-
gps_subgroup_search • Show schema
Hide schema
{'Agroup': False, 'Zgroup': False, 'abelian': False, 'ambient': '21499084800000000.gn', 'ambient_counter': 170, 'ambient_order': 21499084800000000, 'ambient_tex': 'A_5^8.C_2\\wr C_4.C_2', 'central': False, 'central_factor': False, 'centralizer_order': None, 'characteristic': True, 'core_order': 335923200000000, 'counter': 130, 'cyclic': False, 'direct': None, 'hall': 0, 'label': '21499084800000000.gn.64._.A', 'maximal': False, 'maximal_normal': False, 'metabelian': False, 'metacyclic': False, 'minimal': False, 'minimal_normal': False, 'nilpotent': False, 'normal': True, 'old_label': '64.A', 'outer_equivalence': False, 'perfect': False, 'proper': True, 'quotient': '64.138', 'quotient_Agroup': False, 'quotient_abelian': False, 'quotient_cyclic': False, 'quotient_hash': None, 'quotient_metabelian': True, 'quotient_nilpotent': True, 'quotient_order': 64, 'quotient_simple': False, 'quotient_solvable': True, 'quotient_supersolvable': True, 'quotient_tex': 'C_2\\wr C_2^2', 'simple': False, 'solvable': False, 'special_labels': [], 'split': None, 'standard_generators': False, 'stem': False, 'subgroup': None, 'subgroup_hash': None, 'subgroup_order': 335923200000000, 'subgroup_tex': 'A_5.A_5.A_5.A_5.A_5.A_5.A_5.S_5', 'supersolvable': False, 'sylow': 0}
-
gps_subgroup_data • Show schema
Hide schema
{'ambient': '21499084800000000.gn', 'aut_centralizer_order': None, 'aut_label': None, 'aut_quo_index': None, 'aut_stab_index': None, 'aut_weyl_group': None, 'aut_weyl_index': None, 'centralizer': None, 'complements': None, 'conjugacy_class_count': 1, 'contained_in': None, 'contains': None, 'core': None, 'coset_action_label': None, 'count': 1, 'diagramx': None, 'generators': [19562808545406020, 621068928815030381305485556361, 27527506182452995384319736037817093922458167, 45367, 1073572767173839755352824416153601141567055271, 26976030648020213886011, 915068402903409722576953354088, 1046045235204573887923562332817844733585054911, 536786396870911781730184199817254196292698831, 536787282306178053123309320113195674909125133, 305291715927996596642168497211, 17892914616792966286761187301827574494, 1175091669949317125763, 83174359939498606161290508186721556400955548761, 305291690024875399481416835767, 23, 17637988924503805355585518237538064599, 523394611064763287157686428722493537948122960, 1596967378222129925251190575623551939573632191, 523394611319652686844940963953545008287846980, 1073573331581253014599339207456391049885008656, 8, 5779, 53952035309935386745691, 4, 11292213790670482125840510003, 523394636851567329136214471939871839741834205, 21967322543710977205375280889854090712611443317], 'label': '21499084800000000.gn.64._.A', 'mobius_quo': None, 'mobius_sub': None, 'normal_closure': None, 'normal_contained_in': None, 'normal_contains': None, 'normalizer': None, 'old_label': '64.A', 'projective_image': None, 'quotient_action_image': None, 'quotient_action_kernel': None, 'quotient_action_kernel_order': None, 'quotient_fusion': None, 'short_label': '64._.A', 'subgroup_fusion': None, 'weyl_group': None}
-
label None does not appear in gps_groups
-
gps_groups • Show schema
Hide schema
{'Agroup': False, 'Zgroup': False, 'abelian': False, 'abelian_quotient': '8.5', 'all_subgroups_known': False, 'almost_simple': False, 'aut_abelian': None, 'aut_cyclic': None, 'aut_derived_length': None, 'aut_exponent': None, 'aut_gen_orders': None, 'aut_gens': [[480445590322049307009770781877923328798566317549, 290956180988349717375238326802604772555675258148, 479895040502061488382456220880827820795087191737], [480445590322049307009770781878402774528849837584, 290956182177446192317253567551080695069595258208, 479895040502061488382456220880827820787942084502], [480445590322049307009770781878288243177002925620, 290956181865364796875238862849942407084955258218, 479895040502061488382456220880827820614543505363], [480445590322049307009772593716005564130437037584, 290956180988349717375237756934235789308580323828, 479895040502061488382455651012458837547993431711], [480445590322049307009770755974815647741880237593, 