-
gps_subgroup_search • Show schema
Hide schema
{'Agroup': False, 'Zgroup': False, 'abelian': False, 'ambient': '1760.353', 'ambient_counter': 353, 'ambient_order': 1760, 'ambient_tex': 'C_2\\times Q_8:F_{11}', 'central': False, 'central_factor': False, 'centralizer_order': 4, 'characteristic': False, 'core_order': 440, 'counter': 12, 'cyclic': False, 'direct': False, 'hall': 0, 'label': '1760.353.4.c1.a1', 'maximal': False, 'maximal_normal': False, 'metabelian': True, 'metacyclic': None, 'minimal': False, 'minimal_normal': False, 'nilpotent': False, 'normal': True, 'old_label': '4.c1.a1', 'outer_equivalence': False, 'perfect': False, 'proper': True, 'quotient': '4.2', 'quotient_Agroup': True, 'quotient_abelian': True, 'quotient_cyclic': False, 'quotient_hash': 2, 'quotient_metabelian': True, 'quotient_nilpotent': True, 'quotient_order': 4, 'quotient_simple': False, 'quotient_solvable': True, 'quotient_supersolvable': True, 'quotient_tex': 'C_2^2', 'simple': False, 'solvable': True, 'special_labels': [], 'split': True, 'standard_generators': False, 'stem': False, 'subgroup': '440.14', 'subgroup_hash': 14, 'subgroup_order': 440, 'subgroup_tex': 'C_{44}.C_{10}', 'supersolvable': True, 'sylow': 0}
-
gps_subgroup_data • Show schema
Hide schema
{'ambient': '1760.353', 'aut_centralizer_order': 8, 'aut_label': '4.c1', 'aut_quo_index': 3, 'aut_stab_index': 2, 'aut_weyl_group': '880.118', 'aut_weyl_index': 16, 'centralizer': '440.a1.a1', 'complements': ['440.d1.a1', '440.d1.b1'], 'conjugacy_class_count': 1, 'contained_in': ['2.b1.a1', '2.d1.a1', '2.d1.c1'], 'contains': ['8.c1.a1', '8.f1.a1', '20.c1.a1', '44.g1.a1'], 'core': '4.c1.a1', 'coset_action_label': None, 'count': 1, 'diagramx': [7246, 8580, 6572, 7000, 6733, 6046, 3498, 5739], 'generators': [1, 16, 40, 20, 160], 'label': '1760.353.4.c1.a1', 'mobius_quo': 0, 'mobius_sub': 2, 'normal_closure': '4.c1.a1', 'normal_contained_in': ['2.b1.a1', '2.d1.a1', '2.d1.c1'], 'normal_contains': ['8.c1.a1', '20.c1.a1'], 'normalizer': '1.a1.a1', 'old_label': '4.c1.a1', 'projective_image': '880.123', 'quotient_action_image': '2.1', 'quotient_action_kernel': '2.1', 'quotient_action_kernel_order': 2, 'quotient_fusion': None, 'short_label': '4.c1.a1', 'subgroup_fusion': None, 'weyl_group': '440.11'}
-
gps_groups • Show schema
Hide schema
{'Agroup': False, 'Zgroup': False, 'abelian': False, 'abelian_quotient': '20.5', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 3, 'aut_exponent': 660, 'aut_gen_orders': [20, 30, 2, 22], 'aut_gens': [[1, 10], [211, 410], [251, 65], [221, 10], [21, 230]], 'aut_group': '2640.bv', 'aut_hash': 5844094576270439126, 'aut_nilpotency_class': -1, 'aut_nilpotent': False, 'aut_order': 2640, 'aut_permdeg': 17, 'aut_perms': [19494048661727, 207791732463532, 704176305845, 144672623319248], 'aut_phi_ratio': 16.5, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [4, 2, 3, 1], [5, 11, 1, 4], [10, 11, 1, 4], [11, 5, 2, 1], [20, 22, 3, 4], [22, 5, 2, 1], [44, 10, 6, 1]], 'aut_supersolvable': False, 'aut_tex': 'S_4\\times F_{11}', 'autcent_abelian': True, 'autcent_cyclic': False, 'autcent_exponent': 2, 'autcent_group': '4.2', 'autcent_hash': 2, 'autcent_nilpotent': True, 'autcent_order': 4, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': True, 'autcent_tex': 'C_2^2', 'autcentquo_abelian': False, 'autcentquo_cyclic': False, 'autcentquo_exponent': 330, 'autcentquo_group': '660.15', 'autcentquo_hash': 15, 'autcentquo_nilpotent': False, 'autcentquo_order': 660, 'autcentquo_solvable': True, 'autcentquo_supersolvable': True, 