-
gps_subgroup_search • Show schema
Hide schema
{'Agroup': False, 'Zgroup': False, 'abelian': False, 'ambient': '176400.a', 'ambient_counter': 1, 'ambient_order': 176400, 'ambient_tex': 'C_{420}.D_{210}', 'central': False, 'central_factor': True, 'centralizer_order': None, 'characteristic': True, 'core_order': 17640, 'counter': 49, 'cyclic': False, 'direct': None, 'hall': 0, 'label': '176400.a.10._.H', 'maximal': False, 'maximal_normal': False, 'metabelian': True, 'metacyclic': None, 'minimal': False, 'minimal_normal': False, 'nilpotent': False, 'normal': True, 'old_label': '10.H', 'outer_equivalence': False, 'perfect': False, 'proper': True, 'quotient': '10.2', 'quotient_Agroup': True, 'quotient_abelian': True, 'quotient_cyclic': True, 'quotient_hash': None, 'quotient_metabelian': True, 'quotient_nilpotent': True, 'quotient_order': 10, 'quotient_simple': False, 'quotient_solvable': True, 'quotient_supersolvable': True, 'quotient_tex': 'C_{10}', 'simple': False, 'solvable': True, 'special_labels': [], 'split': None, 'standard_generators': False, 'stem': False, 'subgroup': '17640.h', 'subgroup_hash': None, 'subgroup_order': 17640, 'subgroup_tex': 'C_{21}\\times D_{420}', 'supersolvable': True, 'sylow': 0}
-
gps_subgroup_data • Show schema
Hide schema
{'ambient': '176400.a', 'aut_centralizer_order': None, 'aut_label': None, 'aut_quo_index': None, 'aut_stab_index': None, 'aut_weyl_group': None, 'aut_weyl_index': None, 'centralizer': None, 'complements': None, 'conjugacy_class_count': 1, 'contained_in': None, 'contains': None, 'core': None, 'coset_action_label': None, 'count': 1, 'diagramx': None, 'generators': [27608830571, 3581686435, 15744495273, 23579433680, 9103452243, 5894858435, 177662, 2462409583], 'label': '176400.a.10._.H', 'mobius_quo': None, 'mobius_sub': None, 'normal_closure': None, 'normal_contained_in': None, 'normal_contains': None, 'normalizer': None, 'old_label': '10.H', 'projective_image': None, 'quotient_action_image': None, 'quotient_action_kernel': None, 'quotient_action_kernel_order': None, 'quotient_fusion': None, 'short_label': '10._.H', 'subgroup_fusion': None, 'weyl_group': None}
-
gps_groups • Show schema
Hide schema
{'Agroup': False, 'Zgroup': False, 'abelian': False, 'abelian_quotient': '84.15', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 2, 'aut_exponent': 420, 'aut_gen_orders': [12, 2, 30, 12, 12, 30, 12, 210], 'aut_gens': [[1, 42], [13673, 9282], [461, 1722], [3527, 11382], [12401, 11046], [1993, 2226], [9413, 9282], [1487, 10374], [15641, 2982]], 'aut_group': None, 'aut_hash': 3193964801854808590, 'aut_nilpotency_class': -1, 'aut_nilpotent': False, 'aut_order': 483840, 'aut_permdeg': 428, 'aut_perms': [879422756401084580897255549399742834893758394504293637006893505490982022576973919128379923945189902350765738463791529209871569259129184066868460068558640777692550396401301892492859810757968674283134545167054366612256376098974775067532688731160579766996611948133525743262159020198173680309156524941930825449191308636329591463618811049500442667148757297917428583133020585776456709480405053254023489275077175463909817147205354062094928884023994641882649127295597648440442070504339823976831947249681403431552727467772628009449719576235370133165154930240817754315563937249247784381282587138398742419028416554697771434607423253589911593480500542987777213130453504676621045186706722551310677263831246850579201929408688051590360837366838669501824183772130735287071020619327859684721866036480038224934840915701435629736153247368870722642732806548112647238715347096641680465181800759351977980893014198583909095013729257358571889042703917807822927256673, 922132266671387918190188920254062217436861103884467589776697052814642080668955720860218311664872293282272544581293727782554994604628117205054280014060636204311439748145038860104447135794022581900375458577009313718018096375779840478956105991748656217748996454876138933800184780665543098290176203548434142255283708357888351719929990980711339056306179064519756866240868070325810207061040659545372550457322099800973718959685778071433192135996437297322884528669696431689039430756150127816539980170033147434476162728000435646070840710277470499529906248883935683826514652237454151671303228341257611204064462701926291370931810642358410186329730189965368132862319257466390133276665254056463369230851034314352972359942109063320444849132474458397360941062664222230436985986642710122014347246468873958984966469012517167088895914201645434888989192927176771165665655088953240851032425658847219413652435857565461012963882262935187991278091016708256044130489, 1211907255231819041208721717030337598905386592660345889278291500761628548133134355188707395625452865634310588424418654955739171940193831990146128671545821301069620362824932243546383761231694233897198776225042976292936876004257125500455451733696194081940458606136894476160162469853499078714602452861738607693367187845737043683547877238370000858013119597504548939120232670951417546011715708237740389497239344611172241103991320518585044259365740152517212138332370068557826190124342300751701875049742251474217638681812929809669541249748324483138411377879519193557605712412528431779554881718727926808479171269324047131062182489272618511049168011473934123192303452351635418414392408584106296671359418817847277696114039490233339970168569281044994029895227308763994018144884970360106419232929942249753812851241504362026522761820162350736360228809915649112383213140668144976478159252877403987730869289830614895528783102853524107135797687697029359349710, 