'inner_split': True, 'inner_tex': 'F_{193}', 'inner_used': [1, 2], 'irrC_degree': 192, 'irrQ_degree': 384, 'irrQ_dim': 384, 'irrR_degree': None, 'irrep_stats': [[1, 1152], [192, 6]], 'label': '222336.a', 'linC_count': None, 'linC_degree': None, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': None, 'linQ_degree_count': None, 'linQ_dim': None, 'linQ_dim_count': None, 'linR_count': None, 'linR_degree': None, 'maximal_subgroups_known': True, 'metabelian': True, 'metacyclic': True, 'monomial': True, 'name': 'C6*F193', 'ngens': 10, 'nilpotency_class': -1, 'nilpotent': False, 'normal_counts': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 388, 'number_characteristic_subgroups': 58, 'number_conjugacy_classes': 1158, 'number_divisions': 74, 'number_normal_subgroups': 124, 'number_subgroup_autclasses': 152, 'number_subgroup_classes': 240, 'number_subgroups': 22512, 'old_label': None, 'order': 222336, 'order_factorization_type': 321, 'order_stats': [[1, 1], [2, 387], [3, 1160], [4, 772], [6, 4248], [8, 1544], [12, 6176], [16, 3088], [24, 12352], [32, 6176], [48, 24704], [64, 12352], [96, 49408], [192, 98816], [193, 192], [386, 192], [579, 384], [1158, 384]], 'outer_abelian': False, 'outer_cyclic': False, 'outer_equivalence': False, 'outer_exponent': 6, 'outer_gen_orders': [2, 6], 'outer_gen_pows': [0, 0], 'outer_gens': [[74113, 222144], [185281, 73920]], 'outer_group': '12.4', 'outer_hash': 4, 'outer_nilpotent': False, 'outer_order': 12, 'outer_permdeg': 5, 'outer_perms': [7, 31], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'D_6', 'pc_rank': 2, 'perfect': False, 'permutation_degree': 198, 'pgroup': 0, 'primary_abelian_invariants': [2, 64, 3, 3], 'quasisimple': False, 'rank': 2, 'rational': False, 'rational_characters_known': True, 'ratrep_stats': [[1, 4], [2, 18], [4, 10], [8, 10], [16, 10], [32, 10], [64, 8], [192, 2], [384, 2]], 'representations': {'PC': {'code': '52964682967641377907896681421989232434088034869040398266885333928732307941588737271089122124336872206934025231728433068783575157474602557766028293402790237376935292542585413924364227151921535', 'gens': [1, 8], 'pres': [10, -2, -2, -2, -2, -2, -2, -3, -2, -3, -193, 20, 51, 82, 113, 144, 175, 9968647, 6504977, 2330907, 393637, 323567, 40857, 66547, 237, 2419208, 4631058, 241948, 885638, 727968, 91858, 149648, 358, 8064009, 4320019, 806429, 172839, 1036849, 306059, 151269]}, 'GLFp': {'d': 2, 'p': 193, 'gens': [201293672, 7189251, 783607298]}, 'Perm': {'d': 198, 'gens': [1047421830653597612330533414845238952812505590283855614739491814281166297074443161463084420437179133995575520943526372931497001630109407254277964699720193413017851813801636178292071115477943936670968119175441868907875334170944206242052743702773266140415258461787406913100595941039423958898035672046959747792159495252288510684858634378209668449377331496686605990344881, 101602750195964953953589546617674807098570923018844520454018572359391413496595760501485959185647492005787901467365035814473868885883969016951897395135516391823791123268512470252303362965534608128875126838651703866143143510203223691523034117338325794230421471670336666883357623062316528591914662758619489007795945935644871400384451352319863482567693348185301812684670720, 2066064867180288019123252549211314056623246063700464255459928418729304120129156917935457987192712589879421325717125246713763548873333132049412169845567610642895569482029121183903659061279779709976786975676333219215836761257091673963105940301738853538857155195182072852785454064254990979270642536313778406870556765145945886859366559256060276776488223646114535807128271]}}, 'schur_multiplier': [6], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [6, 192], 'solvability_type': 6, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': True, 'sylow_subgroups_known': True, 'tex_name': 'C_6\\times F_{193}', 'transitive_degree': 1158, 'wreath_data': None, 'wreath_product': False}