-
gps_subgroup_search • Show schema
Hide schema
{'Agroup': False, 'Zgroup': False, 'abelian': False, 'ambient': '2048.crx', 'ambient_counter': 1818, 'ambient_order': 2048, 'ambient_tex': 'D_4^2.C_2^5', 'central': False, 'central_factor': False, 'centralizer_order': None, 'characteristic': False, 'core_order': 256, 'counter': 1512, 'cyclic': False, 'direct': None, 'hall': 0, 'label': '2048.crx.8._.BAY', 'maximal': False, 'maximal_normal': False, 'metabelian': False, 'metacyclic': False, 'minimal': False, 'minimal_normal': False, 'nilpotent': True, 'normal': True, 'old_label': '8.BAY', 'outer_equivalence': False, 'perfect': False, 'proper': True, 'quotient': '8.5', 'quotient_Agroup': True, 'quotient_abelian': True, 'quotient_cyclic': False, 'quotient_hash': None, 'quotient_metabelian': True, 'quotient_nilpotent': True, 'quotient_order': 8, 'quotient_simple': False, 'quotient_solvable': True, 'quotient_supersolvable': True, 'quotient_tex': 'C_2^3', 'simple': False, 'solvable': True, 'special_labels': [], 'split': None, 'standard_generators': False, 'stem': False, 'subgroup': '256.6664', 'subgroup_hash': None, 'subgroup_order': 256, 'subgroup_tex': '(C_4\\times C_8).D_4', 'supersolvable': True, 'sylow': 0}
-
gps_subgroup_data • Show schema
Hide schema
{'ambient': '2048.crx', 'aut_centralizer_order': None, 'aut_label': None, 'aut_quo_index': None, 'aut_stab_index': None, 'aut_weyl_group': None, 'aut_weyl_index': None, 'centralizer': None, 'complements': None, 'conjugacy_class_count': 1, 'contained_in': None, 'contains': None, 'core': None, 'coset_action_label': None, 'count': 1, 'diagramx': None, 'generators': [129, 130, 1032], 'label': '2048.crx.8._.BAY', 'mobius_quo': None, 'mobius_sub': None, 'normal_closure': None, 'normal_contained_in': None, 'normal_contains': None, 'normalizer': None, 'old_label': '8.BAY', 'projective_image': None, 'quotient_action_image': None, 'quotient_action_kernel': None, 'quotient_action_kernel_order': None, 'quotient_fusion': None, 'short_label': '8._.BAY', 'subgroup_fusion': None, 'weyl_group': None}
-
gps_groups • Show schema
Hide schema
{'Agroup': False, 'Zgroup': False, 'abelian': False, 'abelian_quotient': '8.5', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 3, 'aut_exponent': 8, 'aut_gen_orders': [2, 2, 2, 2, 2, 2], 'aut_gens': [[1, 2, 8, 32], [193, 206, 72, 224], [1, 18, 8, 160], [173, 62, 8, 104], [85, 70, 24, 184], [1, 130, 8, 32], [129, 158, 216, 160]], 'aut_group': '1024.djj', 'aut_hash': 354343342895453903, 'aut_nilpotency_class': 5, 'aut_nilpotent': True, 'aut_order': 1024, 'aut_permdeg': 18, 'aut_perms': [732828465862830, 442764646255, 358568163486126, 3449282203323414, 1, 3948499538091606], 'aut_phi_ratio': 8.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [2, 2, 1, 1], [2, 8, 2, 2], [4, 4, 1, 3], [4, 8, 2, 2], [4, 16, 1, 2], [4, 32, 2, 1], [8, 4, 2, 1], [8, 8, 1, 1], [8, 16, 2, 2]], 'aut_supersolvable': True, 'aut_tex': 'D_4^2.C_2^4', 'autcent_abelian': True, 'autcent_cyclic': False, 'autcent_exponent': 2, 'autcent_group': '8.5', 'autcent_hash': 5, 'autcent_nilpotent': True, 'autcent_order': 8, 'autcent_solvable': True, 'autcent_split': False, 'autcent_supersolvable': True, 'autcent_tex': 'C_2^3', 'autcentquo_abelian': False, 'autcentquo_cyclic': False, 'autcentquo_exponent': 8, 'autcentquo_group': '128.928', 'autcentquo_hash': 928, 'autcentquo_nilpotent': True, 'autcentquo_order': 128, 'autcentquo_solvable': True, 'autcentquo_supersolvable': True, 'autcentquo_tex': 'C_2\\wr D_4', 'cc_stats': [[1, 1, 1], [2, 1, 1], [2, 2, 1], [2, 8, 4], [4, 4, 3], [4, 8, 4], [4, 16, 2], [4, 32, 2], [8, 4, 2], [8, 8, 1], [8, 16, 4]], 'center_label': '2.1', 'center_order': 2, 'central_product': False, 'central_quotient': '128.928', 'commutator_count': 1, 'commutator_label': '32.34', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1', '2.1', '2.1', '2.1', '2.1', '2.1', '2.1', '2.1'], 