109725087135021970023981335487233789887227153750321683042518493033968178774806291049758264561386083901618698949268128118681754431973723941266939079324748889487176886977140204432063313785725292393519702965784658533556814334486690206120095633243744774897523150249188757611904745262274755228143285673205320970787991820752819613783331639353240291936262431621518979561104531975233444027129665909529930976614251327692373029298366397039358966572329509560440089521114930910012826248650565198054918147875332481718287753603611546056991915791653810336982427442573837143794267486461565299474572132282412753644952048973053664044929118842635603385890919860262452656133873664074102240986036117350735667764688313290862119048703975119528130130285669884304486161055165106110390060616227880907742662190473741686553145422146164516756110563080829269247318925074587928498017792396144690423115095381340253236833323221214349267239550867650384642059284884902723767294, 239630518362379242916425644590933786392011582497914182285148748143938648273318225848329005905031296439283077669627713335228118328032658635426637704468283689330259561217772149555556171843832616285893680730460030446000333449383356014735871901126210914724278362684264513893227540757948855557159677823515695014763924697045325304013244470713650404524545673894337020580233439419291509258397509476498126278096910869875027726954740007194747879538366246082712305894916658344856231782112225104612761749848636933150045227609731386342900881977480825692552819297999410145139612398670761253963611956161299486980119360243563228230356410396026491055557385752087868749544908448454414247241793696140088091906680956537445974716612899359625388221465418363893955834657893721414213644850822263849853537350764880480610647559822947348889971430251587897023855982308596103719804296751576620867004512036583305460473577998055220703283173513383153153855262477811016284950, 808637399615766720562584608311610398765405381174461373194524416617893741183098838892073105877505150267491631914307117663239977544243788431543549093523865044323344684580938749402630124766531121684308497904201518591466069717313822805880024759679452196613851841660119790141743018345617829519136321159710549780673438421387837465761043749159442942113098877694872803034620594229394322519279625406266408533464684128769032847419455665539466081496746500677025945623797040854541875289408520977871977084736662355447347470573686817701885826987941056487123781890952572047243733840886845925362251183284886469293672091035283957232727101265908904315818494018239049936398636252701833039257712993993949728486185257992237881648274050481381392942899033396020628103032639960290789424753898484564730065978347980502341523960613100995244257949236940046123180477876761374817210434948432747642516153800439650302375926229627371509904310092189472077731608677560177212532, 277547538352667305059629178292193259349461978726573636517564059709835421404633791054744940813998806773963820519986438771854814248057653084280546079760978516835020786488417973791231622507079720306327528435555088313552224623171522581706760637689291586307618369048587964181715891031701364335794803640142463680241136542944343011263978769313145667643045435538587534934668989188758909518406677528936689455236763454688678116630943969012998533527990917656563026177844295159083920371294889348262341489603381519309720203277557793874277279338497113572614666413022536318400903365873724503645816638339397428450652639475756013478388331760521554751323492356055092568849965966682908244760382090614404260346391547731182383493628210838522831460196677687402696711174460751408426548178478303525646499524056936134734235806489734633945807664025526044296208552278621497854581122649295979921538490054340545035753882844925965808353454328975205807717481066461499963494, 597131724979319977428479450056389712438415615375962222344416071734667917431387746851416936416452004267909549047939234490041547963279381235879422988821962624667873326374804766975072901393163334327426324883083169764394506512166614508571698831047916640406822460417328914321016294535428470431833677634781205367329225169820896659043467923124493280074556468412234185262797934641506445525596352748555365576613444956789110038351805962425673471089991315572855089145631410736457886992640327946096642480848597095389473156378328806408085011903743829548022619671818330757481702738362953212940346753694205013268962436631155490841460845341132667923542687718659030053910652770185560042406468777793083795734962571072303883528559366169361391831397293529937989356376127362114901537404273738513555727968219440630292389663980334208789370677813371227337249187526455030521244851591726530492496545375530598976953048235517034970794935659038842819895548444813186193113], 'aut_phi_ratio': 120.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [2, 210, 2, 1], [3, 1, 2, 1], [3, 2, 1, 1], [3, 2, 2, 1], [4, 2, 1, 1], [5, 2, 2, 1], [6, 1, 2, 1], [6, 2, 1, 1], [6, 2, 2, 1], [6, 210, 4, 1], [7, 1, 6, 1], [7, 2, 3, 1], [7, 2, 18, 1], [10, 2, 2, 1], [12, 2, 2, 2], [12, 2, 4, 1], [14, 1, 6, 1], [14, 2, 3, 1], [14, 2, 18, 1], [14, 210, 12, 1], [15, 2, 4, 2], [15, 2, 8, 1], [20, 2, 4, 1], [21, 1, 12, 1], [21, 2, 6, 3], [21, 2, 12, 2], [21, 2, 36, 2], [21, 2, 72, 1], [28, 2, 6, 2], [28, 2, 36, 1], [30, 2, 4, 2], [30, 2, 8, 1], [35, 2, 12, 2], [35, 2, 72, 1], [42, 1, 12, 1], [42, 2, 6, 3], [42, 2, 12, 2], [42, 2, 36, 2], [42, 2, 72, 1], [42, 210, 24, 1], [60, 2, 8, 2], [60, 2, 16, 1], [70, 2, 12, 2], [70, 2, 72, 1], [84, 2, 12, 4], [84, 2, 24, 2], [84, 2, 72, 2], [84, 2, 144, 1], [105, 2, 24, 4], [105, 2, 48, 2], [105, 2, 144, 2], [105, 2, 288, 1], [140, 2, 24, 2], [140, 2, 144, 1], [210, 2, 24, 4], [210, 2, 48, 2], [210, 2, 144, 2], [210, 2, 288, 1], [420, 2, 48, 4], [420, 2, 96, 2], [420, 2, 288, 2], [420, 2, 576, 1]], 'aut_supersolvable': True, 'aut_tex': 'C_{35}.C_6^3.C_2^6', 'autcent_abelian': True, 'autcent_cyclic': False, 'autcent_exponent': 6, 'autcent_group': '48.52', 'autcent_hash': 52, 'autcent_nilpotent': True, 'autcent_order': 48, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': True, 'autcent_tex': 'C_2^3\\times C_6', 'autcentquo_abelian': False, 'autcentquo_cyclic': False, 'autcentquo_exponent': 420, 'autcentquo_group': None, 'autcentquo_hash': 2285439238770837057, 'autcentquo_nilpotent': False, 'autcentquo_order': 10080, 'autcentquo_solvable': True, 'autcentquo_supersolvable': True, 