-
gps_subgroup_search • Show schema
Hide schema
{'Agroup': True, 'Zgroup': False, 'abelian': False, 'ambient': '1728.47367', 'ambient_counter': 47367, 'ambient_order': 1728, 'ambient_tex': 'Q_8:S_3^3', 'central': False, 'central_factor': False, 'centralizer_order': 16, 'characteristic': False, 'core_order': 24, 'counter': 116, 'cyclic': False, 'direct': None, 'hall': 0, 'label': '1728.47367.18.c1', 'maximal': False, 'maximal_normal': False, 'metabelian': True, 'metacyclic': False, 'minimal': False, 'minimal_normal': False, 'nilpotent': False, 'normal': False, 'old_label': '18.c1', 'outer_equivalence': True, 'perfect': False, 'proper': True, 'quotient': None, 'quotient_Agroup': None, 'quotient_abelian': None, 'quotient_cyclic': None, 'quotient_hash': None, 'quotient_metabelian': None, 'quotient_nilpotent': None, 'quotient_order': 18, 'quotient_simple': None, 'quotient_solvable': None, 'quotient_supersolvable': None, 'quotient_tex': None, 'simple': False, 'solvable': True, 'special_labels': [], 'split': None, 'standard_generators': False, 'stem': False, 'subgroup': '96.206', 'subgroup_hash': 206, 'subgroup_order': 96, 'subgroup_tex': 'C_{12}:C_2^3', 'supersolvable': True, 'sylow': 0}
-
gps_subgroup_data • Show schema
Hide schema
{'ambient': '1728.47367', 'aut_centralizer_order': None, 'aut_label': '18.c1', 'aut_quo_index': None, 'aut_stab_index': None, 'aut_weyl_group': None, 'aut_weyl_index': None, 'centralizer': '108.e1', 'complements': None, 'conjugacy_class_count': 9, 'contained_in': ['6.c1', '9.a1'], 'contains': ['36.b1', '36.c1', '36.g1', '36.h1', '36.n1', '36.o1', '36.u1', '36.v1', '36.z1', '36.bl1', '36.bm1', '54.b1'], 'core': '72.a1', 'coset_action_label': None, 'count': 81, 'diagramx': None, 'generators': [25, 48, 864, 74, 84, 1296], 'label': '1728.47367.18.c1', 'mobius_quo': None, 'mobius_sub': None, 'normal_closure': '2.b1', 'normal_contained_in': None, 'normal_contains': None, 'normalizer': '9.a1', 'old_label': '18.c1', 'projective_image': None, 'quotient_action_image': None, 'quotient_action_kernel': None, 'quotient_action_kernel_order': None, 'quotient_fusion': None, 'short_label': '18.c1', 'subgroup_fusion': None, 'weyl_group': None}
-
gps_groups • Show schema
Hide schema
{'Agroup': True, 'Zgroup': False, 'abelian': False, 'abelian_quotient': '32.45', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 4, 'aut_exponent': 12, 'aut_gen_orders': [2, 2, 2, 3, 2, 2, 2, 2, 2, 2], 'aut_gens': [[1, 2, 8, 16], [49, 54, 8, 80], [5, 6, 8, 80], [9, 2, 8, 84], [33, 2, 8, 16], [1, 2, 8, 80], [49, 2, 12, 80], [49, 6, 8, 80], [9, 10, 8, 88], [1, 6, 8, 80], [1, 2, 56, 80]], 'aut_group': '9216.mt', 'aut_hash': 286080303390451077, 'aut_nilpotency_class': -1, 'aut_nilpotent': False, 'aut_order': 9216, 'aut_permdeg': 19, 'aut_perms': [6446835113626276, 368209, 20734746793246345, 3991680, 362880, 13877053326627384, 6445526960256676, 85272823203692, 6446835113604480, 4022655805061], 'aut_phi_ratio': 288.