290956180988349717375238352705712453612361706068, 479895040502061488382456194977720139738401111745], [480445591189863030055746222292226058465125511149, 290956182168754651859787503132744775105435258208, 479895040198145371724038978441813346984675671737], [480445590313102858554025201852237916385127082909, 290956180996769904157116519767955748944795258169, 479895040476274666362954279652456466710776151737], [459524685623385262539372304752002592482437037549, 271081321524618901043464052821353486482331258148, 501352731571283360309662833048512447636685987897], [480418062815866854319678175719685963707033517549, 290942045241931700519197853600147319815067258148, 479908432261825924826285068860961250862286465977], [480445590322049316450420595390634652184422685469, 290956180988349717375237756934235789308581140308, 479895040502061488088456745719532312454350839657], [480445590322049333230168418485315331927909601869, 290956180988349717375238301001678975842407287028, 479895040502061479529805357690707514090701700617], [480445591207484573291649510890611939723672339949, 290956180988349717375238326802713257239965517348, 479895040780190783021370282267577259641062084537], [480445590009458095571197045962086056021664755949, 290956180988349717375238326802604437441884800548, 479895040501790134706868349427842877294811358137], [481477499810564492987027012347573191373649837549, 290956180988349717375238326802713256965497600548, 480968613243177143296068867288082311752079703737], [419774966695923578045609943882545196472772525549, 290956180988349717375238326802348342849074867748, 418715158011560384651581691640354981446977879737], [480445590322049342659526071086481697698476922349, 271590580388994258736430445809895791786907258148, 479895040502061479540290935679890441185679703737], [480445590322049315546644431005911422946976755949, 209350516917141917926694227377574957546395258148, 479895040502061462162058584272948902499469655737], [480445590322049307009770781877923328798566317549, 126146709617054765607727455190686063559298623398, 564172040613657022490170427115498358260812071004], [355895106485578896488983074487400756647681577538, 290956180988349717375238326802604772555675258148, 375219788132113153113680104318122324032599593537], [564199939522955575011041275491917868554762112008, 126119553496375092656049580162369207148545530121, 479895040502061488382456220880827820795087191737], [711239651610718788948626383260923390108848723276, 250160416843329714344851477244071689217474140623, 668847293279101269374459614007130795796894476105], [565741479547627016409258790610585987077352243064, 126119181224655895561394870773586784073486643995, 419747439762322085022535415189218351559994384591]], 'aut_group': None, 'aut_hash': None, 'aut_nilpotency_class': None, 'aut_nilpotent': None, 'aut_order': 171992678400000000, 'aut_permdeg': None, 'aut_perms': None, 'aut_phi_ratio': None, 'aut_solvable': None, 'aut_stats': None, 'aut_supersolvable': None, 'aut_tex': None, 'autcent_abelian': None, 'autcent_cyclic': None, 'autcent_exponent': None, 'autcent_group': None, 'autcent_hash': None, 'autcent_nilpotent': None, 'autcent_order': None, 'autcent_solvable': None, 'autcent_split': None, 'autcent_supersolvable': None, 'autcent_tex': None, 'autcentquo_abelian': None, 'autcentquo_cyclic': None, 'autcentquo_exponent': None, 'autcentquo_group': None, 'autcentquo_hash': None, 'autcentquo_nilpotent': None, 'autcentquo_order': None, 'autcentquo_solvable': None, 'autcentquo_supersolvable': None, 'autcentquo_tex': None, 'cc_stats': None, 'center_label': '1.1', 'center_order': None, 'central_product': None, 'central_quotient': '21499084800000000.gn', 'commutator_count': None, 'commutator_label': None, 'complements_known': False, 'complete': False, 'complex_characters_known': False, 'composition_factors': ['2.1', '2.1', '2.1', '2.1', '2.1', '2.1', '2.1', '60.5', '60.5', '60.5', '60.5', '60.5', '60.5', '60.5', '60.5'], 'composition_length': 15, 'conjugacy_classes_known': False, 'counter': 170, 'cyclic': False, 