'autcentquo_tex': 'C_2\\times F_5\\times S_3\\times F_7', 'cc_stats': [[1, 1, 1], [2, 1, 1], [2, 210, 2], [3, 1, 2], [3, 2, 3], [4, 2, 1], [5, 2, 2], [6, 1, 2], [6, 2, 3], [6, 210, 4], [7, 1, 6], [7, 2, 21], [10, 2, 2], [12, 2, 8], [14, 1, 6], [14, 2, 21], [14, 210, 12], [15, 2, 16], [20, 2, 4], [21, 1, 12], [21, 2, 186], [28, 2, 48], [30, 2, 16], [35, 2, 96], [42, 1, 12], [42, 2, 186], [42, 210, 24], [60, 2, 32], [70, 2, 96], [84, 2, 384], [105, 2, 768], [140, 2, 192], [210, 2, 768], [420, 2, 1536]], 'center_label': '42.6', 'center_order': 42, 'central_product': True, 'central_quotient': '420.40', 'commutator_count': None, 'commutator_label': '210.12', 'complements_known': True, 'complete': False, 'complex_characters_known': False, 'composition_factors': ['2.1', '2.1', '2.1', '3.1', '3.1', '5.1', '7.1', '7.1'], 'composition_length': 8, 'conjugacy_classes_known': True, 'counter': 8, 'cyclic': False, 'derived_length': 2, 'dihedral': False, 'direct_factorization': [['3.1', 1], ['7.1', 1], ['840.128', 1]], 'direct_product': True, 'div_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [2, 210, 1, 2], [3, 1, 2, 1], [3, 2, 1, 1], [3, 2, 2, 1], [4, 2, 1, 1], [5, 2, 2, 1], [6, 1, 2, 1], [6, 2, 1, 1], [6, 2, 2, 1], [6, 210, 2, 2], [7, 1, 6, 1], [7, 2, 3, 1], [7, 2, 6, 3], [10, 2, 2, 1], [12, 2, 2, 2], [12, 2, 4, 1], [14, 1, 6, 1], [14, 2, 3, 1], [14, 2, 6, 3], [14, 210, 6, 2], [15, 2, 4, 2], [15, 2, 8, 1], [20, 2, 4, 1], [21, 1, 12, 1], [21, 2, 6, 3], [21, 2, 12, 14], [28, 2, 6, 2], [28, 2, 12, 3], [30, 2, 4, 2], [30, 2, 8, 1], [35, 2, 12, 2], [35, 2, 24, 3], [42, 1, 12, 1], [42, 2, 6, 3], [42, 2, 12, 14], [42, 210, 12, 2], [60, 2, 8, 2], [60, 2, 16, 1], [70, 2, 12, 2], [70, 2, 24, 3], [84, 2, 12, 4], [84, 2, 24, 14], [105, 2, 24, 4], [105, 2, 48, 14], [140, 2, 24, 2], [140, 2, 48, 3], [210, 2, 24, 4], [210, 2, 48, 14], [420, 2, 48, 4], [420, 2, 96, 14]], 'element_repr_type': 'PC', 'elementary': 1, 'eulerian_function': 96, 'exponent': 420, 'exponents_of_order': [3, 2, 2, 1], 'factors_of_aut_order': [2, 3, 5, 7], 'factors_of_order': [2, 3, 5, 7], 'faithful_reps': None, 'familial': False, 'frattini_label': '2.1', 'frattini_quotient': '8820.b', 'hash': 3250163271357678442, 'hyperelementary': 1, 'inner_abelian': False, 'inner_cyclic': False, 'inner_exponent': 210, 'inner_gen_orders': [2, 210], 'inner_gens': [[1, 17598], [85, 42]], 'inner_hash': 40, 'inner_nilpotent': False, 'inner_order': 420, 'inner_split': True, 'inner_tex': 'D_{210}', 'inner_used': [1, 2], 'irrC_degree': None, 'irrQ_degree': None, 'irrQ_dim': None, 'irrR_degree': None, 'irrep_stats': None, 'label': '17640.h', 'linC_count': None, 'linC_degree': None, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': None, 'linQ_degree_count': None, 'linQ_dim': None, 'linQ_dim_count': None, 'linR_count': None, 'linR_degree': None, 'maximal_subgroups_known': True, 'metabelian': True, 'metacyclic': True, 'monomial': True, 'name': 'C21*D420', 'ngens': 8, 'nilpotency_class': -1, 'nilpotent': False, 'normal_counts': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 100, 'number_characteristic_subgroups': 100, 'number_conjugacy_classes': 4473, 'number_divisions': 170, 'number_normal_subgroups': 108, 'number_subgroup_autclasses': 246, 'number_subgroup_classes': 388, 'number_subgroups': 5736, 'old_label': None, 'order': 17640, 'order_factorization_type': 321, 'order_stats': [[1, 1], [2, 421], [3, 8], [4, 2], [5, 4], [6, 848], [7, 48], [10, 4], [12, 16], [14, 2568], [15, 32], [20, 8], [21, 384], [28, 96], [30, 32], [35, 192], [42, 5424], [60, 64], [70, 192], [84, 768], [105, 1536], [140, 384], [210, 1536], [420, 3072]], 'outer_abelian': True, 'outer_cyclic': False, 'outer_equivalence': False, 'outer_exponent': 12, 'outer_gen_orders': [12, 12, 6, 6, 6, 6], 'outer_gen_pows': [0, 0, 15498, 0, 7056, 4410], 'outer_gens': [[6197, 8274], [2857, 15414], [14011, 11802], [9539, 798], [13723, 5502], [4441, 2562]], 'outer_group': '1152.4647', 'outer_hash': 3046548263563564634, 'outer_nilpotent': True, 'outer_order': 1152, 'outer_permdeg': 1152, 'outer_perms': [5001900089568255073560835268931864086285899023337130045752257095585816882753361605401843400945727220945093079710764938681728817656864787270484336622123972868530578075059454587666452796929274771028041657601517774431979872302282218712455782615502986808364146771154171615130479223975645832057848308277813856216659160475325545177242964756211663983869006438501725893495419077372197865394065790751706080638781272532042591133973782294941079177440724999908369417322715705787342295120274418054712637937848709607788959892430619410672584955431810426365139630862996137370815747340759966831526395716009236336131450196862936660524127682557614871223493058057688840929928423481838835777214914207731170078658281828867822286054435709363686221889943916866760313480065406333422321853660412572757670141079014508324180660350835361174445080640330051493219933999284866052593132787834394672598386984413984245259308918291909492550296040459392618135862204807799670262691527677228744459778367670023587901885288714394355344199500126674328520383233978724853976462057652595827603988257194074011775102382100436081150605741970105458351163803742858881144178338662528682595963616468791905163464732101444563736228757310854252121695272883077868989157799967261174455810275872472965628145350564605009740344242287504365398833117249191673158711950674404885067888496589842621867816651238972177985548282492478957094065324954827090845854978227985339229333054510791966792902390581971826671733640552748917381884686751724205114942450995076397689422401949330649895136062837025559543126043381945424890396444643620089522242040327687789429562008323220852262355948843090463456838000208510232765184752241056965293349029118335812325649649909202286745960596929503994016803906683133084571161483535646755071156660332246329052260826730708016978316572284364046754215915200525725187819397917233233327464139408791605320403606208288851678518211117116825901