'composition_length': 8, 'conjugacy_classes_known': True, 'counter': 6664, 'cyclic': False, 'derived_length': 3, 'dihedral': False, 'direct_factorization': [], 'direct_product': False, 'div_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [2, 2, 1, 1], [2, 8, 1, 4], [4, 4, 1, 3], [4, 8, 1, 2], [4, 8, 2, 1], [4, 16, 1, 2], [4, 32, 1, 2], [8, 4, 2, 1], [8, 8, 1, 1], [8, 16, 1, 2], [8, 16, 2, 1]], 'element_repr_type': 'PC', 'elementary': 2, 'eulerian_function': 5376, 'exponent': 8, 'exponents_of_order': [8], 'factors_of_aut_order': [2], 'factors_of_order': [2], 'faithful_reps': [[4, 0, 4], [8, -1, 1]], 'familial': False, 'frattini_label': '32.34', 'frattini_quotient': '8.5', 'hash': 6664, 'hyperelementary': 2, 'inner_abelian': False, 'inner_cyclic': False, 'inner_exponent': 8, 'inner_gen_orders': [2, 4, 4, 4], 'inner_gens': [[1, 134, 72, 96], [133, 2, 216, 56], [193, 82, 8, 32], [193, 10, 8, 32]], 'inner_hash': 928, 'inner_nilpotent': True, 'inner_order': 128, 'inner_split': True, 'inner_tex': 'C_2\\wr D_4', 'inner_used': [1, 2, 3, 4], 'irrC_degree': 4, 'irrQ_degree': 8, 'irrQ_dim': 16, 'irrR_degree': 8, 'irrep_stats': [[1, 8], [2, 6], [4, 10], [8, 1]], 'label': '256.6664', 'linC_count': 4, 'linC_degree': 4, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': 8, 'linQ_degree_count': 1, 'linQ_dim': 16, 'linQ_dim_count': 2, 'linR_count': 2, 'linR_degree': 8, 'maximal_subgroups_known': True, 'metabelian': False, 'metacyclic': False, 'monomial': True, 'name': '(C4*C8).D4', 'ngens': 3, 'nilpotency_class': 5, 'nilpotent': True, 'normal_counts': [0, 0, 0, 0, 0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 17, 'number_characteristic_subgroups': 15, 'number_conjugacy_classes': 25, 'number_divisions': 22, 'number_normal_subgroups': 29, 'number_subgroup_autclasses': 129, 'number_subgroup_classes': 197, 'number_subgroups': 735, 'old_label': None, 'order': 256, 'order_factorization_type': 7, 'order_stats': [[1, 1], [2, 35], [4, 140], [8, 80]], 'outer_abelian': True, 'outer_cyclic': False, 'outer_equivalence': False, 'outer_exponent': 2, 'outer_gen_orders': [2, 2, 2], 'outer_gen_pows': [0, 0, 16], 'outer_gens': [[129, 2, 8, 32], [1, 2, 8, 160], [45, 62, 8, 232]], 'outer_group': '8.5', 'outer_hash': 5, 'outer_nilpotent': True, 'outer_order': 8, 'outer_permdeg': 6, 'outer_perms': [1, 6, 120], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'C_2^3', 'pc_rank': 4, 'perfect': False, 'permutation_degree': 32, 'pgroup': 2, 'primary_abelian_invariants': [2, 2, 2], 'quasisimple': False, 'rank': 3, 'rational': False, 'rational_characters_known': True, 'ratrep_stats': [[1, 8], [2, 6], [4, 6], [8, 1], [16, 1]], 'representations': {'PC': {'code': 46034335309393420816380827772044098849650220778, 'gens': [1, 2, 4, 6], 'pres': [8, 2, 2, 2, 2, 2, 2, 2, 2, 2145, 41, 2307, 3467, 211, 91, 5764, 2892, 4613, 1357, 1173, 141, 10758, 2254, 2710, 166]}, 'Perm': {'d': 32, 'gens': [16985047389969122135499973715913737, 144187682882947265441986938703872000, 67977995780968282257602718863923200, 59187996939413163037656623791490496, 33988952657421979333960739503507073, 25199044282045187207315527271184142, 25903229683158464676480, 8231691320578226211046411712681647]}}, 'schur_multiplier': [2, 2, 2], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [2, 2, 2], 'solvability_type': 5, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': True, 'sylow_subgroups_known': True, 'tex_name': '(C_4\\times C_8).D_4', 'transitive_degree': 32, 'wreath_data': None, 'wreath_product': False}
-
gps_groups • Show schema
Hide schema
