-
gps_subgroup_search • Show schema
Hide schema
{'Agroup': True, 'Zgroup': True, 'abelian': True, 'ambient': '1600.10114', 'ambient_counter': 10114, 'ambient_order': 1600, 'ambient_tex': 'C_2^2\\times C_{20}:F_5', 'central': False, 'central_factor': False, 'centralizer_order': 400, 'characteristic': False, 'core_order': 5, 'counter': 130, 'cyclic': True, 'direct': False, 'hall': 0, 'label': '1600.10114.320.a1', 'maximal': False, 'maximal_normal': False, 'metabelian': True, 'metacyclic': True, 'minimal': True, 'minimal_normal': True, 'nilpotent': True, 'normal': True, 'old_label': '320.a1', 'outer_equivalence': True, 'perfect': False, 'proper': True, 'quotient': '320.1591', 'quotient_Agroup': False, 'quotient_abelian': False, 'quotient_cyclic': False, 'quotient_hash': 1591, 'quotient_metabelian': True, 'quotient_nilpotent': False, 'quotient_order': 320, 'quotient_simple': False, 'quotient_solvable': True, 'quotient_supersolvable': True, 'quotient_tex': 'D_{10}.C_2^4', 'simple': True, 'solvable': True, 'special_labels': ['C7'], 'split': True, 'standard_generators': False, 'stem': False, 'subgroup': '5.1', 'subgroup_hash': 1, 'subgroup_order': 5, 'subgroup_tex': 'C_5', 'supersolvable': True, 'sylow': 0}
-
gps_subgroup_data • Show schema
Hide schema
{'ambient': '1600.10114', 'aut_centralizer_order': 307200, 'aut_label': '320.a1', 'aut_quo_index': 1, 'aut_stab_index': 2, 'aut_weyl_group': '4.1', 'aut_weyl_index': 614400, 'centralizer': '4.e1', 'complements': ['5.a1'], 'conjugacy_class_count': 2, 'contained_in': ['64.a1', '160.a1', '160.b1', '160.e1', '160.g1', '160.i1'], 'contains': ['1600.a1'], 'core': '320.a1', 'coset_action_label': None, 'count': 2, 'diagramx': [679, 4727, 2801, 3694], 'generators': [320], 'label': '1600.10114.320.a1', 'mobius_quo': -1, 'mobius_sub': 0, 'normal_closure': '320.a1', 'normal_contained_in': ['64.a1', '160.a1', '160.b1'], 'normal_contains': ['1600.a1'], 'normalizer': '1.a1', 'old_label': '320.a1', 'projective_image': '1600.10114', 'quotient_action_image': '4.1', 'quotient_action_kernel': '80.45', 'quotient_action_kernel_order': 80, 'quotient_fusion': None, 'short_label': '320.a1', 'subgroup_fusion': None, 'weyl_group': '4.1'}
-
gps_groups • Show schema
Hide schema
{'Agroup': True, 'Zgroup': True, 'abelian': True, 'abelian_quotient': '5.1', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': True, 'aut_cyclic': True, 'aut_derived_length': 1, 'aut_exponent': 4, 'aut_gen_orders': [4], 'aut_gens': [[1], [2]], 'aut_group': '4.1', 'aut_hash': 1, 'aut_nilpotency_class': 1, 'aut_nilpotent': True, 'aut_order': 4, 'aut_permdeg': 4, 'aut_perms': [9], 'aut_phi_ratio': 1.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [5, 1, 4, 1]], 'aut_supersolvable': True, 'aut_tex': 'C_4', 'autcent_abelian': True, 'autcent_cyclic': True, 'autcent_exponent': 4, 'autcent_group': '4.1', 'autcent_hash': 1, 'autcent_nilpotent': True, 'autcent_order': 4, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': True, 'autcent_tex': 'C_4', 'autcentquo_abelian': True, 'autcentquo_cyclic': True, 'autcentquo_exponent': 1, 'autcentquo_group': '1.1', 'autcentquo_hash': 1, 'autcentquo_nilpotent': True, 'autcentquo_order': 1, 'autcentquo_solvable': True, 'autcentquo_supersolvable': True, 'autcentquo_tex': 'C_1', 'cc_stats': [[1, 1, 1], [5, 1, 4]], 'center_label': '5.1', 'center_order': 5, 'central_product': False, 'central_quotient': '1.1', 'commutator_count': 0, 'commutator_label': '1.1', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['5.1'], 'composition_length': 1, 'conjugacy_classes_known': True, 'counter': 1, 'cyclic': True, 'derived_length': 1, 'dihedral': False, 'direct_factorization': [], 'direct_product': False, 'div_stats': [[1, 1, 1, 1], [5, 1, 4, 1]], 'element_repr_type': 'PC', 'elementary': 5, 'eulerian_function': 1, 'exponent': 5, 'exponents_of_order': [1], 'factors_of_aut_order': [2], 'factors_of_order': [5], 'faithful_reps': [[1, 0, 4]], 'familial': True, 'frattini_label': '1.1', 'frattini_quotient': '5.1', 'hash': 1, 'hyperelementary': 5, 'inner_abelian': True, 'inner_cyclic': True, 'inner_exponent': 1, 'inner_gen_orders': [1], 