702098567068335285418557734410867016809310461390648430991931231064200549283065020342777403432051687721156914479706792028173770999874708477063377506909467405185888595904303559679616767023625663328370489640951315783184905310389102261870482499506611680098403955905286298419366580353276758185907465258228332261952189831622464057323293530689743810083095479857868401685604573222550067712687676870516801537832835933657003705955211671692096927996629112628440558472650198344956768853257852454777708893277126755134258786160178521927859283518203630568324728045826760583912326217950798178525206328582542392259252973039899388139968381528582733336778099050072889916095100494206394537539447422857294311456332575777016633200474852641010064770298760033953121479800829419083074328371216528983655406538112169069046183244551673762239806589875171089768105281690345412289845308157880905983434236620567404931619371776296024899994066099132281470050938489708041311234729683526445903306196833144090807131110889177907068686625329876778815115599050155333191948675720128075180655149832718730107148101768061127807407806124058701239029740527830272062472793170530336, 634141182750593648002539832848034428906158679969577846780964127968525867199854017844389229227502110621393517945965767672135296053246504501358903895630665209396905637430925060954445796398453326877591753013958905760431797970149277885086478233336260943959696704955684209582721835285448260519858546690607553044324994885625605218723436542799205825985678022791301841580512388131681464273064149970226810603402954325551532864283861694253894738358562829246377921427056382874334729324537813226396334767543632273665477989759974398314593552795978526117300437965972364873256511561535804794033320644574198174185379937423517479035358338784407006365333618865021673646111529403407081208853918586168220389174053164924446952123298771349201515160255093790194244660656923566193474798049209877411412164191501690925338405752966794260523485871178026218053384876855395672468303199285293787815762695168331483969805632168696040264331194348156051475856152618085391202670644682577715647770620158817727519085570472620546830371733567996852209633709772620130207616804911104157023121707325890572811170299876388625064575003721108759985558045696388376250061593160433399512625867382501202477172423429631264019700268384521579177513827913002639730615067292780258252793932908730200290970292587975471842708272416873411925165699083981332028197396485628351389888518443265526930649199200760245881008972454946240251102412066466373377083476662762823565750202088844769098603184977801344695392541723757844632813617268895805707068438737498073010034528624819239332826569201108777106357824375758718279340271349479031086788192102781215541248886685955087335291217134667078330756601311956420618459945542016015569143911656669272167524782139700667274707520986663491610551428954930495056288122870103068529150216711075281441930041239685506125382316910707113636280261596668017084649405506152972252035677255957628914242403862294813012433903368563353898746343411924146110082656614559357376679756236401845556620137882843229277221306622497073435834363077363593126517006478027494292009673965426928370081132134819152684773116123914090721643370388061199533395287245830580963867964069856102890807316913549069081781770322112293208359301324416052112699657301098099069838216257043950714094871648104304589972342908509569859404242069312628997616736954110117405420405430693513666170239703761410165267585216547497170980956967879106934820173177566674594494292093467985695988045742792880863600094257256591476681731526223174599465652125868528472198389580798964771415887038953362179937141658565033141353812725386934319984331735674656449142418790790847259016981760377651229727598840361216357972799649185745791567528340625569603547510595245733753385739693609795317395983312440442935862777587600061161618227521144428228602627695356740840803019752126255341255268648831172239851856949510567267003761443111898003941187520056309592487445830866857262767899124621204229405736188298520752398284624166591817803371185000369902987944042188885247643966369473734672778589275059142581789422791911998315249364904772147388, 17089223043103204318601137025675271077388076731696253712806833784237874032692573110754941152849682926769551014128277696196653601906481699076554394638690956114984036043371501739455194213255190772980376721269618604667869184839276615376588464765637572919744169609403825105610392627660084112676015850427398319206246822281916647413968952455774058816236725213840300423821637685172231467813140727198229924179192352791939692919784403018782132738270422079844190642833191079010592127481993958801469531463582943132823721259715318301585012010302238931211481857285850851978265683362565974210818252453644946250080636307179040542924950552360277881861876048860411953243741622721803909347395072936369083234840729005587633886221543258588869674856969302212736363579759829282333177505732905257775556031963353838049701214526060605047349102022608501049376701694795388683098829658126548319703300758103974270430760795963724910647248333133952265091358093952487435657591650306597620506141367280848233420987157095945094988709388927342690465505751696479321164304069782294641640038436266427815976717887530833173080270311357673261492371113783727904788246012782022856163202883342046225104904186309641863778674309449519288297842101322784751321021444715364210184124164579830483432012813954575245891045639741071511677272388429549519272454306492104037095893991151802738656905383279316394419941273578170234403979916491055966398428633779318395004600991705215044379891701280556029225670330145331059379976836997230927065886555042150863750162499143791102171466533003053155148156811392224067418295291481412812153443006089805107629484510285808054283448860814864267919223267931349247893254583339442914033243551744662193312437772814024165213016863902468532325267841199457563158443843499949027401012879135849102135092077483880663226