{'Agroup': False, 'Zgroup': False, 'abelian': False, 'abelian_quotient': '64.267', 'all_subgroups_known': False, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 3, 'aut_exponent': 8, 'aut_gen_orders': [4, 4, 8, 8, 4, 4, 4, 4, 4, 4], 'aut_gens': [[1, 2, 8, 32, 128, 512, 1024], [1449, 938, 344, 352, 128, 768, 1680], [669, 122, 1384, 48, 128, 576, 1280], [1721, 506, 920, 32, 128, 768, 1088], [1109, 822, 1016, 96, 592, 144, 1680], [897, 1894, 1304, 368, 128, 512, 1280], [605, 1306, 952, 368, 384, 832, 2000], [669, 314, 696, 112, 592, 400, 1280], [81, 706, 728, 288, 128, 768, 1024], [861, 810, 360, 368, 128, 832, 1280], [397, 1054, 952, 96, 848, 400, 2000]], 'aut_group': None, 'aut_hash': 6905708186991642715, 'aut_nilpotency_class': 5, 'aut_nilpotent': True, 'aut_order': 4194304, 'aut_permdeg': 192, 'aut_perms': [328389962746700005671392783438816434373978613221430747381365860370325113263093142190828491674285491563603517389952635794066341611469010377616305368647852806819164263464568953138556704564989058827751689314589343232204179096101911613179662686177915090822932993987988562838179638769745291209553709108955075792233690206369852624447333298018674931326491981458249, 19600324279509156471028371817933779277434705197119643780998914263710810613845333377646103384266634789488603680408470219299197650204274043884180582466084767983320999144057079538351143483422946854890479881329650009707338466475397518091241338899331984713239144941797756020689472329844256283106114391793538613871518611936366222557264149673082032125179291516738, 237049600193415553388693798801356402645108781324525112356988395113310119354511499824437254276046729226699549446383056400053952514200835670086999740818674740170316637688737984721860645383065364948355230461674441324959304048826974405142334745305991695832609556968660053862326993196748220694637522996552730455373714384044853652735116268146680057250181702570508, 182216723559478239166737671642782653515749174112631654844326615380553490925960709479793469811510973617706181500155835397335625441658676218488051236084387006839107259595500660011953929940850087811492266563342934017662852057778980934079401605124225177606792896730268150354641095268230555391473025903532886066244340898936921904002260923576857229326791480803494, 7675328034380267987818378356780120421332642018364853835399880583738338874636282919421972727496043077339627719191249903320487704323080321092340410695482155489447675103244184650088327801815899037551762172680218612949758974133676035966648054768327820203419079477727916127438924696781935020899764183317259236828456641886948286937532646876439686293148723189799, 299353917563270206234857197361720482972306646144787714126408608120358717799447436987542461363075137278085031497652332900617304175294375224412299366188003638641621728652672588468286754579464095566299294561005893281026269458375704857246853185675279234236492318717224076367453186973875479764290160633376867550914320930243315577897932089902358899033527266437913, 314980625458038194038709812525725254685647340125251978920611010798616768525407089159730754496452697275329141176095421020451948428120186110109729039297623230883834486054077381863883705243980638960919488745964109620701110195692506377562603171810490088205790114548811904072078020288438843980968089616001591584344378671975978219834957939721743335224499175955915, 38301472253238492365445017919302325663538248210360734622108376099402957379869513284870198680371169256774450216352122312720859992864699762315182292409568346580244440555442481863120752995974090442134022478024685084448017000605196698209397511972510786899426746897327958581862603829593703066705121301776258178836965993137498943224007963067673790120814072804327, 205595577924878119391065819737427070250452847942763756093818130627547134498001358828588365074541191376769902534790211999580747326363296069787292027974476811973663691107627172253086886586212002522968997308632879463105606163435211679794677162767066354579851498689945454002982667595988303121984198324065579594516473088809123843224816921307381691483845636356644, 118181678768823834749520442046066832204310325410178719556498550216306673524054985258535343832183178854993877392507213805377511131222424199328226477055939976971847136689050117898820629833196972845444824220557753742448066093677840947144239109375869413870066222499378792721847356740069956107725045593638382175445681059697229173222673502673133859051068379976542], 'aut_phi_ratio': 4096.