'inner_gens': [[1]], 'inner_hash': 1, 'inner_nilpotent': True, 'inner_order': 1, 'inner_split': True, 'inner_tex': 'C_1', 'inner_used': [], 'irrC_degree': 1, 'irrQ_degree': 4, 'irrQ_dim': 4, 'irrR_degree': 2, 'irrep_stats': [[1, 5]], 'label': '5.1', 'linC_count': 4, 'linC_degree': 1, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': 4, 'linQ_degree_count': 1, 'linQ_dim': 4, 'linQ_dim_count': 1, 'linR_count': 2, 'linR_degree': 2, 'maximal_subgroups_known': True, 'metabelian': True, 'metacyclic': True, 'monomial': True, 'name': 'C5', 'ngens': 1, 'nilpotency_class': 1, 'nilpotent': True, 'normal_counts': [0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 2, 'number_characteristic_subgroups': 2, 'number_conjugacy_classes': 5, 'number_divisions': 2, 'number_normal_subgroups': 2, 'number_subgroup_autclasses': 2, 'number_subgroup_classes': 2, 'number_subgroups': 2, 'old_label': None, 'order': 5, 'order_factorization_type': 1, 'order_stats': [[1, 1], [5, 4]], 'outer_abelian': True, 'outer_cyclic': True, 'outer_equivalence': False, 'outer_exponent': 4, 'outer_gen_orders': [4], 'outer_gen_pows': [0], 'outer_gens': [[2]], 'outer_group': '4.1', 'outer_hash': 1, 'outer_nilpotent': True, 'outer_order': 4, 'outer_permdeg': 4, 'outer_perms': [9], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'C_4', 'pc_rank': 1, 'perfect': False, 'permutation_degree': 5, 'pgroup': 5, 'primary_abelian_invariants': [5], 'quasisimple': False, 'rank': 1, 'rational': False, 'rational_characters_known': True, 'ratrep_stats': [[1, 1], [4, 1]], 'representations': {'PC': {'code': 0, 'gens': [1], 'pres': [1, -5]}, 'GLZ': {'b': 3, 'd': 4, 'gens': [26329372]}, 'Lie': [{'d': 1, 'q': 5, 'gens': [33], 'family': 'ASigmaL'}], 'GLFp': {'d': 2, 'p': 5, 'gens': [131]}, 'Perm': {'d': 5, 'gens': [96]}}, 'schur_multiplier': [], 'semidirect_product': False, 'simple': True, 'smith_abelian_invariants': [5], 'solvability_type': 0, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': True, 'sylow_subgroups_known': True, 'tex_name': 'C_5', 'transitive_degree': 5, 'wreath_data': None, 'wreath_product': False}
-
gps_groups • Show schema
Hide schema
{'Agroup': False, 'Zgroup': False, 'abelian': False, 'abelian_quotient': '32.45', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 4, 'aut_exponent': 120, 'aut_gen_orders': [60, 8, 8, 4, 8], 'aut_gens': [[1, 2, 8, 80], [41, 546, 49, 560], [841, 487, 520, 1257], [41, 126, 360, 1217], [40, 715, 65, 721], [801, 594, 825, 1080]], 'aut_group': None, 'aut_hash': 903259633507885408, 'aut_nilpotency_class': -1, 'aut_nilpotent': False, 'aut_order': 2457600, 'aut_permdeg': 800, 'aut_perms': [496111259820512976321743648686224238931558825202820544120552943803827236337134241271512564210265330878088659138143440660167111195446630874554268747908275783094220951868410096280860534470834741705018437679498047644939333668022897521524107565505327011495950076988916828400019809536889626125276365950273173615342601635039746193801034235750759398132418020556996032943742566930589734481820082275861412552037451346428466217607114555845047671551697773836904167892941305136183065952451067584736913957280230945704654767239155090539931515540033516575522722071904676973415708784204926696819425560122581457659308855534156229966244443838997963912382923702940113312133140931370147018809773304926471468455772204672544221200897452653430721889546776946779457478969545509104557910943993951144463806732328151262433976888336941152054269987739564668471701826210551904663942804230984687468759690339193637180997764604970493752730726178307207460480142605694583039605659459288531063489288934662724170474228236000619736774724334072467909150179007161519655101877766067573955524871199590365740224730646122259933487612870308469705868086731410501028038311946754397368924751505567843017640074534049730971221206982591145617694281019315697064625672285917044097277639842049017544132139795031125253284317835248417873411002239719835370095945570549553953827827013475640295809677961026866347925387219459341913247643666037799529731310741104111810315004053751381898707826670274583329477907841891180440666180946300104037698581129409696917419556170920436467744746152613321278528422787139058151530085419415121506252686106156899878196477188067092706730677764681032265788156828896145719293183702567739904926274669150982024665819761255627354322392398746747292956235357040638378174960855427577988108514625091446064870880125170366909101079468262564110472304398329324808345686477352380835149248722909886933944447428423781581448235927731551750824819535456827297194817601510932866002455796164701568643406857994398893093861008472, 