575884261667764389154218865683700901676444435551139917999669961360454618935268306497890015209667784834063519510787309462886531593705284920931066780738527989391275759960813600165381094841114158422837130719231164876867640742727459746385289010522430027150271326235576108584799096159433975158677706907781000023172643357236048045299075215748098068606871455413720319182186944272831654004700936889614929712721780805135858480773225898912188900472511609724800080690583185138575091031527363009847152213622300034002659081700818399186968443642750020367856214661980030990307965964199182710955545291384667170894858259137252449958833165279637297630187390015651307403242577424985644805272070170779278219458165603117446359668765234198900788173169423096226585446927159975887386853281831078999740563045756547198333471063175361783045310695180088962669591612121782115939531858840316956256720896933695727830689365979175618719142679790422046945916503492429337596170410468553805907891687681378965875433568883392512490870344637760163442879029933488258826185719675021973764481966322592081424318318427806261574033053845960185792672696392098315203174948215658229517123156766866272579936908057920963170169604496239906451438946684410090753975176396800000000000000000000000, 21639202330056026644827544670950167996119593434570907409237555702755659020252939767908853824530843304857070834385328947187111887777290481416566145380706281711930913528826665750887725156017769925923688643897873228552051000661354440807864311500392151757841716744762822248929556844454382758741082037740780552690659183917245470516714216709235604217229779780698950541419243225128276056689316572485280435932824480194904274557338848624790087927290528073670185535124552239665216082025634389940765008235267062934518604208355983804638003189167483140944135016628551479819480780273110014272028010760503490391172313393554624371105400618219769478021971022144285597117007625585696911942374198309542995637526604565808859604592084331364227197288243688193470569394609491087819753909261804244176073320792884058308256447230273002659230629183099019210740705892853056917251213890898406668444350025179823879019972537742658354413252207387848974433975165685512874684755242781522997677361035358190747332710030434227818037260704458023930251361332287144737050975832760243656713920346210002029868743844093850976535092740152472303237065389730802755867264153148625728784431630854025516951066094396122833507212756186311366381994932828487417228000641191838585055387604841141514312858703338320323869565585038623805678922868704719982576702383958324155661468808207147363814855000449420240178100943954662436877395100368068239460274924358802782798805877450369884049108775912868157733683448743623189330048338196874235529721253547909135604865755826866546057215045715716364654317322876788585927772613241707309353733656321199490948860778904358992264464540282619903389915643751025284115627322728951876058000473188500534899118083210360725986145897557138987417756342130632125419494936640692049775080388971827765180990479350751298460654009071648670422484038551420632290138432437429594402880637126952757678724838824799445590424396431895201869074738407785037315747054001636733112826557058078350248540256605044306521714868648640718281653687403420572790553750481656208573369187731621173174154632974057735272346888426494737633609987629124865971111827414936523460739949898603095496609489422091912150015806846183195404310809372948783737886440054871209628223660883009661959712911124017525496167990045021270371582897520761998327672675675990013468907976512606083859661253580838736514307405877490874684332766120917852888334242295129635583889160836009558068122584967009715156548576720575365848371714622545498423197398021216302926271524989691356584072337033677857289835512229971563563702298087508629507584272104422385261348379377164181812284759629325703189312526627496993838856665561800035379094321161038210354986454131995255506508302212102380277758533562686887852920185302596893109401538734106063120462762250379535019814883937628364390406451673861983548188783099230054105358647412902754670602853682444633713481315566485526273068962319141433919118889682481740530168330369490964268767950038062525963941220946977048640622156451932024886039834550551495824053058814807658088360234607791288551, 24061391835494661261538949121719295274829257401365210757377956515827180633651423097269100135641403364129751868273035515797632162652290169513277984410903399824816326943819326402684620649675362732594206723102710993312503010885082229037449694310191153710212590681032616885447262146873610475409353306323522175517560210901982422119190197568125560754756700788054065027401527914376466050670356134253127363747334867205422314270041200878755916880611189966882918858514451996469923635014463177303008204629941749636243094435955762486445542428990359306568053993849240581282289174143697205733434272625802642654353822489130651147277464957508116826724660767731962678315836714955950371991586431392130585686469278786892948810414581028541566153075341751557254889612132538544352662427017358286034557381059627950873492797694364137328893231821852062502870488196113478539759451268949921591435555870120916884568284559371950593799375707139125290071869547606968949769309151157660574292214388459129697563721403243685774764912893986662702620683147443431335126219730432069528540305429704383686791881418534617874943286966184776511830907117069452499854030184134569401586497469765824696927310980900209776209387468825745197182231023947001548846211653352156299116347162858514864661631300361971163683170463368166330674844612894994070109983534614382279853367088189363463154461411092964309588692353196699554065911397163039830668644562592533466217083955890895398461068785029076194251569533180589999680326783943510920611215374798816595107731853373835438022527651619411095364292148974999554325516249946541018653976637731016862077967138293373645538910399480657645140466411671177599186455115093140656494894345420624856