-
gps_subgroup_search • Show schema
Hide schema
{'Agroup': True, 'Zgroup': False, 'abelian': False, 'ambient': '216.36', 'ambient_counter': 36, 'ambient_order': 216, 'ambient_tex': 'C_6.S_3^2', 'central': False, 'central_factor': False, 'centralizer_order': 6, 'characteristic': False, 'core_order': 9, 'counter': 27, 'cyclic': False, 'direct': None, 'hall': 0, 'label': '216.36.12.c1.d1', 'maximal': False, 'maximal_normal': False, 'metabelian': True, 'metacyclic': True, 'minimal': False, 'minimal_normal': False, 'nilpotent': False, 'normal': False, 'old_label': '12.c1.d1', 'outer_equivalence': False, 'perfect': False, 'proper': True, 'quotient': None, 'quotient_Agroup': None, 'quotient_abelian': None, 'quotient_cyclic': None, 'quotient_hash': None, 'quotient_metabelian': None, 'quotient_nilpotent': None, 'quotient_order': 12, 'quotient_simple': None, 'quotient_solvable': None, 'quotient_supersolvable': None, 'quotient_tex': None, 'simple': False, 'solvable': True, 'special_labels': [], 'split': None, 'standard_generators': False, 'stem': False, 'subgroup': '18.3', 'subgroup_hash': 3, 'subgroup_order': 18, 'subgroup_tex': 'C_3\\times S_3', 'supersolvable': True, 'sylow': 0}
-
gps_subgroup_data • Show schema
Hide schema
{'ambient': '216.36', 'aut_centralizer_order': 6, 'aut_label': '12.c1', 'aut_quo_index': None, 'aut_stab_index': 12, 'aut_weyl_group': '12.4', 'aut_weyl_index': 72, 'centralizer': '36.a1.a1', 'complements': None, 'conjugacy_class_count': 1, 'contained_in': ['4.b1.b1', '6.b1.b1'], 'contains': ['24.a1.b1', '36.d1.b1', '36.e1.d1'], 'core': '24.a1.b1', 'coset_action_label': None, 'count': 3, 'diagramx': [3717, -1, 4232, -1, 3691, -1, 2332, -1], 'generators': [3, 72, 8], 'label': '216.36.12.c1.d1', 'mobius_quo': None, 'mobius_sub': 0, 'normal_closure': '4.b1.b1', 'normal_contained_in': None, 'normal_contains': None, 'normalizer': '3.a1.b1', 'old_label': '12.c1.d1', 'projective_image': '216.36', 'quotient_action_image': None, 'quotient_action_kernel': None, 'quotient_action_kernel_order': None, 'quotient_fusion': None, 'short_label': '12.c1.d1', 'subgroup_fusion': None, 'weyl_group': '12.4'}
-
gps_groups • Show schema
Hide schema
{'Agroup': True, 'Zgroup': False, 'abelian': False, 'abelian_quotient': '6.2', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 2, 'aut_exponent': 6, 'aut_gen_orders': [2, 6], 'aut_gens': [[1, 6], [5, 12], [17, 6]], 'aut_group': '12.4', 'aut_hash': 4, 'aut_nilpotency_class': -1, 'aut_nilpotent': False, 'aut_order': 12, 'aut_permdeg': 5, 'aut_perms': [6, 49], 'aut_phi_ratio': 2.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 3, 1, 1], [3, 1, 2, 1], [3, 2, 1, 1], [3, 2, 2, 1], [6, 3, 2, 1]], 'aut_supersolvable': True, 'aut_tex': 'D_6', 'autcent_abelian': True, 'autcent_cyclic': True, 'autcent_exponent': 2, 'autcent_group': '2.1', 'autcent_hash': 1, 'autcent_nilpotent': True, 'autcent_order': 2, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': True, 'autcent_tex': 'C_2', 'autcentquo_abelian': False, 'autcentquo_cyclic': False, 'autcentquo_exponent': 6, 'autcentquo_group': '6.1', 'autcentquo_hash': 1, 'autcentquo_nilpotent': False, 'autcentquo_order': 6, 'autcentquo_solvable': True, 'autcentquo_supersolvable': True, 'autcentquo_tex': 'S_3', 'cc_stats': [[1, 1, 1], [2, 3, 1], [3, 1, 2], [3, 2, 3], [6, 3, 2]], 'center_label': '3.1', 'center_order': 3, 'central_product': True, 'central_quotient': '6.1', 'commutator_count': 1, 'commutator_label': '3.1', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1', '3.1', '3.1'], 'composition_length': 3, 'conjugacy_classes_known': True, 'counter': 3, 'cyclic': False, 'derived_length': 2, 'dihedral': False, 'direct_factorization': [['3.1', 1], ['6.1', 1]], 'direct_product': True, 'div_stats': [[1, 1, 1, 1], [2, 3, 1, 1], [3, 1, 2, 1], [3, 2, 1, 1], [3, 2, 2, 1], [6, 3, 2, 1]], 'element_repr_type': 'PC', 'elementary': 1, 'eulerian_function': 12, 'exponent': 