139463507509633720547223160669020208680289376115017346138619926498509780501650164415859914773694267567803982953432721219591644139557655255216620648341044509626319296921035848521319528255022459680980568087139996052446033407954486434259556146556286996887305164501733022510291609488063740504563846563339285957291367559587338231565882433394743793648374198003092939941761338862994654602143139009515420600379107643812203824845632340654697847418026841311832757462268551194033452260916994674900008403452016807978181743281502411829967823135267828068888932634068203876658292695545485126143638278634730619126836567234550700243321463727927233444392798810942994956416893892127384131771703169677096742178787598941309109225006965418793839228767747082829835888163340615814591050716605533337925977756145260335400679578400955756503770247447112740242835918023795679524888533130775411704746995448829725118824031539308339729910789897963832547592312158543877431972732564180664020196459417737133798079785956143694632836352455896702959535392698260252799369437343307478270254067307428365947925966179255980770583026371872485788822818125046888830861495787707822693994213867533758912960011146797217380197429207393650026132851470025636959733785198314054934359724085755038534155947145980270174552222382090598319027510591186114833534543059442573301985393521347379273910809051145117519513888612606684108619687119993176922903791495427222139193932450622203916305050087408172589235817757217093203297125343622853420178421301321919329387897881904376057681605043575228218067016599779820621528508231066794852585883528233430879852508044070978868486921267887593740912143195953306682956334419409031127912798504504725238397712449151497357003770604803686260216303040387393545753491945922025841021858643001323398788111358302466841399947823970340294025319660782963748073870289254495931304428943389976108615534443810329825889113497404707766680908633536260996451925710438606974175076451141343249344543768997496418186754368023, 510779637445814129614274826725643016202418405673212577099417500776136739808142111325010702625659087402971365214234344290312840060091702231600476909370294025353371202698241144533364396869035195013914770203258929253397097049862690498045710528013614736065436121121135816933058559263376631816829086035605182737793991791573064240284268625263183886950568667794172351626864918620224045648866357369649270570925756104771366116112137711716316781236939229151392317758304899967082821782793529646469140318239085748611326682584026394831510673994057506100843225838958233762371021288841335141689482131600292681742826123764459191058587761725241319612385863882649511218509940020634453516833015644763157562054164158162821706662182219986571886516539745470676570839498334198617507002964972982287522473282229722782159203728000299426618476379052855386919659918359682003668962106986472903579974138391302326710569197902545826681774923321305241156396556195720856969157560801509126424927436213816496876122142236793746673061941518512598378958455415646302460499867486965363816916063665963094493591232812095175487334186294409749678298574123281945263966583929320420449085850688589116787003578326819130095672992672286403894628815053113447536110901507826430773485002068029792101530377742692332257333817797265855593091956738644998479558031042223405816833748131395350926411595937093477609763806219997021505096589492732633299185435822667550508560723041084015776887112494365975079866352622595893263843432660083975368470366778143611705135816700316836565215065794330397530674983225546496373157201517647036286147951689003214459202166818399305118721370110529909901423551675940682514037260011747677254431778458919058957689723762708503311438318381322160813985920366010031219427513392293918754206915345059292762208154853767911199846660089265812124237255598559085860952859142813809169095252080535891820092780091102970365146608002866221369257722126397050154142722138537420377225874988066677653488013799248708152180820206001, 