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [2, 1, 2, 1], [2, 2, 1, 2], [2, 2, 4, 1], [2, 4, 2, 2], [2, 8, 2, 2], [2, 8, 4, 1], [2, 8, 8, 1], [2, 8, 16, 1], [2, 16, 4, 1], [4, 1, 4, 1], [4, 2, 2, 1], [4, 2, 4, 1], [4, 4, 1, 2], [4, 4, 2, 3], [4, 4, 4, 1], [4, 8, 2, 2], [4, 8, 4, 2], [4, 8, 8, 1], [4, 8, 16, 1], [4, 16, 4, 3], [4, 32, 16, 1], [8, 8, 8, 2], [8, 16, 16, 1], [8, 32, 8, 1]], 'aut_supersolvable': True, 'aut_tex': '(C_2^6\\times C_4^2).C_2^6.C_2^6', 'autcent_abelian': False, 'autcent_cyclic': False, 'autcent_exponent': 4, 'autcent_group': None, 'autcent_hash': 45958743261578691, 'autcent_nilpotent': True, 'autcent_order': 2048, 'autcent_solvable': True, 'autcent_split': None, 'autcent_supersolvable': True, 'autcent_tex': 'C_2^9.C_2^2', 'autcentquo_abelian': False, 'autcentquo_cyclic': False, 'autcentquo_exponent': 8, 'autcentquo_group': None, 'autcentquo_hash': 2125128279056734975, 'autcentquo_nilpotent': True, 'autcentquo_order': 2048, 'autcentquo_solvable': True, 'autcentquo_supersolvable': True, 'autcentquo_tex': '(C_2^2\\times D_4).C_2^6', 'cc_stats': [[1, 1, 1], [2, 1, 3], [2, 2, 6], [2, 4, 4], [2, 8, 32], [2, 16, 4], [4, 1, 4], [4, 2, 6], [4, 4, 12], [4, 8, 36], [4, 16, 12], [4, 32, 16], [8, 8, 16], [8, 16, 16], [8, 32, 8]], 'center_label': '8.2', 'center_order': 8, 'central_product': None, 'central_quotient': '256.26531', 'commutator_count': 1, 'commutator_label': '32.34', 'complements_known': False, 'complete': False, 'complex_characters_known': False, 'composition_factors': ['2.1', '2.1', '2.1', '2.1', '2.1', '2.1', '2.1', '2.1', '2.1', '2.1', '2.1'], 'composition_length': 11, 'conjugacy_classes_known': True, 'counter': 1818, 'cyclic': False, 'derived_length': 3, 'dihedral': False, 'direct_factorization': None, 'direct_product': True, 'div_stats': [[1, 1, 1, 1], [2, 1, 1, 3], [2, 2, 1, 6], [2, 4, 1, 4], [2, 8, 1, 32], [2, 16, 1, 4], [4, 1, 2, 2], [4, 2, 1, 6], [4, 4, 1, 8], [4, 4, 2, 2], [4, 8, 1, 28], [4, 8, 2, 4], [4, 16, 1, 12], [4, 32, 1, 16], [8, 8, 1, 16], [8, 16, 1, 16], [8, 32, 1, 8]], 'element_repr_type': 'PC', 'elementary': 2, 'eulerian_function': None, 'exponent': 8, 'exponents_of_order': [11], 'factors_of_aut_order': [2], 'factors_of_order': [2], 'faithful_reps': [], 'familial': False, 'frattini_label': '32.34', 'frattini_quotient': '64.267', 'hash': 3770300787620698695, 'hyperelementary': 2, 'inner_abelian': False, 'inner_cyclic': False, 'inner_exponent': 8, 'inner_gen_orders': [2, 4, 4, 4, 1, 2, 2], 'inner_gens': [[1, 6, 8, 368, 128, 768, 1024], [5, 2, 696, 368, 128, 832, 1088], [1, 754, 8, 32, 128, 512, 1280], [81, 82, 8, 32, 128, 512, 1024], [1, 2, 8, 32, 128, 512, 1024], [257, 322, 8, 32, 128, 512, 1024], [1, 66, 264, 32, 128, 512, 1024]], 'inner_hash': 26531, 'inner_nilpotent': True, 'inner_order': 256, 'inner_split': False, 'inner_tex': 'D_4^2:C_2^2', 'inner_used': [1, 2, 3, 7], 'irrC_degree': -1, 'irrQ_degree': -1, 'irrQ_dim': -1, 'irrR_degree': None, 'irrep_stats': [[1, 64], [2, 48], [4, 48], [8, 16]], 'label': '2048.crx', 'linC_count': None, 'linC_degree': None, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': None, 'linQ_degree_count': None, 'linQ_dim': None, 'linQ_dim_count': None, 'linR_count': None, 'linR_degree': None, 'maximal_subgroups_known': True, 'metabelian': False, 'metacyclic': False, 'monomial': True, 'name': 'D4^2.C2^5', 'ngens': 6, 'nilpotency_class': 5, 'nilpotent': True, 'normal_counts': [1, 3, 15, 43, 67, 211, 547, 1011, 1443, 651, 63, 1], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 37, 'number_characteristic_subgroups': 70, 'number_conjugacy_classes': 176, 'number_divisions': 168, 'number_normal_subgroups': 4056, 'number_subgroup_autclasses': None, 'number_subgroup_classes': None, 