'derived_length': 3, 'dihedral': False, 'direct_factorization': None, 'direct_product': None, 'div_stats': None, 'element_repr_type': 'Perm', 'elementary': 1, 'eulerian_function': None, 'exponent': 240, 'exponents_of_order': [23, 8, 8], 'factors_of_aut_order': [2, 3, 5], 'factors_of_order': [2, 3, 5], 'faithful_reps': None, 'familial': False, 'frattini_label': '1.1', 'frattini_quotient': '21499084800000000.gn', 'hash': 6590876050151081010, 'hyperelementary': 1, 'inner_abelian': None, 'inner_cyclic': None, 'inner_exponent': None, 'inner_gen_orders': None, 'inner_gens': None, 'inner_hash': None, 'inner_nilpotent': None, 'inner_order': None, 'inner_split': None, 'inner_tex': 'A_5^8.C_2\\wr C_4.C_2', 'inner_used': None, 'irrC_degree': None, 'irrQ_degree': None, 'irrQ_dim': None, 'irrR_degree': None, 'irrep_stats': None, 'label': '21499084800000000.gn', 'linC_count': None, 'linC_degree': None, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': None, 'linQ_degree_count': None, 'linQ_dim': None, 'linQ_dim_count': None, 'linR_count': None, 'linR_degree': None, 'maximal_subgroups_known': True, 'metabelian': False, 'metacyclic': False, 'monomial': False, 'name': 'A5^8.C2wrC4.C2', 'ngens': 3, 'nilpotency_class': -1, 'nilpotent': False, 'normal_counts': [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 7, 0, 0, 7, 0, 7, 1], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': None, 'number_characteristic_subgroups': 15, 'number_conjugacy_classes': None, 'number_divisions': None, 'number_normal_subgroups': 29, 'number_subgroup_autclasses': None, 'number_subgroup_classes': None, 'number_subgroups': None, 'old_label': None, 'order': 21499084800000000, 'order_factorization_type': 321, 'order_stats': None, 'outer_abelian': None, 'outer_cyclic': None, 'outer_equivalence': False, 'outer_exponent': None, 'outer_gen_orders': None, 'outer_gen_pows': None, 'outer_gens': None, 'outer_group': None, 'outer_hash': None, 'outer_nilpotent': None, 'outer_order': 8, 'outer_permdeg': None, 'outer_perms': None, 'outer_solvable': None, 'outer_supersolvable': None, 'outer_tex': None, 'pc_rank': None, 'perfect': False, 'permutation_degree': None, 'pgroup': 0, 'primary_abelian_invariants': [2, 2, 2], 'quasisimple': False, 'rank': 3, 'rational': None, 'rational_characters_known': False, 'ratrep_stats': None, 'representations': {'Perm': {'d': 40, 'gens': [479895040502061488382456220880827820795087191737, 290956180988349717375238326802604772555675258148, 480445590322049307009770781877923328798566317549]}}, 'schur_multiplier': None, 'semidirect_product': None, 'simple': False, 'smith_abelian_invariants': [2, 2, 2], 'solvability_type': 13, 'solvable': False, 'subgroup_inclusions_known': False, 'subgroup_index_bound': 500, 'supersolvable': False, 'sylow_subgroups_known': True, 'tex_name': 'A_5^8.C_2\\wr C_4.C_2', 'transitive_degree': 40, 'wreath_data': None, 'wreath_product': False}
-
gps_groups • Show schema
Hide schema
{'Agroup': False, 'Zgroup': False, 'abelian': False, 'abelian_quotient': '8.5', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 3, 'aut_exponent': 12, 'aut_gen_orders': [2, 2, 2, 3, 2, 2, 2, 2], 'aut_gens': [[1, 23616, 11536, 121, 7, 5167], [5166, 23616, 35152, 121, 5041, 5167], [5166, 23737, 11543, 121, 7, 5167], [5166, 23616, 11536, 121, 7, 5167], [1, 35152, 23616, 5041, 121, 5167], [5040, 28783, 16703, 5046, 5160, 5167], [6, 28783, 11536, 5046, 7, 5167], [1, 28783, 11536, 121, 7, 5167], [1, 23616, 16703, 121, 7, 5167]], 'aut_group': '384.17948', 'aut_hash': 17948, 'aut_nilpotency_class': -1, 'aut_nilpotent': False, 'aut_order': 384, 'aut_permdeg': 10, 'aut_perms': [727, 380521, 1, 10128, 2586414, 2223528, 2314248, 1901646], 'aut_phi_ratio': 12.