982869735289100185218078978039628916646709212357362440262825324074395052921250156204914261811476518178816434532213417211547738448795894062701519549318441927782350094667045146834779343657606399265137099915036785509861370468457352069214197574322672739017539110599156220346330589391796138169808061361885946558327022810858895650804904084061653616592277803296347498243507217416496906136737339753863423741160547276812288229875666608077184120519866915304344780794960919486820678459082237894052271941853417339573875360424679059636718218793793554100961870712179565659358280833154796740449591372644428820017117482826206039414788359691661223470307967710173169273548556196696481874079588197944911510144321654701214514110845367034483919683093302488606680870107296098452495573397345243670296604778582887689434089341729882394548230140170511752360195454731502065513731580533805349848133637807797422998514450085002752357233839058009191206389771891207786398689610362825811540474946737522789279119140691734362248526940210091625849444669377132695367301678380148431014748151306912488012093947931390066500844682597443009355519409922779383514638120184089783521229083996596407455982470163323545694146386757412681848413773897183415712286664233348647401268783341211531565163325741657747564530204554036265856398722061402135167898941209976972555785350408725373277189889736910726059, 24355905827749029957827354317411494065681177550080897625242093520834669444932959770048275225261148558881505332474606395749865580340699118706116170199788153467251538346536110219674059420132637201587291346588012441981048867847060383747810815166585429390429308041744624940270244993609108700175999078833813206443611680101509746992938461003106013385694524004329981840372276629123711104242975802752677484022684669452897325728158131988727284828557652161877362670605498097460589343280186782615456187012931798016786699596970510042483360537708238900783758941178858008875800552513561965780652723419550871196214482619764813354390810398011367244391161888542749889125702240879444493263933432131897281000453268281925077258655385760125074424133367960832109226964153225064949719199910179060071771104380268100506025820500182501994118868755845246768753036280010899039983841223008855853190466463496699436908844501113072845300652109509962102164002808001754404067224693735568765965776752892377249591567612227279504748176016866705556612070578741592052732445509761532459990708758682531139054981512522216538337872935975430554724692802770144085998027009675996271994468594398967647571903742193502085109398248421594289296446007368500450237417218146024571542139396827094713433331750214694024975672382509738993438773065818794537745230177021809064164274008454156204056768114588580589596083783470356909892577013762516304481774431970356340787791061722237214694201721527690685219005755288086533010825724846275232379970839957009747666495663257802733001784467689896684512768193478009416523263094879182057609005318462456830138457570267610708635661950728705910901836776206273183675892335711670119540373789372924331329402204929826097119740365845007093451144392808475014230147506006694251549987502073537034934881452462537186238918466420784882007928822363740349802522377860320142041829680812493857031584411230064668842085248351539976743693838775212467081076642307800705837667470998364370297931942762366089662976108690942910115155789402725271638690541314664766818054265758354465206547108171762165782572584267752633958657726197638869345848939727552829752565380487810347663104945158753780383059171537444920248037290093649148821834060525354667433990493066866752669735499056443442089352561811820065193237308083664837418071767002041793244024020167127187461071526710570277202120754782390915624275527159710850762108580349761418574167092887242873498509256266951509167960528798819850708984817903962107652636149401994516167510952001418133776532421500928189894468233898370036641569845977376473940818994512806069214461535629421215648509889516735737857311830731512951217180868721402560175303814579593841457882836477967855469260759885723631578836627236994745204081885710238080018125606589527925615932806342094359008060734801508125927428204594874092691449202522565969962791197373546488243678575315818925305063266437898434448074449196785818238464298230798153713444291444743414807517399773069848723404896063381556686896318599318338386756265136485018161603361057866567238922948324893178739], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'C_2^4\times C_6\times C_{12}', 'pc_rank': 2, 'perfect': False, 'permutation_degree': 29, 'pgroup': 0, 'primary_abelian_invariants': [2, 2, 3, 7], 'quasisimple': False, 'rank': 2, 'rational': False, 'rational_characters_known': False, 'ratrep_stats': None, 'representations': {'PC': {'code': '842070803812813901038798878430727442664347312550914546444635', 'gens': [1, 4], 'pres': [8, -2, -3, -7, -2, -2, -3, -5, -7, 16, 57, 563139, 91, 702244, 116, 838661, 189, 959622, 334, 967687]}, 'GLFp': {'d': 2, 'p': 421, 'gens': [15744495273, 21340879847, 177662]}, 'Perm': {'d': 29, 'gens': [316583823960402890602770260251, 22584322947090643371309600475, 51706594805170137237161]}}, 'schur_multiplier': [2], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [2, 42], 'solvability_type': 6, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': True, 'sylow_subgroups_known': True, 'tex_name': 'C_{21}\\times D_{420}', 'transitive_degree': 840, 'wreath_data': None, 'wreath_product': False}
-
gps_groups • Show schema
Hide schema