'autcentquo_tex': 'S_3\\times F_{11}', 'cc_stats': [[1, 1, 1], [2, 1, 1], [4, 2, 3], [5, 11, 4], [10, 11, 4], [11, 5, 2], [20, 22, 12], [22, 5, 2], [44, 10, 6]], 'center_label': '2.1', 'center_order': 2, 'central_product': True, 'central_quotient': '220.8', 'commutator_count': 1, 'commutator_label': '22.2', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1', '2.1', '2.1', '5.1', '11.1'], 'composition_length': 5, 'conjugacy_classes_known': True, 'counter': 14, 'cyclic': False, 'derived_length': 2, 'dihedral': False, 'direct_factorization': [['55.1', 1], ['8.4', 1]], 'direct_product': True, 'div_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [4, 2, 1, 3], [5, 11, 4, 1], [10, 11, 4, 1], [11, 5, 2, 1], [20, 22, 4, 3], [22, 5, 2, 1], [44, 10, 2, 3]], 'element_repr_type': 'PC', 'elementary': 1, 'eulerian_function': 24, 'exponent': 220, 'exponents_of_order': [3, 1, 1], 'factors_of_aut_order': [2, 3, 5, 11], 'factors_of_order': [2, 5, 11], 'faithful_reps': [[10, 0, 2]], 'familial': False, 'frattini_label': '2.1', 'frattini_quotient': '220.8', 'hash': 14, 'hyperelementary': 1, 'inner_abelian': False, 'inner_cyclic': False, 'inner_exponent': 110, 'inner_gen_orders': [10, 22], 'inner_gens': [[1, 150], [301, 10]], 'inner_hash': 8, 'inner_nilpotent': False, 'inner_order': 220, 'inner_split': True, 'inner_tex': 'C_{22}:C_{10}', 'inner_used': [1, 2], 'irrC_degree': 10, 'irrQ_degree': 20, 'irrQ_dim': 20, 'irrR_degree': 20, 'irrep_stats': [[1, 20], [2, 5], [5, 8], [10, 2]], 'label': '440.14', 'linC_count': 40, 'linC_degree': 7, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': 12, 'linQ_degree_count': 4, 'linQ_dim': 14, 'linQ_dim_count': 4, 'linR_count': 12, 'linR_degree': 14, 'maximal_subgroups_known': True, 'metabelian': True, 'metacyclic': True, 'monomial': True, 'name': 'C44.C10', 'ngens': 5, 'nilpotency_class': -1, 'nilpotent': False, 'normal_counts': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 18, 'number_characteristic_subgroups': 9, 'number_conjugacy_classes': 35, 'number_divisions': 15, 'number_normal_subgroups': 18, 'number_subgroup_autclasses': 16, 'number_subgroup_classes': 24, 'number_subgroups': 84, 'old_label': None, 'order': 440, 'order_factorization_type': 311, 'order_stats': [[1, 1], [2, 1], [4, 6], [5, 44], [10, 44], [11, 10], [20, 264], [22, 10], [44, 60]], 'outer_abelian': False, 'outer_cyclic': False, 'outer_equivalence': False, 'outer_exponent': 6, 'outer_gen_orders': [2, 6], 'outer_gen_pows': [330, 0], 'outer_gens': [[111, 210], [111, 105]], 'outer_group': '12.4', 'outer_hash': 4, 'outer_nilpotent': False, 'outer_order': 12, 'outer_permdeg': 5, 'outer_perms': [6, 31], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'D_6', 'pc_rank': 2, 'perfect': False, 'permutation_degree': 19, 'pgroup': 0, 'primary_abelian_invariants': [2, 2, 5], 'quasisimple': False, 'rank': 2, 'rational': False, 'rational_characters_known': True, 'ratrep_stats': [[1, 4], [2, 1], [4, 4], [8, 1], [10, 4], [20, 1]], 'representations': {'PC': {'code': 4055531876230862578582624868703009, 'gens': [1, 3], 'pres': [5, -2, -5, -2, -2, -11, 10, 1106, 2252, 382, 42, 6003, 1008, 58, 4004, 2509]}, 'GLZN': {'d': 2, 'p': 33, 'gens': [35962, 826574, 36037, 384086, 48302]}, 'Perm': {'d': 19, 'gens': [7039, 12593, 400434839844480, 18619, 7159885125120000]}}, 'schur_multiplier': [], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [2, 10], 'solvability_type': 6, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': True, 'sylow_subgroups_known': True, 'tex_name': 'C_{44}.C_{10}', 'transitive_degree': 88, 'wreath_data': None, 'wreath_product': False}