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [2, 2, 3, 1], [2, 4, 2, 1], [2, 4, 3, 1], [4, 4, 3, 1], [4, 8, 3, 1]], 'aut_supersolvable': False, 'aut_tex': 'C_2^4:S_4', 'autcent_abelian': True, 'autcent_cyclic': False, 'autcent_exponent': 2, 'autcent_group': '8.5', 'autcent_hash': 5, 'autcent_nilpotent': True, 'autcent_order': 8, 'autcent_solvable': True, 'autcent_split': False, 'autcent_supersolvable': True, 'autcent_tex': 'C_2^3', 'autcentquo_abelian': False, 'autcentquo_cyclic': False, 'autcentquo_exponent': 12, 'autcentquo_group': '48.48', 'autcentquo_hash': 48, 'autcentquo_nilpotent': False, 'autcentquo_order': 48, 'autcentquo_solvable': True, 'autcentquo_supersolvable': False, 'autcentquo_tex': 'C_2\\times S_4', 'cc_stats': [[1, 1, 1], [2, 1, 1], [2, 2, 3], [2, 4, 5], [4, 4, 3], [4, 8, 3]], 'center_label': '2.1', 'center_order': 2, 'central_product': False, 'central_quotient': '32.27', 'commutator_count': 1, 'commutator_label': '8.5', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1', '2.1', '2.1', '2.1', '2.1', '2.1'], 'composition_length': 6, 'conjugacy_classes_known': True, 'counter': 138, 'cyclic': False, 'derived_length': 2, 'dihedral': False, 'direct_factorization': [], 'direct_product': False, 'div_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [2, 2, 1, 3], [2, 4, 1, 5], [4, 4, 1, 3], [4, 8, 1, 3]], 'element_repr_type': 'Perm', 'elementary': 2, 'eulerian_function': 224, 'exponent': 4, 'exponents_of_order': [6], 'factors_of_aut_order': [2, 3], 'factors_of_order': [2], 'faithful_reps': [[4, 1, 2]], 'familial': False, 'frattini_label': '8.5', 'frattini_quotient': '8.5', 'hash': 138, 'hyperelementary': 2, 'inner_abelian': False, 'inner_cyclic': False, 'inner_exponent': 4, 'inner_gen_orders': [2, 2, 2, 2, 2, 1], 'inner_gens': [[1, 23737, 11543, 121, 7, 5167], [120, 23616, 11536, 121, 5160, 5167], [6, 23616, 11536, 5046, 7, 5167], [1, 23616, 16703, 121, 7, 5167], [1, 28783, 11536, 121, 7, 5167], [1, 23616, 11536, 121, 7, 5167]], 'inner_hash': 27, 'inner_nilpotent': True, 'inner_order': 32, 'inner_split': True, 'inner_tex': 'C_2^2\\wr C_2', 'inner_used': [1, 2, 3], 'irrC_degree': 4, 'irrQ_degree': 4, 'irrQ_dim': 4, 'irrR_degree': 4, 'irrep_stats': [[1, 8], [2, 6], [4, 2]], 'label': '64.138', 'linC_count': 2, 'linC_degree': 4, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': 4, 'linQ_degree_count': 2, 'linQ_dim': 4, 'linQ_dim_count': 2, 'linR_count': 2, 'linR_degree': 4, 'maximal_subgroups_known': True, 'metabelian': True, 'metacyclic': False, 'monomial': True, 'name': 'C2wrC2^2', 'ngens': 6, 'nilpotency_class': 3, 'nilpotent': True, 'normal_counts': [0, 0, 0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 7, 'number_characteristic_subgroups': 6, 'number_conjugacy_classes': 16, 'number_divisions': 16, 'number_normal_subgroups': 27, 'number_subgroup_autclasses': 38, 'number_subgroup_classes': 99, 'number_subgroups': 225, 'old_label': None, 'order': 64, 'order_factorization_type': 3, 'order_stats': [[1, 1], [2, 27], [4, 36]], 'outer_abelian': False, 'outer_cyclic': False, 'outer_equivalence': False, 'outer_exponent': 6, 'outer_gen_orders': [2, 6], 'outer_gen_pows': [0, 0], 'outer_gens': [[1, 35152, 11536, 5041, 7, 5167], [5166, 35152, 23616, 5041, 121, 5167]], 'outer_group': '12.4', 'outer_hash': 4, 'outer_nilpotent': False, 'outer_order': 12, 'outer_permdeg': 5, 'outer_perms': [6, 31], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'D_6', 'pc_rank': 4, 'perfect': False, 'permutation_degree': 8, 'pgroup': 2, 'primary_abelian_invariants': [2, 2, 2], 'quasisimple': False, 'rank': 3, 'rational': True, 'rational_characters_known': True, 'ratrep_stats': [[1, 8], [2, 6], [4, 2]], 'representations': {'PC': {'code': 9368648897762716266, 'gens': [1, 2, 4, 6], 'pres': [6, 2, 2, 2, 2, 2, 2, 457, 31, 362, 489, 159, 69, 1733, 875]}, 'GLZ': {'b': 3, 'd': 4, 'gens': [16566404, 35892690, 17330674]}, 'GLFp': {'d': 4, 'p': 2, 'gens': [33837, 18465, 27183, 33835, 18659, 34029]}, 'Perm': {'d': 8, 'gens': [1, 23616, 11536, 121, 7, 5167]}}, 'schur_multiplier': [2, 2, 2, 2], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [2, 2, 2], 'solvability_type': 4, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': True, 'sylow_subgroups_known': True, 'tex_name': 'C_2\\wr C_2^2', 'transitive_degree': 8, 'wreath_data': ['32.c1.a1', '16.i1.a1', '64.a1.a1', '4T2'], 'wreath_product': True}