{'Agroup': False, 'Zgroup': False, 'abelian': False, 'abelian_quotient': '840.186', 'all_subgroups_known': False, 'almost_simple': False, 'aut_abelian': None, 'aut_cyclic': None, 'aut_derived_length': None, 'aut_exponent': None, 'aut_gen_orders': None, 'aut_gens': [[298473845, 15744495273, 177662], [298473845, 15744495273, 74618040], [74618465, 149237133, 177662], [298473845, 15744495273, 177662], [298473845, 15744495273, 177662], [298473845, 15744495273, 177662], [298473845, 15744495273, 177662], [298473845, 15744495273, 177662], [298473845, 15744495273, 70904820], [298473845, 15744495273, 49556331], [298473845, 15744495273, 13397062], [13953652592, 30071240087, 177662], [25295658587, 11491243374, 177662], [31339754037, 31265135369, 177662], [31339754037, 149237133, 177662], [20072366243, 31265135369, 177662], [17236864573, 31265135369, 177662], [23579433677, 31265135369, 177662], [31339754037, 31265135369, 5305021]], 'aut_group': None, 'aut_hash': None, 'aut_nilpotency_class': None, 'aut_nilpotent': None, 'aut_order': 3870720, 'aut_permdeg': None, 'aut_perms': None, 'aut_phi_ratio': 96.0, 'aut_solvable': None, 'aut_stats': None, 'aut_supersolvable': None, 'aut_tex': None, 'autcent_abelian': None, 'autcent_cyclic': None, 'autcent_exponent': None, 'autcent_group': None, 'autcent_hash': None, 'autcent_nilpotent': None, 'autcent_order': None, 'autcent_solvable': None, 'autcent_split': None, 'autcent_supersolvable': None, 'autcent_tex': None, 'autcentquo_abelian': None, 'autcentquo_cyclic': None, 'autcentquo_exponent': None, 'autcentquo_group': None, 'autcentquo_hash': None, 'autcentquo_nilpotent': None, 'autcentquo_order': None, 'autcentquo_solvable': None, 'autcentquo_supersolvable': None, 'autcentquo_tex': None, 'cc_stats': [[1, 1, 1], [2, 1, 1], [2, 2, 1], [2, 210, 2], [3, 1, 2], [3, 2, 3], [4, 1, 2], [4, 2, 1], [4, 210, 2], [5, 1, 4], [5, 2, 10], [6, 1, 2], [6, 2, 11], [6, 210, 4], [7, 1, 6], [7, 2, 21], [10, 1, 4], [10, 2, 34], [10, 210, 8], [12, 1, 4], [12, 2, 14], [12, 210, 4], [14, 1, 6], [14, 2, 69], [14, 210, 12], [15, 1, 8], [15, 2, 92], [20, 1, 8], [20, 2, 44], [20, 210, 8], [21, 1, 12], [21, 2, 186], [28, 1, 12], [28, 2, 90], [28, 210, 12], [30, 1, 8], [30, 2, 284], [30, 210, 16], [35, 1, 24], [35, 2, 564], [42, 1, 12], [42, 2, 570], [42, 210, 24], [60, 1, 16], [60, 2, 376], [60, 210, 16], [70, 1, 24], [70, 2, 1716], [70, 210, 48], [84, 1, 24], [84, 2, 756], [84, 210, 24], [105, 1, 48], [105, 2, 4584], [140, 1, 48], [140, 2, 2280], [140, 210, 48], [210, 1, 48], [210, 2, 13800], [210, 210, 96], [420, 1, 96], [420, 2, 18384], [420, 210, 96]], 'center_label': '420.12', 'center_order': 420, 'central_product': True, 'central_quotient': '420.40', 'commutator_count': None, 'commutator_label': '210.12', 'complements_known': False, 'complete': False, 'complex_characters_known': False, 'composition_factors': ['2.1', '2.1', '2.1', '2.1', '3.1', '3.1', '5.1', '5.1', '7.1', '7.1'], 'composition_length': 10, 'conjugacy_classes_known': False, 'counter': 1, 'cyclic': False, 'derived_length': 2, 'dihedral': False, 'direct_factorization': [['1680.913', 1], ['3.1', 1], ['5.1', 1], ['7.1', 1]], 'direct_product': True, 'div_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [2, 2, 1, 1], [2, 210, 1, 2], [3, 1, 2, 1], [3, 2, 1, 1], [3, 2, 2, 1], [4, 1, 2, 1], [4, 2, 1, 1], [4, 210, 1, 2], [5, 1, 4, 1], [5, 2, 2, 1], [5, 2, 4, 2], [6, 1, 2, 1], [6, 2, 1, 1], [6, 2, 2, 5], [6, 210, 2, 2], [7, 1, 6, 1], [7, 2, 3, 1], [7, 2, 6, 3], [10, 1, 4, 1], [10, 2, 2, 1], [10, 2, 4, 8], [10, 210, 4, 2], [12, 1, 4, 1], [12, 2, 2, 3], [12, 2, 4, 2], [12, 210, 2, 2], [14, 1, 6, 1], [14, 2, 3, 1], [14, 2, 6, 11], [14, 210, 6, 2], [15, 1, 8, 1], [15, 2, 4, 3], [15, 2, 8, 10], [20, 1, 8, 1], [20, 2, 4, 3], [20, 2, 8, 4], [20, 210, 4, 2], [21, 1, 12, 1], [21, 2, 6, 3], [21, 2, 12, 14], [28, 1, 12, 1], [28, 2, 6, 3], [28, 2, 12, 6], [28, 210, 6, 2], [30, 1, 8, 1], [30, 2, 4, 3], [30, 2, 8, 34], [30, 210, 8, 2], [35, 1, 24, 1], [35, 2, 12, 3], [35, 2, 24, 22], [42, 1, 12, 1], [42, 2, 6, 3], [42, 2, 12, 46], [42, 210, 12, 2], [60, 1, 16, 1], [60, 2, 8, 7], [60, 2, 16, 20], [60, 210, 8, 2], [70, 1, 24, 1], [70, 2, 12, 3], [70, 2, 24, 70], [70, 210, 24, 2], [84, 1, 24, 1], [84, 2, 12, 7], [84, 2, 24, 28], [84, 210, 12, 2], [105, 1, 48, 1], [105, 2, 24, 7], [105, 2, 48, 92], [140, 1, 48, 1], [140, 2, 24, 7], [140, 2, 48, 44], [140, 210, 24, 2], [210, 1, 48, 1], [210, 2, 24, 7], [210, 2, 48, 284], [210, 210, 48, 2], [420, 1, 96, 1], [420, 2, 48, 15], [420, 2, 96, 184], [420, 210, 48, 2]], 'element_repr_type': 'GLFp', 'elementary': 1, 'eulerian_function': None, 'exponent': 420, 'exponents_of_order': [4, 2, 2, 2], 'factors_of_aut_order': [2, 3, 5, 7], 'factors_of_order': [2, 3, 5, 7], 'faithful_reps': None, 'familial': False, 'frattini_label': '2.1', 'frattini_quotient': None, 'hash': 4653415526737240122, 'hyperelementary': 1, 'inner_abelian': None, 'inner_cyclic': None, 'inner_exponent': None, 'inner_gen_orders': [210, 210, 2], 'inner_gens': [[298473845, 15744495273, 56009840], [298473845, 15744495273, 842000], [74618465, 149237133, 177662]], 'inner_hash': None, 'inner_nilpotent': None, 'inner_order': 420, 'inner_split': None, 'inner_tex': 'D_{210}', 'inner_used': None, 'irrC_degree': None, 'irrQ_degree': None, 'irrQ_dim': None, 'irrR_degree': None, 'irrep_stats': None, 'label': '176400.a', 'linC_count': None, 'linC_degree': None, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': None, 'linQ_degree_count': None, 'linQ_dim': None, 'linQ_dim_count': None, 'linR_count': None, 'linR_degree': None, 'maximal_subgroups_known': True, 'metabelian': True, 'metacyclic': False, 'monomial': True, 'name': 'C420.D210', 'ngens': 3, 'nilpotency_class': -1, 'nilpotent': False, 'normal_counts': [1, 1, 2, 3, 2, 2, 2, 1, 1, 2, 6, 2, 4, 0, 1, 6, 4, 2, 1, 6, 4, 4, 3, 2, 4, 2, 0, 1, 1, 2, 12, 2, 4, 1, 2, 0, 12, 2, 1, 3, 8, 0, 4, 2, 12, 0, 2, 2, 4, 2, 6, 3, 1, 8, 1, 0, 2, 6, 4, 2, 6, 4, 0, 2, 2, 1, 0, 28, 1, 1, 2, 2, 4, 0, 6, 2, 4, 6, 0, 4, 0, 14, 1, 3, 6, 0, 4, 2, 0, 1, 16, 2, 4, 2, 1, 3, 1, 2, 16, 2, 0, 1, 10, 0, 16, 2, 1, 0, 2, 0, 10, 2, 3, 1, 10, 10, 0, 2, 1, 10, 1, 1, 1, 8, 10, 8, 0, 1, 1, 8, 1, 7, 1, 7, 1], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': None, 'number_characteristic_subgroups': 408, 'number_conjugacy_classes': 44730, 'number_divisions': 1031, 'number_normal_subgroups': 472, 'number_subgroup_autclasses': None, 'number_subgroup_classes': None, 