307527167942934732401445226553623383902791059987750814259668500353466406383162489295006012762726932914421513868420705047909528004701872661832617105174079166563057712861288560802738009648669357413119619831980930073066888486606768291635047416656296869713304483469134845532224757924831402134284030899532092177041450184724901916856786016495944685796691241823498341743563626530674360437276209732848089630746432301262075465359171264466296308599006473695445131795981505252077438464057675006961988391420938930947131359296302969905944912367091175380388661539716890011876517581549114554429045146389558454313884264094331652294456392065428154671605030033182776006980303009661053192395806232139903860419856283607468060618789929851612604242260130323727093222326688761653256256310585467763701841208709556951652693879605267910639115059496658204766478679727875711233369559415139637404517023301361005358377523823116650534932121386628861466251687331013993199794392362164061309748999760912337724010849328061331087915593152252818222254551752700485729198570068475264996531576340233813043576559209381372816229466997288674907163725827694426766156155409872298563681971641099706093324522530827590132623149778677068534494562675501411505399926177104122421423241862965389723789179350052692235949602768348735745978213857308141580467835889701198297990388080861440236160055998005246741359152213332136483573305114195368855073041606808212284227777235801558771712967321240144083982384662552440043007492431413635505485352810342337881613018264176650010696609780800292919467408832945768970455725032727871959910402384017588735771050397431452578030273511676991836490567595831875797088087330884866353742636929307443323379421853322382319324591082803328039656287792862077229865563835794982831448765901026646563967077191353245624973746502350023667083907576007070844233585374333190183719987614502506315176478722084693067636783933987106515598644140120132668100452261567265303222999959719719211388210069029773119847762104876, 680632565375933048667680248771567616996774234535756170232261980660638988642607249883896719428356830074971465880306816040369146828773564624239352076841055604145613620911640945552811152036056597704144087806377464333658343045108012572622482531684724532580818738812829060978924293357506326849422515141421659159662569804988479660583177309967514803562822227372695200467466419625817691096982621687588761376150422738937043119549267437722347917347910681551109279332696924666716980907822768214469353998213462061275651944566542889176176193380043744110637430953391358122015277268811220398020146924219036484510253207886725604277110187181819957471372153515631563765150931306273075459742935156936658575427043578588516626347228461959846991607475530793716866178454422908282639720435904437480974613934213788355911607266545339911821762147656937441365211745041098128951405962546085147824471487680653153453621602201529159338969331187875597843920719791636154113017768288712723654185032701557847509595548971096879455291886971224255055428483808666243017141956212789441683363708930977331480117640401935401705503151035112265754622153936152572771669602889717708325706259029538747159547801888458155702013910596990052879188478331434389374990569279421780999977060615402883671716674898956994076274212326276282844044886175964380556394467483807338713592631122384890550266947244705076370620740156788356490803913941759806598546059470640805948463368118394276724095058079428337238833578561768759745012430983418515412429815982911529485040458197737438456977309145267220104178958232382010833196315589507310231007093966456528687828405158541702605902627274742153480382144643852606127203045084546766014197100465637383008373844451491039963976603219181191118384647856625560191472507860732888480812353508771821959086679971470813778469882846349473755487290120249700729229462415523187898760410352910211242901948827415092839394761528900182207657020591693526087320775082569119310366434592216305260533417925060014446594409291833], 'aut_phi_ratio': 3840.