'number_subgroups': None, 'old_label': None, 'order': 2048, 'order_factorization_type': 7, 'order_stats': [[1, 1], [2, 351], [4, 1056], [8, 640]], 'outer_abelian': False, 'outer_cyclic': False, 'outer_equivalence': False, 'outer_exponent': 4, 'outer_gen_orders': [4, 4, 4, 4, 4, 4, 4, 4], 'outer_gen_pows': [0, 0, 64, 0, 0, 0, 0, 0], 'outer_gens': [[213, 582, 744, 288, 384, 832, 1344], [333, 986, 104, 368, 848, 400, 1280], [157, 190, 360, 352, 848, 400, 1744], [1857, 678, 1672, 112, 848, 464, 1280], [833, 546, 280, 96, 592, 208, 1744], [577, 1122, 1048, 32, 128, 768, 1024], [337, 1250, 24, 352, 128, 768, 1744], [1, 6, 728, 112, 384, 768, 1744]], 'outer_group': None, 'outer_hash': 2784291955126754687, 'outer_nilpotent': True, 'outer_order': 16384, 'outer_permdeg': 512, 'outer_perms': [83910993356444964481575191049730744050374073820595946363197717094445307750807380255567924983364664987835088543452184095099872983856088639068264482806248012152762678363477370845099801334905729474394935022242637735864864406059670074936780953078409436574405848370800674885156755072171895081777235395062366818800389847771448652774075598316107842446655570928209811743546949524656797842272790646306009137773266881725687212889327435011488371347526687056159590075612540586807798189748132044580354133454961923451026348619906061844211745947082830036812142178520348661579740611197064091561153572805350880886917697568194778569376688153272102972686997944422591596505183539893123438022828873363714041391261858891316159953574672741765540049812325426285243368912391134924287733263847629941706612912668655822816292648573561240905944819284823408148541298050756857375030535848956268214922127900035701598950469328642792992655935067842506225547821003311567740219911391901982597461122435368422423038127542039131332818521154713761664562739768284897926113550988165469768857233555562140662333088431211017589019448051612492964588210146718530811334734419012149530039793663660891176825059369983, 210267401309061916715821113347374958559337943932632420989054245771421440714504014247890153370605612798829001279010862101020135143984204396662938890653455755798013301586033332041016255356764194547609147954953359597365922717891445221777649398590051370463022224076304463765781090068188739457904503704659123261807478115873647470321136280545942879056260900589556111297272452042281135952360575470686235488839203407907889650277227060697399550104343058719753196735530763535737395782278336805827171481169544496734092448370095038993564421856036955608287936639256685111550139441299884278700487587362364497343117714793360030344787361740227469131390618314831809591769044037615144824216998836108946196662856271992710352794121869749577845252822928141358053183492875342713590477830393677472872600099190446546295524350984706033420954204454347895143076031869611946892746004657761338032044050563400939582029158348460886799987453888546865417199541742228810966392027267896188982131933929047241532327364805985823343242415232580437065479215329562216434265985970954233975398624648621102775691379875096211806290263169544186862002495691861923863526547733939162544535583044595091854116679569961, 118419473547367923074582165538146655446549424273216414367323612103227179907781441638280256303833383624750392463099806930420024542370226970132949982001222972415731817636374634662595829336404414723186230180515240535223992534843608829229432790679854222941592656448071769183036572115275649277933769905344029929844535707533069713282699328171622361475617619617041989100045117221733781414910082971901834893232245078420398034533180555293258900236433758629602850399310713828880424261826619461022580107251014582702464638756236930414230961365344261092533872574527487083559997239253944511442923812995594510021927474956188361157548037502812178653869224799897699243437570474447262843243943146716596550471050793065512154195030114064480009297542572831339066245611476012354018369847426444174939878822130306993475912132829243206583042016281790310686747117372552762913398774452088512903255709922936701935938842448741148046150676745045980679963482302596958585415215410549367486823594295460868381603321633282551792612207777943503097325088489376337654247972879701991058267900113842982577445953217249083558085236060570488531217879033649519541074528607191697124602144215129504554491064940720, 