-
gps_groups • Show schema
Hide schema
{'Agroup': False, 'Zgroup': False, 'abelian': False, 'abelian_quotient': '40.14', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 2, 'aut_exponent': 220, 'aut_gen_orders': [10, 10, 10, 20, 10, 4, 20], 'aut_gens': [[1, 2, 80], [1, 1462, 1400], [41, 1502, 1360], [941, 1182, 720], [61, 962, 1240], [21, 262, 400], [921, 542, 1720], [61, 402, 1520]], 'aut_group': None, 'aut_hash': 7334205941972959822, 'aut_nilpotency_class': -1, 'aut_nilpotent': False, 'aut_order': 14080, 'aut_permdeg': 96, 'aut_perms': [9795754059683007391815757693746320562275023844899744869544532301760223590910282796813389777432502244199591250705786248967924397901875718880378626484, 619330943721313961050948957459471054382854698959357327919041265950552918637790475057878182386276007063046016471561172807283526106552093882629872052238, 348400476345992227505569209009017116435898723291101839133903785634414226915623779676349215970131016925069850313746245123185290586607962286546183796515, 431002099751527943521469103266601004935778530946672703087010073621183401957673980822224095961548484610091926875262803132252037872730138670553197738577, 797591572856755974908639227072969100854107772222039921283319428006981559152412686470804606106447023047464886179299790516354863851115897030716087079833, 523137699345156888680840938377252353561970067250178248634763627098314791481823304799537953016529182706092892134987044786691411878391671040381086593946, 430434657228816464417231850340245110403413647001357745490863618696324375416885273359799003087238054049100742260981894510748786287830318333280009137814], 'aut_phi_ratio': 22.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [2, 1, 2, 1], [2, 44, 2, 1], [4, 2, 1, 2], [4, 4, 2, 1], [5, 11, 1, 4], [8, 22, 4, 1], [10, 11, 1, 4], [10, 11, 2, 4], [10, 44, 2, 4], [11, 10, 1, 1], [20, 22, 1, 8], [20, 44, 2, 4], [22, 10, 1, 1], [22, 10, 2, 1], [40, 22, 4, 4], [44, 20, 1, 2], [44, 20, 4, 1]], 'aut_supersolvable': True, 'aut_tex': '(C_2^3\\times C_{11}:C_5).C_2^5', 'autcent_abelian': False, 'autcent_cyclic': False, 'autcent_exponent': 4, 'autcent_group': '32.27', 'autcent_hash': 27, 'autcent_nilpotent': True, 'autcent_order': 32, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': True, 'autcent_tex': 'C_2^2\\wr C_2', 'autcentquo_abelian': False, 'autcentquo_cyclic': False, 'autcentquo_exponent': 110, 'autcentquo_group': '440.42', 'autcentquo_hash': 42, 'autcentquo_nilpotent': False, 'autcentquo_order': 440, 'autcentquo_solvable': True, 'autcentquo_supersolvable': True, 'autcentquo_tex': 'C_2^2\\times F_{11}', 'cc_stats': [[1, 1, 1], [2, 1, 3], [2, 44, 2], [4, 2, 2], [4, 4, 2], [5, 11, 4], [8, 22, 4], [10, 11, 12], [10, 44, 8], [11, 10, 1], [20, 22, 8], [20, 44, 8], [22, 10, 3], [40, 22, 16], [44, 20, 6]], 'center_label': '4.2', 'center_order': 4, 'central_product': True, 'central_quotient': '440.11', 'commutator_count': 1, 'commutator_label': '44.2', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1', '2.1', '2.1', '2.1', '2.1', '5.1', '11.1'], 'composition_length': 7, 'conjugacy_classes_known': True, 'counter': 353, 'cyclic': False, 'derived_length': 2, 'dihedral': False, 'direct_factorization': [['2.1', 1], ['880.20', 1]], 'direct_product': True, 'div_stats': [[1, 1, 1, 1], [2, 1, 1, 3], [2, 44, 1, 2], [4, 2, 1, 2], [4, 4, 1, 2], [5, 11, 4, 1], [8, 22, 2, 2], [10, 11, 4, 3], [10, 44, 4, 2], [11, 10, 1, 1], [20, 22, 4, 2], [20, 44, 4, 2], [22, 10, 1, 3], [40, 22, 8, 2], [44, 20, 1, 2], [44, 20, 2, 2]], 