6, 'exponents_of_order': [2, 1], 'factors_of_aut_order': [2, 3], 'factors_of_order': [2, 3], 'faithful_reps': [[2, 0, 2]], 'familial': True, 'frattini_label': '1.1', 'frattini_quotient': '18.3', 'hash': 3, 'hyperelementary': 1, 'inner_abelian': False, 'inner_cyclic': False, 'inner_exponent': 6, 'inner_gen_orders': [2, 3], 'inner_gens': [[1, 12], [13, 6]], 'inner_hash': 1, 'inner_nilpotent': False, 'inner_order': 6, 'inner_split': True, 'inner_tex': 'S_3', 'inner_used': [1, 2], 'irrC_degree': 2, 'irrQ_degree': 4, 'irrQ_dim': 4, 'irrR_degree': 4, 'irrep_stats': [[1, 6], [2, 3]], 'label': '18.3', 'linC_count': 2, 'linC_degree': 2, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': 4, 'linQ_degree_count': 3, 'linQ_dim': 4, 'linQ_dim_count': 3, 'linR_count': 3, 'linR_degree': 4, 'maximal_subgroups_known': True, 'metabelian': True, 'metacyclic': True, 'monomial': True, 'name': 'C3*S3', 'ngens': 3, 'nilpotency_class': -1, 'nilpotent': False, 'normal_counts': [0, 0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 6, 'number_characteristic_subgroups': 6, 'number_conjugacy_classes': 9, 'number_divisions': 6, 'number_normal_subgroups': 6, 'number_subgroup_autclasses': 9, 'number_subgroup_classes': 9, 'number_subgroups': 14, 'old_label': None, 'order': 18, 'order_factorization_type': 22, 'order_stats': [[1, 1], [2, 3], [3, 8], [6, 6]], 'outer_abelian': True, 'outer_cyclic': True, 'outer_equivalence': False, 'outer_exponent': 2, 'outer_gen_orders': [2], 'outer_gen_pows': [0], 'outer_gens': [[5, 6]], 'outer_group': '2.1', 'outer_hash': 1, 'outer_nilpotent': True, 'outer_order': 2, 'outer_permdeg': 2, 'outer_perms': [1], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'C_2', 'pc_rank': 2, 'perfect': False, 'permutation_degree': 6, 'pgroup': 0, 'primary_abelian_invariants': [2, 3], 'quasisimple': False, 'rank': 2, 'rational': False, 'rational_characters_known': True, 'ratrep_stats': [[1, 2], [2, 3], [4, 1]], 'representations': {'PC': {'code': 5451, 'gens': [1, 3], 'pres': [3, -2, -3, -3, 6, 110]}, 'GLZ': {'b': 3, 'd': 4, 'gens': [11780110, 20974441]}, 'Lie': [{'d': 2, 'q': 2, 'gens': [20, 138], 'family': 'GU'}, {'d': 2, 'q': 4, 'gens': [20, 130, 194], 'family': 'COPlus'}, {'d': 2, 'q': 2, 'gens': [20, 130, 138], 'family': 'CU'}, {'d': 1, 'q': 9, 'gens': [93882, 62619, 1930], 'family': 'ASigmaL'}], 'GLFp': {'d': 2, 'p': 7, 'gens': [56, 687, 1374]}, 'Perm': {'d': 6, 'gens': [450, 147, 243]}}, 'schur_multiplier': [], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [6], 'solvability_type': 6, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': True, 'sylow_subgroups_known': True, 'tex_name': 'C_3\\times S_3', 'transitive_degree': 6, 'wreath_data': ['C_3', 'C_2', '2T1'], 'wreath_product': True}
-
gps_groups • Show schema
Hide schema
{'Agroup': False, 'Zgroup': False, 'abelian': False, 'abelian_quotient': '8.2', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 4, 'aut_exponent': 12, 'aut_gen_orders': [2, 2, 6, 6, 6], 'aut_gens': [[1, 2, 24, 72], [78, 109, 8, 144], [1, 10, 48, 72], [1, 130, 24, 144], [149, 146, 168, 72], [85, 86, 24, 72]], 'aut_group': '864.2282', 'aut_hash': 2282, 'aut_nilpotency_class': -1, 'aut_nilpotent': False, 'aut_order': 864, 'aut_permdeg': 22, 'aut_perms': [214889285009313589681, 10718287705326705960, 630539746703179085647, 122581410429258920183, 221947041344263164727], 'aut_phi_ratio': 12.