246270805816256683458727626808354283834310436962340398244627459426155014919234207800328839302422979594810759249662520179998192011466168659123893951486941197989901618321772665666171686781481444842303446307646997760937768507328587252027913735087709423917922111041618300371458453866722000933382226376322217336754266917425707490688011008424807577986373696719645333264284642745586853824963835535919420667811095544931567642528341920090051571347406258119520920513633928020145997230687591081427316265588215919573017518634286569382161266763871905718029701132622106616612235810180700405364685218192882410193266672854852209946982635822592069982123733336496905469993180479068542309951583405312234078129940573505161402452558850513369910990101438683888133380825229836958769960069742313119284680646493151033186786312397805059766278312655698230355801958262213882318180041745162325436159708017593016998200774372308701652250584686092683200250392713278853706258459609559269307297463872311247121226972709113241636606001493044118995213852073736164137435974400577762898420408827621222786537838288649266931515711636228665104963441654731502294034296633621452804325624119595604176860085327162, 224681436358851565100877918415165811944554617695108872257238361472264907788315752037564613821865559169089029795932465242459086028824231723294590555087690598841823561798665856621744871980212453466594200510751179033884104819513176459981721679649168999367244268576337445461926137210476324311021645290838929151719529956670312050494709029841544395489937966044597609815614882788188739466668373721969589879273969999654197846533262604428077419347694143632110823992719316659041561557946687794680901275605216212132336044301328805278301069327787818287853792354869803078922166207884784755472093314147111572309127798828536785017932592385566262217341395270188761198313738506103367077985541881505661125089092119323885399824619292669673436240990581785508743491965922596101792313022397370603466425217922607964246511181817010829193577771613692848264237705841759583827782669010756111635426754495437462287785865096112468404281265619850725895531403307028476822269099651143297958732531080284333694797899952829330459915307037763478641802597745550705077996962774575937402779840304188441924415936597790232901702273898328617485924805129841050691645604571298712651020277856826901737965481783643, 100618540761534839160923014989850945806328718190916109798230654975715771091656039188412800402032579933817513602401559197428078088942347671114672144509049243356842784042042492830711923233471282063731479825799609368110317965399230523665454521515809040111139100237895264692404239534372759591455626811585485566226129064449251004104720807650867388895026453144772581893041250310191091968748154895161916156576415552556813565077995188326978257228488371789884413420128078997228750898166513929916910610392580153458527397674350092923176666624067190109403776814579769534414872228591204386763462945005681438786214611273263956921307414617755822177836627958826158110953557277058141171120477739340849472035546385422616168601128813326407373617469213984921217419957763270703371113632494007012311481587744430801844811619982374344620502720059650509858096358921344778907633797308341190168231463169665296580913615323954188753321852658705142798428878785841905719598396811781093044454160407412962040348582351945371304845078015512408060077102867666783016125374634371415363579168334329481602380603851551168927712585168501074594453222077967838122821591557496384014626780775577498354015667259602, 