'element_repr_type': 'PC', 'elementary': 1, 'eulerian_function': 124992, 'exponent': 440, 'exponents_of_order': [5, 1, 1], 'factors_of_aut_order': [2, 5, 11], 'factors_of_order': [2, 5, 11], 'faithful_reps': [], 'familial': False, 'frattini_label': '4.1', 'frattini_quotient': '440.42', 'hash': 353, 'hyperelementary': 1, 'inner_abelian': False, 'inner_cyclic': False, 'inner_exponent': 220, 'inner_gen_orders': [2, 20, 11], 'inner_gens': [[1, 22, 80], [61, 2, 1360], [1, 482, 80]], 'inner_hash': 11, 'inner_nilpotent': False, 'inner_order': 440, 'inner_split': True, 'inner_tex': 'D_{22}:C_{10}', 'inner_used': [1, 2, 3], 'irrC_degree': -1, 'irrQ_degree': -1, 'irrQ_dim': -1, 'irrR_degree': -1, 'irrep_stats': [[1, 40], [2, 30], [10, 8], [20, 2]], 'label': '1760.353', 'linC_count': 80, 'linC_degree': 12, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': 14, 'linQ_degree_count': 4, 'linQ_dim': 14, 'linQ_dim_count': 4, 'linR_count': 20, 'linR_degree': 14, 'maximal_subgroups_known': True, 'metabelian': True, 'metacyclic': False, 'monomial': True, 'name': 'C2*Q8:F11', 'ngens': 7, 'nilpotency_class': -1, 'nilpotent': False, 'normal_counts': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 46, 'number_characteristic_subgroups': 27, 'number_conjugacy_classes': 80, 'number_divisions': 32, 'number_normal_subgroups': 55, 'number_subgroup_autclasses': 92, 'number_subgroup_classes': 136, 'number_subgroups': 1106, 'old_label': None, 'order': 1760, 'order_factorization_type': 311, 'order_stats': [[1, 1], [2, 91], [4, 12], [5, 44], [8, 88], [10, 484], [11, 10], [20, 528], [22, 30], [40, 352], [44, 120]], 'outer_abelian': False, 'outer_cyclic': False, 'outer_equivalence': False, 'outer_exponent': 4, 'outer_gen_orders': [2, 2, 2, 4], 'outer_gen_pows': [0, 0, 20, 0], 'outer_gens': [[41, 2, 1680], [881, 42, 1680], [921, 42, 120], [881, 922, 1720]], 'outer_group': '32.46', 'outer_hash': 46, 'outer_nilpotent': True, 'outer_order': 32, 'outer_permdeg': 8, 'outer_perms': [7, 16, 5040, 16583], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'C_2^2\\times D_4', 'pc_rank': 3, 'perfect': False, 'permutation_degree': 21, 'pgroup': 0, 'primary_abelian_invariants': [2, 2, 2, 5], 'quasisimple': False, 'rank': 3, 'rational': False, 'rational_characters_known': True, 'ratrep_stats': [[1, 8], [2, 2], [4, 10], [8, 2], [10, 4], [16, 2], [20, 4]], 'representations': {'PC': {'code': 11032761968854402741268738976952410755815302867175016790000309, 'gens': [1, 2, 6], 'pres': [7, -2, -2, -2, -2, -5, -2, -11, 280, 309, 36, 926, 58, 80, 28572, 2539, 3806, 3183, 124, 23533, 5900, 8847, 1994]}, 'GLZN': {'d': 2, 'p': 33, 'gens': [826574, 36037, 359380, 851058, 48302, 60644, 35962]}, 'Perm': {'d': 21, 'gens': [122002108923483408, 1, 471000, 256851058042656000, 859248, 1270440, 2797904269515801600]}}, 'schur_multiplier': [2, 2], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [2, 2, 10], 'solvability_type': 7, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': True, 'sylow_subgroups_known': True, 'tex_name': 'C_2\\times Q_8:F_{11}', 'transitive_degree': 176, 'wreath_data': None, 'wreath_product': False}
-
gps_groups • Show schema
Hide schema