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [2, 1, 6, 1], [2, 25, 1, 2], [2, 25, 6, 1], [4, 2, 4, 1], [4, 50, 4, 1], [4, 50, 16, 1], [5, 4, 2, 1], [5, 4, 4, 1], [10, 4, 2, 1], [10, 4, 4, 1], [10, 4, 12, 1], [10, 4, 24, 1], [20, 4, 16, 1], [20, 4, 32, 1]], 'aut_supersolvable': False, 'aut_tex': 'C_{10}^2.C_2^6.C_{12}.C_2.C_2^4', 'autcent_abelian': False, 'autcent_cyclic': False, 'autcent_exponent': 12, 'autcent_group': None, 'autcent_hash': 4599629986281706675, 'autcent_nilpotent': False, 'autcent_order': 1536, 'autcent_solvable': True, 'autcent_split': None, 'autcent_supersolvable': False, 'autcent_tex': 'C_2^4.C_2^4.S_3', 'autcentquo_abelian': False, 'autcentquo_cyclic': False, 'autcentquo_exponent': 40, 'autcentquo_group': None, 'autcentquo_hash': 10254, 'autcentquo_nilpotent': False, 'autcentquo_order': 1600, 'autcentquo_solvable': True, 'autcentquo_supersolvable': False, 'autcentquo_tex': 'F_5^2.C_2^2', 'cc_stats': [[1, 1, 1], [2, 1, 7], [2, 25, 8], [4, 2, 4], [4, 50, 20], [5, 4, 6], [10, 4, 42], [20, 4, 48]], 'center_label': '8.5', 'center_order': 8, 'central_product': True, 'central_quotient': '200.48', 'commutator_count': 1, 'commutator_label': '50.5', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1', '2.1', '2.1', '2.1', '2.1', '2.1', '5.1', '5.1'], 'composition_length': 8, 'conjugacy_classes_known': True, 'counter': 10114, 'cyclic': False, 'derived_length': 2, 'dihedral': False, 'direct_factorization': [['2.1', 2], ['400.159', 1]], 'direct_product': True, 'div_stats': [[1, 1, 1, 1], [2, 1, 1, 7], [2, 25, 1, 8], [4, 2, 1, 4], [4, 50, 1, 4], [4, 50, 2, 8], [5, 4, 1, 2], [5, 4, 2, 2], [10, 4, 1, 14], [10, 4, 2, 14], [20, 4, 2, 8], [20, 4, 4, 8]], 'element_repr_type': 'PC', 'elementary': 1, 'eulerian_function': 807240, 'exponent': 20, 'exponents_of_order': [6, 2], 'factors_of_aut_order': [2, 3, 5], 'factors_of_order': [2, 5], 'faithful_reps': [], 'familial': False, 'frattini_label': '2.1', 'frattini_quotient': '800.1206', 'hash': 10114, 'hyperelementary': 1, 'inner_abelian': False, 'inner_cyclic': False, 'inner_exponent': 20, 'inner_gen_orders': [1, 4, 5, 10], 'inner_gens': [[1, 2, 8, 80], [1, 2, 56, 240], [1, 34, 8, 80], [1, 1442, 8, 80]], 'inner_hash': 48, 'inner_nilpotent': False, 'inner_order': 200, 'inner_split': False, 'inner_tex': 'C_{10}:F_5', 'inner_used': [2, 3, 4], 'irrC_degree': -1, 'irrQ_degree': -1, 'irrQ_dim': -1, 'irrR_degree': -1, 'irrep_stats': [[1, 32], [2, 8], [4, 96]], 'label': '1600.10114', 'linC_count': None, 'linC_degree': None, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': None, 'linQ_degree_count': None, 'linQ_dim': None, 'linQ_dim_count': None, 'linR_count': None, 'linR_degree': None, 'maximal_subgroups_known': True, 'metabelian': True, 'metacyclic': False, 'monomial': True, 'name': 'C2^2*C20:F5', 'ngens': 8, 'nilpotency_class': -1, 'nilpotent': False, 'normal_counts': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 17, 'number_characteristic_subgroups': 15, 'number_conjugacy_classes': 136, 'number_divisions': 80, 'number_normal_subgroups': 250, 'number_subgroup_autclasses': 147, 'number_subgroup_classes': 1072, 'number_subgroups': 10028, 'old_label': None, 'order': 1600, 'order_factorization_type': 32, 'order_stats': [[1, 1], [2, 207], [4, 1008], [5, 24], [10, 168], [20, 192]], 'outer_abelian': False, 'outer_cyclic': False, 'outer_equivalence': True, 'outer_exponent': 12, 'outer_gen_orders': [12, 4, 4, 4, 4], 'outer_gen_pows': [32, 996, 1300, 0, 400], 'outer_gens': [[41, 546, 49, 560], [841, 487, 520, 1257], [41, 126, 360, 1217], [40, 715, 65, 721], [801, 594, 825, 1080]], 'outer_group': None, 'outer_hash': 2344437273852571667, 'outer_nilpotent': False, 'outer_order': 12288, 'outer_permdeg': 128, 'outer_perms': [3132040021508802927290269141570017422857330610671891354553566641039637464402080576138684591249920663426037382124505111153183243768833527067275224016116457536465203329156010655890757625195161321067596594665233227696, 