326864163037741465228870495537222351087321125911244777204569630942451586742881023778125643764764106207432949132476344201817723331363096108455075722532712114298086691727358251510378027550179495081887662749308413986371474402807854380064445370667906747290390968791878822938681098953230978088003793226502396566782165624859801018226975639030070970550959595590753160198379659324038962262733392729016894227403476894537306095358977132718010320487659656133184039053222690429669752501346617731460727952233757028152269016586592524592478278025507965781279161735133905403147158489041000916164498990859763799726942431964743840471506721578380835591566572708449201511533955925377763220977164537664414492364915728669283129273846688173034634541363295000715963649922254481803186940707268323395732408413895096861313826688632244232644277831626897421651034362639895795371579383406625864194689159910325440544627654227003981679076694817479916216363123470154527981188783084374936665955868148875532595332317909333749110704874306212356397007512345159989248140160747325396964573165569688738402356823606284288241636001355376501136326510131389628975796203025142083440760130980423162544437547065081, 133427902906670468225030298434267070122736321628295957816749076887549316130490906644148233992498093026923665786874297731021483436080672517401953573828398401533319592358606401168656413508044021127277962596897679277505370340557264641106483662686921112411841007266092412576645872891611027362955835610119694657134631645101848343723822943990714983438786515073104657565270545691953801118987077402446950375529277034115722452738342402069484621113672451019527119695683927468637749482779509913061289803315454611775090023542488673376028364760413424906187571732243868220720601078083256230307754546394620546670919417926133460202469483425318486767175263571996032004815111404755621497851698924848752993322746108114700315933336973543700742554986327209689083589228216623672812767192883946699716274263660074338006584598534675872375567906573465773792822311770608916060836863413589098899885885200181347034237229269796217303193466893168262345429829426365281402229595107160847099008259801594099738530764093354317759928954600417485297303810096182385526543026971355597911399510709227456379272709704189181398061186623899660968034278835427857736681963279569826156916233871662410783518115406025], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'C_2^7.C_2^6.C_2', 'pc_rank': None, 'perfect': False, 'permutation_degree': None, 'pgroup': 2, 'primary_abelian_invariants': [2, 2, 2, 2, 2, 2], 'quasisimple': False, 'rank': 6, 'rational': False, 'rational_characters_known': False, 'ratrep_stats': [[1, 64], [2, 48], [4, 48], [16, 8]], 'representations': {'PC': {'code': '509507777355803551960637071618518789296429132412213422312477260773595566344611221177943227', 'gens': [1, 2, 4, 6, 8, 10, 11], 'pres': [11, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2816, 133, 56, 15326, 289, 124, 2215, 3766, 928, 24293, 12160, 1611, 192, 24646, 12337, 260, 84489, 45780, 21151, 65845, 38752, 19403]}, 'Perm': {'d': 34, 'gens': [18182333253529098409221653272416255054, 1, 9761332737502392852791118169995237529, 36363251509237843082373384876702363367, 27423221794098218988118128911582930527, 45277098266390244423081420523305433104]}}, 'schur_multiplier': [2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [2, 2, 2, 2, 2, 2], 'solvability_type': 5, 'solvable': True, 'subgroup_inclusions_known': False, 'subgroup_index_bound': 4, 'supersolvable': True, 'sylow_subgroups_known': True, 'tex_name': 'D_4^2.C_2^5', 'transitive_degree': None, 'wreath_data': None, 'wreath_product': False}
-
gps_groups • Show schema
Hide schema