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [2, 9, 2, 1], [3, 2, 1, 1], [3, 6, 2, 1], [3, 12, 1, 1], [4, 9, 4, 1], [6, 2, 1, 1], [6, 6, 2, 1], [6, 12, 1, 1], [6, 18, 2, 1], [12, 18, 4, 1]], 'aut_supersolvable': False, 'aut_tex': '(C_2^2\\times \\He_3):D_4', 'autcent_abelian': True, 'autcent_cyclic': False, 'autcent_exponent': 2, 'autcent_group': '4.2', 'autcent_hash': 2, 'autcent_nilpotent': True, 'autcent_order': 4, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': True, 'autcent_tex': 'C_2^2', 'autcentquo_abelian': False, 'autcentquo_cyclic': False, 'autcentquo_exponent': 12, 'autcentquo_group': '216.87', 'autcentquo_hash': 87, 'autcentquo_nilpotent': False, 'autcentquo_order': 216, 'autcentquo_solvable': True, 'autcentquo_supersolvable': False, 'autcentquo_tex': '\\He_3:D_4', 'cc_stats': [[1, 1, 1], [2, 1, 1], [2, 9, 2], [3, 2, 1], [3, 6, 2], [3, 12, 1], [4, 9, 4], [6, 2, 1], [6, 6, 2], [6, 12, 1], [6, 18, 2], [12, 18, 4]], 'center_label': '2.1', 'center_order': 2, 'central_product': False, 'central_quotient': '108.17', 'commutator_count': 1, 'commutator_label': '27.3', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1', '2.1', '2.1', '3.1', '3.1', '3.1'], 'composition_length': 6, 'conjugacy_classes_known': True, 'counter': 36, 'cyclic': False, 'derived_length': 3, 'dihedral': False, 'direct_factorization': [], 'direct_product': False, 'div_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [2, 9, 1, 2], [3, 2, 1, 1], [3, 6, 1, 2], [3, 12, 1, 1], [4, 9, 2, 2], [6, 2, 1, 1], [6, 6, 1, 2], [6, 12, 1, 1], [6, 18, 1, 2], [12, 18, 2, 2]], 'element_repr_type': 'PC', 'elementary': 1, 'eulerian_function': 9, 'exponent': 12, 'exponents_of_order': [3, 3], 'factors_of_aut_order': [2, 3], 'factors_of_order': [2, 3], 'faithful_reps': [[6, -1, 2]], 'familial': False, 'frattini_label': '6.2', 'frattini_quotient': '36.10', 'hash': 36, 'hyperelementary': 1, 'inner_abelian': False, 'inner_cyclic': False, 'inner_exponent': 6, 'inner_gen_orders': [2, 6, 3, 3], 'inner_gens': [[1, 10, 24, 144], [17, 2, 120, 144], [1, 194, 24, 72], [145, 146, 24, 72]], 'inner_hash': 17, 'inner_nilpotent': False, 'inner_order': 108, 'inner_split': True, 'inner_tex': 'C_3^2:D_6', 'inner_used': [1, 2, 3], 'irrC_degree': 6, 'irrQ_degree': 6, 'irrQ_dim': 12, 'irrR_degree': 12, 'irrep_stats': [[1, 8], [2, 8], [4, 2], [6, 4]], 'label': '216.36', 'linC_count': 2, 'linC_degree': 6, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': 6, 'linQ_degree_count': 2, 'linQ_dim': 8, 'linQ_dim_count': 4, 'linR_count': 4, 'linR_degree': 8, 'maximal_subgroups_known': True, 'metabelian': False, 'metacyclic': False, 'monomial': True, 'name': 'C6.S3^2', 'ngens': 6, 'nilpotency_class': -1, 'nilpotent': False, 'normal_counts': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 12, 'number_characteristic_subgroups': 8, 'number_conjugacy_classes': 22, 'number_divisions': 18, 'number_normal_subgroups': 18, 'number_subgroup_autclasses': 40, 'number_subgroup_classes': 66, 'number_subgroups': 298, 'old_label': None, 'order': 216, 'order_factorization_type': 33, 'order_stats': [[1, 1], [2, 19], [3, 26], [4, 36], [6, 62], [12, 72]], 'outer_abelian': False, 'outer_cyclic': False, 'outer_equivalence': False, 'outer_exponent': 4, 'outer_gen_orders': [2, 4], 'outer_gen_pows': [0, 0], 'outer_gens': [[13, 10, 24, 144], [18, 61, 8, 72]], 'outer_group': '8.3', 'outer_hash': 3, 'outer_nilpotent': True, 'outer_order': 8, 'outer_permdeg': 4, 'outer_perms': [7, 10], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'D_4', 'pc_rank': 4, 'perfect': False, 'permutation_degree': 13, 'pgroup': 0, 'primary_abelian_invariants': [2, 4], 'quasisimple': False, 'rank': 2, 'rational': False, 'rational_characters_known': True, 'ratrep_stats': [[1, 4], [2, 6], [4, 4], [6, 4]], 'representations': {'PC': {'code': 29741048384101308565030855031239, 'gens': [1, 2, 5, 6], 'pres': [6, -2, -2, -2, -3, -3, -3, 72, 121, 31, 362, 50, 387, 1810, 736, 652, 5189, 2603]}, 'GLFq': {'d': 3, 'q': 9, 'gens': [84409954, 200036865, 19604863, 23578233, 10171009, 86106566]}, 'Perm': {'d': 13, 'gens': [14963890, 94484893, 23, 569898720, 124912200, 1133687640]}}, 'schur_multiplier': [2], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [2, 4], 'solvability_type': 10, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': True, 'sylow_subgroups_known': True, 'tex_name': 'C_6.S_3^2', 'transitive_degree': 36, 'wreath_data': None, 'wreath_product': False}