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [2, 1, 6, 1], [2, 3, 8, 1], [3, 2, 1, 1], [4, 1, 8, 1], [4, 3, 8, 1], [6, 2, 1, 1], [6, 2, 6, 1], [12, 2, 8, 1]], 'aut_supersolvable': False, 'aut_tex': 'S_3\\times C_2^6:S_4', 'autcent_abelian': False, 'autcent_cyclic': False, 'autcent_exponent': 12, 'autcent_group': '1536.408640869', 'autcent_hash': 4599629986281706675, 'autcent_nilpotent': False, 'autcent_order': 1536, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': False, 'autcent_tex': 'C_2^6:S_4', 'autcentquo_abelian': False, 'autcentquo_cyclic': False, 'autcentquo_exponent': 6, 'autcentquo_group': '6.1', 'autcentquo_hash': 1, 'autcentquo_nilpotent': False, 'autcentquo_order': 6, 'autcentquo_solvable': True, 'autcentquo_supersolvable': True, 'autcentquo_tex': 'S_3', 'cc_stats': [[1, 1, 1], [2, 1, 7], [2, 3, 8], [3, 2, 1], [4, 1, 8], [4, 3, 8], [6, 2, 7], [12, 2, 8]], 'center_label': '16.10', 'center_order': 16, 'central_product': True, 'central_quotient': '6.1', 'commutator_count': 1, 'commutator_label': '3.1', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1', '2.1', '2.1', '2.1', '2.1', '3.1'], 'composition_length': 6, 'conjugacy_classes_known': True, 'counter': 206, 'cyclic': False, 'derived_length': 2, 'dihedral': False, 'direct_factorization': [['2.1', 2], ['4.1', 1], ['6.1', 1]], 'direct_product': True, 'div_stats': [[1, 1, 1, 1], [2, 1, 1, 7], [2, 3, 1, 8], [3, 2, 1, 1], [4, 1, 2, 4], [4, 3, 2, 4], [6, 2, 1, 7], [12, 2, 2, 4]], 'element_repr_type': 'PC', 'elementary': 1, 'eulerian_function': 2730, 'exponent': 12, 'exponents_of_order': [5, 1], 'factors_of_aut_order': [2, 3], 'factors_of_order': [2, 3], 'faithful_reps': [], 'familial': False, 'frattini_label': '2.1', 'frattini_quotient': '48.51', 'hash': 206, 'hyperelementary': 2, 'inner_abelian': False, 'inner_cyclic': False, 'inner_exponent': 6, 'inner_gen_orders': [2, 1, 1, 3], 'inner_gens': [[1, 2, 8, 80], [1, 2, 8, 16], [1, 2, 8, 16], [33, 2, 8, 16]], 'inner_hash': 1, 'inner_nilpotent': False, 'inner_order': 6, 'inner_split': True, 'inner_tex': 'S_3', 'inner_used': [1, 4], 'irrC_degree': -1, 'irrQ_degree': -1, 'irrQ_dim': -1, 'irrR_degree': -1, 'irrep_stats': [[1, 32], [2, 16]], 'label': '96.206', 'linC_count': None, 'linC_degree': None, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': 5, 'linQ_degree_count': None, 'linQ_dim': None, 'linQ_dim_count': None, 'linR_count': None, 'linR_degree': None, 'maximal_subgroups_known': True, 'metabelian': True, 'metacyclic': False, 'monomial': True, 'name': 'C12:C2^3', 'ngens': 6, 'nilpotency_class': -1, 'nilpotent': False, 'normal_counts': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 10, 'number_characteristic_subgroups': 11, 'number_conjugacy_classes': 48, 'number_divisions': 36, 'number_normal_subgroups': 145, 'number_subgroup_autclasses': 42, 'number_subgroup_classes': 236, 'number_subgroups': 418, 'old_label': None, 'order': 96, 'order_factorization_type': 51, 'order_stats': [[1, 1], [2, 31], [3, 2], [4, 32], [6, 14], [12, 16]], 'outer_abelian': False, 'outer_cyclic': False, 'outer_equivalence': True, 'outer_exponent': 12, 'outer_gen_orders': [2, 3, 2, 2, 2, 2, 2, 2, 2, 2], 'outer_gen_pows': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'outer_gens': [[1, 6, 56, 16], [9, 10, 48, 24], [57, 58, 8, 16], [49, 50, 8, 16], [57, 2, 8, 16], [49, 2, 8, 16], [57, 6, 12, 20], [53, 2, 12, 16], [5, 2, 8, 16], [5, 6, 8, 16]], 'outer_group': '1536.408640869', 'outer_hash': 4599629986281706675, 'outer_nilpotent': False, 'outer_order': 1536, 'outer_permdeg': 16, 'outer_perms': [243707089, 6077707400, 4240062968, 403292110, 1564031768, 123746098, 18288720172411, 8164401046681, 1327912204690, 6723188248942], 'outer_solvable': True, 'outer_supersolvable': False, 'outer_tex': 'C_2^6:S_4', 'pc_rank': 4, 'perfect': False, 'permutation_degree': 11, 'pgroup': 0, 'primary_abelian_invariants': [2, 2, 2, 4], 'quasisimple': False, 'rank': 4, 'rational': False, 'rational_characters_known': True, 