{'Agroup': True, 'Zgroup': False, 'abelian': True, 'abelian_quotient': '8.5', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 0, 'aut_exponent': 84, 'aut_gen_orders': [3, 3], 'aut_gens': [[1, 2, 4], [4, 5, 3], [2, 4, 1]], 'aut_group': '168.42', 'aut_hash': 42, 'aut_nilpotency_class': -1, 'aut_nilpotent': False, 'aut_order': 168, 'aut_permdeg': 7, 'aut_perms': [4361, 244], 'aut_phi_ratio': 42.0, 'aut_solvable': False, 'aut_stats': [[1, 1, 1, 1], [2, 1, 7, 1]], 'aut_supersolvable': False, 'aut_tex': '\\PSL(2,7)', 'autcent_abelian': False, 'autcent_cyclic': False, 'autcent_exponent': 84, 'autcent_group': '168.42', 'autcent_hash': 42, 'autcent_nilpotent': False, 'autcent_order': 168, 'autcent_solvable': False, 'autcent_split': True, 'autcent_supersolvable': False, 'autcent_tex': '\\PSL(2,7)', 'autcentquo_abelian': True, 'autcentquo_cyclic': True, 'autcentquo_exponent': 1, 'autcentquo_group': '1.1', 'autcentquo_hash': 1, 'autcentquo_nilpotent': True, 'autcentquo_order': 1, 'autcentquo_solvable': True, 'autcentquo_supersolvable': True, 'autcentquo_tex': 'C_1', 'cc_stats': [[1, 1, 1], [2, 1, 7]], 'center_label': '8.5', 'center_order': 8, 'central_product': True, 'central_quotient': '1.1', 'commutator_count': 0, 'commutator_label': '1.1', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1', '2.1', '2.1'], 'composition_length': 3, 'conjugacy_classes_known': True, 'counter': 5, 'cyclic': False, 'derived_length': 1, 'dihedral': False, 'direct_factorization': [['2.1', 3]], 'direct_product': True, 'div_stats': [[1, 1, 1, 1], [2, 1, 1, 7]], 'element_repr_type': 'PC', 'elementary': 2, 'eulerian_function': 1, 'exponent': 2, 'exponents_of_order': [3], 'factors_of_aut_order': [2, 3, 7], 'factors_of_order': [2], 'faithful_reps': [], 'familial': False, 'frattini_label': '1.1', 'frattini_quotient': '8.5', 'hash': 5, 'hyperelementary': 2, 'inner_abelian': True, 'inner_cyclic': True, 'inner_exponent': 1, 'inner_gen_orders': [1, 1, 1], 'inner_gens': [[1, 2, 4], [1, 2, 4], [1, 2, 4]], 'inner_hash': 1, 'inner_nilpotent': True, 'inner_order': 1, 'inner_split': True, 'inner_tex': 'C_1', 'inner_used': [], 'irrC_degree': -1, 'irrQ_degree': -1, 'irrQ_dim': -1, 'irrR_degree': -1, 'irrep_stats': [[1, 8]], 'label': '8.5', 'linC_count': 28, 'linC_degree': 3, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': 3, 'linQ_degree_count': 28, 'linQ_dim': 3, 'linQ_dim_count': 28, 'linR_count': 28, 'linR_degree': 3, 'maximal_subgroups_known': True, 'metabelian': True, 'metacyclic': False, 'monomial': True, 'name': 'C2^3', 'ngens': 3, 'nilpotency_class': 1, 'nilpotent': True, 'normal_counts': [0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 2, 'number_characteristic_subgroups': 2, 'number_conjugacy_classes': 8, 'number_divisions': 8, 'number_normal_subgroups': 16, 'number_subgroup_autclasses': 4, 'number_subgroup_classes': 16, 'number_subgroups': 16, 'old_label': None, 'order': 8, 'order_factorization_type': 3, 'order_stats': [[1, 1], [2, 7]], 'outer_abelian': False, 'outer_cyclic': False, 'outer_equivalence': False, 'outer_exponent': 84, 'outer_gen_orders': [3, 3], 'outer_gen_pows': [0, 0], 'outer_gens': [[4, 5, 3], [2, 4, 1]], 'outer_group': '168.42', 'outer_hash': 42, 'outer_nilpotent': False, 'outer_order': 168, 'outer_permdeg': 7, 'outer_perms': [4361, 244], 'outer_solvable': False, 'outer_supersolvable': False, 'outer_tex': '\\PSL(2,7)', 'pc_rank': 3, 'perfect': False, 'permutation_degree': 6, 'pgroup': 2, 'primary_abelian_invariants': [2, 2, 2], 'quasisimple': False, 'rank': 3, 'rational': True, 'rational_characters_known': True, 'ratrep_stats': [[1, 8]], 'representations': {'PC': {'code': 0, 'gens': [1, 2, 3], 'pres': [3, -2, 2, 2]}, 'GLZ': {'b': 3, 'd': 3, 'gens': [16482, 16322, 3362]}, 'GLFp': {'d': 3, 'p': 3, 'gens': [8156, 13286, 13933]}, 'Perm': {'d': 6, 'gens': [120, 6, 1]}}, 'schur_multiplier': [2, 2, 2], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [2, 2, 2], 'solvability_type': 2, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': True, 'sylow_subgroups_known': True, 'tex_name': 'C_2^3', 'transitive_degree': 8, 'wreath_data': None, 'wreath_product': False}