{'Agroup': True, 'Zgroup': False, 'abelian': True, 'abelian_quotient': '4.2', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 2, 'aut_exponent': 6, 'aut_gen_orders': [2, 3], 'aut_gens': [[1, 2], [3, 2], [2, 3]], 'aut_group': '6.1', 'aut_hash': 1, 'aut_nilpotency_class': -1, 'aut_nilpotent': False, 'aut_order': 6, 'aut_permdeg': 3, 'aut_perms': [1, 4], 'aut_phi_ratio': 3.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 1, 3, 1]], 'aut_supersolvable': True, 'aut_tex': 'S_3', 'autcent_abelian': False, 'autcent_cyclic': False, 'autcent_exponent': 6, 'autcent_group': '6.1', 'autcent_hash': 1, 'autcent_nilpotent': False, 'autcent_order': 6, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': True, 'autcent_tex': 'S_3', 'autcentquo_abelian': True, 'autcentquo_cyclic': True, 'autcentquo_exponent': 1, 'autcentquo_group': '1.1', 'autcentquo_hash': 1, 'autcentquo_nilpotent': True, 'autcentquo_order': 1, 'autcentquo_solvable': True, 'autcentquo_supersolvable': True, 'autcentquo_tex': 'C_1', 'cc_stats': [[1, 1, 1], [2, 1, 3]], 'center_label': '4.2', 'center_order': 4, 'central_product': True, 'central_quotient': '1.1', 'commutator_count': 0, 'commutator_label': '1.1', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1', '2.1'], 'composition_length': 2, 'conjugacy_classes_known': True, 'counter': 2, 'cyclic': False, 'derived_length': 1, 'dihedral': True, 'direct_factorization': [['2.1', 2]], 'direct_product': True, 'div_stats': [[1, 1, 1, 1], [2, 1, 1, 3]], 'element_repr_type': 'PC', 'elementary': 2, 'eulerian_function': 1, 'exponent': 2, 'exponents_of_order': [2], 'factors_of_aut_order': [2, 3], 'factors_of_order': [2], 'faithful_reps': [], 'familial': True, 'frattini_label': '1.1', 'frattini_quotient': '4.2', 'hash': 2, 'hyperelementary': 2, 'inner_abelian': True, 'inner_cyclic': True, 'inner_exponent': 1, 'inner_gen_orders': [1, 1], 'inner_gens': [[1, 2], [1, 2]], 'inner_hash': 1, 'inner_nilpotent': True, 'inner_order': 1, 'inner_split': True, 'inner_tex': 'C_1', 'inner_used': [], 'irrC_degree': -1, 'irrQ_degree': -1, 'irrQ_dim': -1, 'irrR_degree': -1, 'irrep_stats': [[1, 4]], 'label': '4.2', 'linC_count': 3, 'linC_degree': 2, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': 2, 'linQ_degree_count': 3, 'linQ_dim': 2, 'linQ_dim_count': 3, 'linR_count': 3, 'linR_degree': 2, 'maximal_subgroups_known': True, 'metabelian': True, 'metacyclic': True, 'monomial': True, 'name': 'C2^2', 'ngens': 2, 'nilpotency_class': 1, 'nilpotent': True, 'normal_counts': [0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 2, 'number_characteristic_subgroups': 2, 'number_conjugacy_classes': 4, 'number_divisions': 4, 'number_normal_subgroups': 5, 'number_subgroup_autclasses': 3, 'number_subgroup_classes': 5, 'number_subgroups': 5, 'old_label': None, 'order': 4, 'order_factorization_type': 2, 'order_stats': [[1, 1], [2, 3]], 'outer_abelian': False, 'outer_cyclic': False, 'outer_equivalence': False, 'outer_exponent': 6, 'outer_gen_orders': [2, 3], 'outer_gen_pows': [0, 0], 'outer_gens': [[3, 2], [2, 3]], 'outer_group': '6.1', 'outer_hash': 1, 'outer_nilpotent': False, 'outer_order': 6, 'outer_permdeg': 3, 'outer_perms': [1, 4], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'S_3', 'pc_rank': 2, 'perfect': False, 'permutation_degree': 4, 'pgroup': 2, 'primary_abelian_invariants': [2, 2], 'quasisimple': False, 'rank': 2, 'rational': True, 'rational_characters_known': True, 'ratrep_stats': [[1, 4]], 'representations': {'PC': {'code': 0, 'gens': [1, 2], 'pres': [2, -2, 2]}, 'GLZ': {'b': 3, 'd': 2, 'gens': [14, 12]}, 'GLFp': {'d': 2, 'p': 3, 'gens': [55, 56]}, 'Perm': {'d': 4, 'gens': [6, 1]}}, 'schur_multiplier': [2], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [2, 2], 'solvability_type': 1, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': True, 'sylow_subgroups_known': True, 'tex_name': 'C_2^2', 'transitive_degree': 4, 'wreath_data': None, 'wreath_product': False}