'ratrep_stats': [[1, 16], [2, 16], [4, 4]], 'representations': {'PC': {'code': 60617826288769, 'gens': [1, 2, 4, 5], 'pres': [6, -2, -2, -2, -2, -2, -3, 31, 2404, 88, 2309]}, 'GLZ': {'b': 3, 'd': 5, 'gens': [706461792407, 706461793378, 705946296092, 141602720900]}, 'GLFp': {'d': 4, 'p': 5, 'gens': [122109387504, 147006733710, 12821847582, 75365757720, 61054693752, 56603912815]}, 'Perm': {'d': 11, 'gens': [362880, 5167, 1, 5335, 126, 3991680]}}, 'schur_multiplier': [2, 2, 2, 2, 2, 2], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [2, 2, 2, 4], 'solvability_type': 7, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': True, 'sylow_subgroups_known': True, 'tex_name': 'C_{12}:C_2^3', 'transitive_degree': 48, 'wreath_data': None, 'wreath_product': False}
-
gps_groups • Show schema
Hide schema
{'Agroup': False, 'Zgroup': False, 'abelian': False, 'abelian_quotient': '32.51', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 4, 'aut_exponent': 36, 'aut_gen_orders': [6, 36, 6, 6, 6], 'aut_gens': [[1, 2, 4, 24, 144], [1306, 529, 1356, 224, 1452], [72, 865, 972, 594, 1300], [961, 2, 884, 24, 1020], [1092, 1310, 1312, 1117, 1404], [1224, 913, 60, 1442, 1300]], 'aut_group': None, 'aut_hash': 5213592911207747358, 'aut_nilpotency_class': -1, 'aut_nilpotent': False, 'aut_order': 248832, 'aut_permdeg': 24, 'aut_perms': [140695305401794826550341, 436273411724512583048318, 308292887249465245683908, 389828652921162357653811, 458908939624996655263818], 'aut_phi_ratio': 432.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [2, 6, 9, 1], [2, 9, 6, 1], [2, 54, 3, 1], [3, 2, 3, 1], [3, 4, 3, 1], [3, 8, 1, 1], [4, 2, 3, 1], [4, 3, 6, 1], [4, 18, 9, 1], [4, 27, 2, 1], [6, 2, 3, 1], [6, 4, 3, 1], [6, 8, 1, 1], [6, 12, 18, 1], [6, 18, 6, 1], [6, 24, 9, 1], [12, 4, 9, 1], [12, 6, 12, 1], [12, 8, 9, 1], [12, 12, 6, 1], [12, 16, 3, 1], [12, 36, 9, 1]], 'aut_supersolvable': False, 'aut_tex': 'C_3^3.C_2^6.D_6^2', 'autcent_abelian': True, 'autcent_cyclic': False, 'autcent_exponent': 2, 'autcent_group': '32.51', 'autcent_hash': 51, 'autcent_nilpotent': True, 'autcent_order': 32, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': True, 'autcent_tex': 'C_2^5', 'autcentquo_abelian': False, 'autcentquo_cyclic': False, 'autcentquo_exponent': 36, 'autcentquo_group': '7776.be', 'autcentquo_hash': 4734684673362351397, 'autcentquo_nilpotent': False, 'autcentquo_order': 7776, 'autcentquo_solvable': True, 'autcentquo_supersolvable': False, 'autcentquo_tex': 'S_3^4:S_3', 'cc_stats': [[1, 1, 1], [2, 1, 1], [2, 6, 9], [2, 9, 6], [2, 54, 3], [3, 2, 3], [3, 4, 3], [3, 8, 1], [4, 2, 3], [4, 3, 6], [4, 18, 9], [4, 27, 2], [6, 2, 3], [6, 4, 3], [6, 8, 1], [6, 12, 18], [6, 18, 6], [6, 24, 9], [12, 4, 9], [12, 6, 12], [12, 8, 9], [12, 12, 6], [12, 16, 3], [12, 36, 9]], 'center_label': '2.1', 'center_order': 2, 'central_product': True, 'central_quotient': '864.4704', 'commutator_count': 1, 'commutator_label': '54.15', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1', '2.1', '2.1', '2.1', '2.1', '2.1', '3.1', '3.1', '3.1'], 'composition_length': 9, 'conjugacy_classes_known': True, 'counter': 47367, 'cyclic': False, 'derived_length': 2, 'dihedral': False, 'direct_factorization': [], 'direct_product': False, 'div_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [2, 6, 1, 9], [2, 9, 1, 6], [2, 54, 1, 3], [3, 2, 1, 3], [3, 4, 1, 3], [3, 8, 1, 1], [4, 2, 1, 3], [4, 3, 2, 3], [4, 18, 1, 9], [4, 27, 2, 1], [6, 2, 1, 3], [6, 4, 1, 3], [6, 8, 