'number_subgroups': None, 'old_label': None, 'order': 176400, 'order_factorization_type': 321, 'order_stats': [[1, 1], [2, 423], [3, 8], [4, 424], [5, 24], [6, 864], [7, 48], [10, 1752], [12, 872], [14, 2664], [15, 192], [20, 1776], [21, 384], [28, 2712], [30, 3936], [35, 1152], [42, 6192], [60, 4128], [70, 13536], [84, 6576], [105, 9216], [140, 14688], [210, 47808], [420, 57024]], 'outer_abelian': None, 'outer_cyclic': None, 'outer_equivalence': False, 'outer_exponent': None, 'outer_gen_orders': None, 'outer_gen_pows': None, 'outer_gens': None, 'outer_group': None, 'outer_hash': None, 'outer_nilpotent': None, 'outer_order': 9216, 'outer_permdeg': None, 'outer_perms': None, 'outer_solvable': None, 'outer_supersolvable': None, 'outer_tex': None, 'pc_rank': 3, 'perfect': False, 'permutation_degree': 38, 'pgroup': 0, 'primary_abelian_invariants': [2, 2, 2, 3, 5, 7], 'quasisimple': False, 'rank': 3, 'rational': False, 'rational_characters_known': False, 'ratrep_stats': None, 'representations': {'PC': {'code': '66798095205065271706105589258719621828377411305165747097779040050581298378930267', 'gens': [1, 2, 6], 'pres': [10, -2, -2, -3, -5, -7, -2, -2, -3, -5, -7, 2276361, 51, 1524482, 112, 6064323, 233, 2538004, 175, 206, 317, 538]}, 'GLFp': {'d': 2, 'p': 421, 'gens': [298473845, 15744495273, 177662]}, 'Perm': {'d': 38, 'gens': [14508035248958862673264279215927571938362091, 372288567811779475786769890909425273909890, 27548173004656294208510449541784083277995130]}}, 'schur_multiplier': None, 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [2, 2, 210], 'solvability_type': 7, 'solvable': True, 'subgroup_inclusions_known': False, 'subgroup_index_bound': 252, 'supersolvable': True, 'sylow_subgroups_known': False, 'tex_name': 'C_{420}.D_{210}', 'transitive_degree': None, 'wreath_data': None, 'wreath_product': None}
-
gps_groups • Show schema
Hide schema
{'Agroup': True, 'Zgroup': True, 'abelian': True, 'abelian_quotient': '10.2', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': True, 'aut_cyclic': True, 'aut_derived_length': 1, 'aut_exponent': 4, 'aut_gen_orders': [4], 'aut_gens': [[1], [7]], 'aut_group': '4.1', 'aut_hash': 1, 'aut_nilpotency_class': 1, 'aut_nilpotent': True, 'aut_order': 4, 'aut_permdeg': 4, 'aut_perms': [9], 'aut_phi_ratio': 1.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [5, 1, 4, 1], [10, 1, 4, 1]], 'aut_supersolvable': True, 'aut_tex': 'C_4', 'autcent_abelian': True, 'autcent_cyclic': True, 'autcent_exponent': 4, 'autcent_group': '4.1', 'autcent_hash': 1, 'autcent_nilpotent': True, 'autcent_order': 4, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': True, 'autcent_tex': 'C_4', 'autcentquo_abelian': True, 'autcentquo_cyclic': True, 'autcentquo_exponent': 1, 'autcentquo_group': '1.1', 'autcentquo_hash': 1, 'autcentquo_nilpotent': True, 'autcentquo_order': 1, 'autcentquo_solvable': True, 'autcentquo_supersolvable': True, 'autcentquo_tex': 'C_1', 'cc_stats': [[1, 1, 1], [2, 1, 1], [5, 1, 4], [10, 1, 4]], 'center_label': '10.2', 'center_order': 10, 'central_product': True, 'central_quotient': '1.1', 'commutator_count': 0, 'commutator_label': '1.1', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1', '5.1'], 'composition_length': 2, 'conjugacy_classes_known': True, 'counter': 2, 'cyclic': True, 'derived_length': 1, 'dihedral': False, 'direct_factorization': [['2.1', 1], ['5.1', 1]], 'direct_product': True, 'div_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [5, 1, 4, 1], [10, 1, 4, 1]], 'element_repr_type': 'PC', 'elementary': 10, 'eulerian_function': 1, 'exponent': 10, 'exponents_of_order': [1, 1], 'factors_of_aut_order': [2], 'factors_of_order': [2, 5], 'faithful_reps': [[1, 0, 4]], 'familial': True, 'frattini_label': '1.1', 'frattini_quotient': '10.2', 'hash': 2, 'hyperelementary': 10, 'inner_abelian': True, 'inner_cyclic': True, 'inner_exponent': 1, 'inner_gen_orders': [1], 'inner_gens': [[1]], 'inner_hash': 1, 'inner_nilpotent': True, 'inner_order': 1, 'inner_split': True, 'inner_tex': 'C_1', 'inner_used': [], 'irrC_degree': 1, 'irrQ_degree': 4, 'irrQ_dim': 4, 'irrR_degree': 2, 'irrep_stats': [[1, 10]], 'label': '10.2', 'linC_count': 4, 'linC_degree': 1, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': 4, 'linQ_degree_count': 1, 'linQ_dim': 4, 'linQ_dim_count': 1, 'linR_count': 2, 'linR_degree': 2, 'maximal_subgroups_known': True, 'metabelian': True, 'metacyclic': True, 'monomial': True, 'name': 'C10', 'ngens': 2, 'nilpotency_class': 1, 'nilpotent': True, 'normal_counts': [0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 4, 'number_characteristic_subgroups': 4, 'number_conjugacy_classes': 10, 'number_divisions': 4, 'number_normal_subgroups': 4, 'number_subgroup_autclasses': 4, 'number_subgroup_classes': 4, 'number_subgroups': 4, 'old_label': None, 'order': 10, 'order_factorization_type': 11, 'order_stats': [[1, 1], [2, 1], [5, 4], [10, 4]], 'outer_abelian': True, 'outer_cyclic': True, 'outer_equivalence': False, 'outer_exponent': 4, 'outer_gen_orders': [4], 'outer_gen_pows': [0], 'outer_gens': [[7]], 'outer_group': '4.1', 'outer_hash': 1, 'outer_nilpotent': True, 'outer_order': 4, 'outer_permdeg': 4, 'outer_perms': [9], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'C_4', 'pc_rank': 1, 'perfect': False, 'permutation_degree': 7, 'pgroup': 0, 'primary_abelian_invariants': [2, 5], 'quasisimple': False, 'rank': 1, 'rational': False, 'rational_characters_known': True, 'ratrep_stats': [[1, 2], [4, 2]], 'representations': {'PC': {'code': 83, 'gens': [1], 'pres': [2, -2, -5, 4]}, 'GLZ': {'b': 3, 'd': 4, 'gens': [16717348]}, 'GLFp': {'d': 2, 'p': 5, 'gens': [131, 504]}, 'Perm': {'d': 7, 'gens': [720, 96]}}, 'schur_multiplier': [], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [10], 'solvability_type': 0, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': True, 'sylow_subgroups_known': True, 'tex_name': 'C_{10}', 'transitive_degree': 10, 'wreath_data': None, 'wreath_product': False}