1, 1], [6, 12, 1, 18], [6, 18, 1, 6], [6, 24, 1, 9], [12, 4, 1, 9], [12, 6, 2, 6], [12, 8, 1, 9], [12, 12, 2, 3], [12, 16, 1, 3], [12, 36, 1, 9]], 'element_repr_type': 'PC', 'elementary': 1, 'eulerian_function': 17776640000, 'exponent': 12, 'exponents_of_order': [6, 3], 'factors_of_aut_order': [2, 3], 'factors_of_order': [2, 3], 'faithful_reps': [[16, 1, 1]], 'familial': False, 'frattini_label': '2.1', 'frattini_quotient': '864.4704', 'hash': 47367, 'hyperelementary': 1, 'inner_abelian': False, 'inner_cyclic': False, 'inner_exponent': 6, 'inner_gen_orders': [2, 2, 6, 6, 6], 'inner_gens': [[1, 2, 4, 120, 1008], [1, 2, 20, 24, 1008], [1, 874, 4, 24, 1008], [49, 2, 4, 24, 1584], [865, 866, 868, 312, 144]], 'inner_hash': 4704, 'inner_nilpotent': False, 'inner_order': 864, 'inner_split': True, 'inner_tex': 'S_3\\times D_6^2', 'inner_used': [1, 2, 3, 4, 5], 'irrC_degree': 16, 'irrQ_degree': 16, 'irrQ_dim': 32, 'irrR_degree': 16, 'irrep_stats': [[1, 32], [2, 56], [4, 36], [8, 10], [16, 1]], 'label': '1728.47367', 'linC_count': None, 'linC_degree': None, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': None, 'linQ_degree_count': None, 'linQ_dim': None, 'linQ_dim_count': None, 'linR_count': None, 'linR_degree': None, 'maximal_subgroups_known': True, 'metabelian': True, 'metacyclic': False, 'monomial': True, 'name': 'Q8:S3^3', 'ngens': 9, 'nilpotency_class': -1, 'nilpotent': False, 'normal_counts': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 24, 'number_characteristic_subgroups': 12, 'number_conjugacy_classes': 135, 'number_divisions': 122, 'number_normal_subgroups': 652, 'number_subgroup_autclasses': 418, 'number_subgroup_classes': 4092, 'number_subgroups': 30340, 'old_label': None, 'order': 1728, 'order_factorization_type': 33, 'order_stats': [[1, 1], [2, 271], [3, 26], [4, 240], [6, 566], [12, 624]], 'outer_abelian': False, 'outer_cyclic': False, 'outer_equivalence': True, 'outer_exponent': 12, 'outer_gen_orders': [2, 2, 2, 3, 3, 2, 2], 'outer_gen_pows': [432, 3, 0, 0, 73, 0, 0], 'outer_gens': [[433, 434, 1300, 456, 144], [866, 865, 972, 80, 720], [1, 2, 884, 24, 720], [2, 72, 1452, 17, 1392], [433, 434, 436, 552, 300], [865, 2, 868, 120, 144], [865, 2, 20, 888, 720]], 'outer_group': '288.1028', 'outer_hash': 1028, 'outer_nilpotent': False, 'outer_order': 288, 'outer_permdeg': 9, 'outer_perms': [7, 5040, 1, 5760, 30, 41040, 90720], 'outer_solvable': True, 'outer_supersolvable': False, 'outer_tex': 'D_6\\times S_4', 'pc_rank': 5, 'perfect': False, 'permutation_degree': 17, 'pgroup': 0, 'primary_abelian_invariants': [2, 2, 2, 2, 2], 'quasisimple': False, 'rank': 5, 'rational': False, 'rational_characters_known': True, 'ratrep_stats': [[1, 32], [2, 48], [4, 28], [8, 10], [16, 4]], 'representations': {'PC': {'code': 19085572680515458943224351694874969803554866086184546594830377, 'gens': [1, 2, 3, 5, 7], 'pres': [9, -2, -2, -2, -3, -2, -3, -2, -2, -3, 281, 74, 15852, 3918, 5404, 130, 5189, 63510, 31767, 15900, 4200, 186, 4363, 214, 3932]}, 'Perm': {'d': 17, 'gens': [21011006021040, 21011006016143, 21011006016136, 44654927788800, 68100219936000, 90603192556800, 325, 45360, 435]}}, 'schur_multiplier': [2, 2, 2, 2, 2, 2, 2, 2, 2], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [2, 2, 2, 2, 2], 'solvability_type': 7, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': True, 'sylow_subgroups_known': True, 'tex_name': 'Q_8:S_3^3', 'transitive_degree': 96, 'wreath_data': None, 'wreath_product': False}