6169364629371319899755151898881083788298654028346707871761536469177509373782261576737311687857680425328409426777232513766239155014632270354730962870411445244661396702959791208346656577568035874347299915799297171171, 9205936166363081301780858153393229230684411824316496454106022942306972704075666064999925615488354822023767062974601570917810771466024574249828326570758081965613897047819153727720975181907674495650051149248281063857, 12242507703354842703805881744463049061479108027061598797626361906958168685160122627291683937118911740542720732204103661908481996702160829786556225597264530992260629745067894582260618220991691119868027797596686483732, 15279079240331077769413962336919678282484802373724633899067864127023365610082439349663594010204575718831809897884624410978249109658620250724257654749479671937309217662894520353555404307364105683316548587558731889514], 'outer_solvable': True, 'outer_supersolvable': False, 'outer_tex': 'C_2^5.A_4.C_2^4.C_2', 'pc_rank': 4, 'perfect': False, 'permutation_degree': 18, 'pgroup': 0, 'primary_abelian_invariants': [2, 2, 2, 4], 'quasisimple': False, 'rank': 4, 'rational': False, 'rational_characters_known': True, 'ratrep_stats': [[1, 16], [2, 16], [4, 16], [8, 24], [16, 8]], 'representations': {'PC': {'code': 3044897548897492230344640933393952742542178913312530104515, 'gens': [1, 2, 4, 6], 'pres': [8, -2, -2, -2, -2, -5, -2, -2, -5, 41, 907, 595, 91, 652, 660, 5773, 8661, 141, 13454, 20182, 166, 30735, 20503]}, 'GLZN': {'d': 2, 'p': 100, 'gens': [1007249, 1006343, 49000049, 1005001, 81208021, 1002001, 1002501, 99000099]}, 'Perm': {'d': 18, 'gens': [359804574219007, 16, 5183, 11656, 5606234726400, 5160, 777140346124800, 1157666954129280]}}, 'schur_multiplier': [2, 2, 2, 2, 2, 10], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [2, 2, 2, 4], 'solvability_type': 7, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': True, 'sylow_subgroups_known': True, 'tex_name': 'C_2^2\\times C_{20}:F_5', 'transitive_degree': 160, 'wreath_data': None, 'wreath_product': False}
-
gps_groups • Show schema
Hide schema
{'Agroup': False, 'Zgroup': False, 'abelian': False, 'abelian_quotient': '32.45', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 4, 'aut_exponent': 120, 'aut_gen_orders': [2, 4, 2, 5, 4, 2, 2, 2, 2, 2, 2], 'aut_gens': [[1, 2, 8, 16], [169, 10, 8, 144], [1, 2, 8, 272], [161, 170, 8, 144], [1, 130, 8, 16], [1, 251, 8, 144], [161, 171, 168, 304], [1, 2, 8, 153], [1, 162, 8, 144], [1, 162, 8, 304], [8, 162, 1, 144], [1, 11, 8, 144]], 'aut_group': '61440.em', 'aut_hash': 5907412864111550192, 'aut_nilpotency_class': -1, 'aut_nilpotent': False, 'aut_order': 61440, 'aut_permdeg': 80, 'aut_perms': [5594800199753698094584207757572722539964085204190530852146612122702993900178460505002435004828549318359225558596089842, 68851923750974802716263448293933692482687165113097724521852473440832781786562662607499268713163381834348783286854346240, 16184585276369329221734354900823932319009179047434760936316596063352870419590493377055970504387433429858417645929561709, 7248716704173495525314976137649241214375934829555037409689330589946464425793483170907107476565415864401443898517346560, 57072023638460676751995659883046236043340967401980937427582340289689476813037694038493097496811142305636239422206519039, 6457170821260400442273872841380054963878165564677821450180403488789815231254640259303354268493948146972463521618669539, 7247834141831606432759521472568323921526638270522544616928246172250319522724345875139126121127181799469640669128293984, 18120909197443868393909271234554392357764915068178928901208705677137537843013037787396944592051082728239856414218852784, 18120909197443868393909271234554392357764914661757175663780033243188217570986443300482379334642907049625111905747913264, 17226292869860394149717470855359069007437667227009993108073820756755492136473795238953235334628878451447029793167818008, 6331006711149799453743905293012873782238369273040049414709876767695017073289031784481156777171792160092036880328294399], 'aut_phi_ratio': 480.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [2, 1, 6, 1], [2, 5, 1, 2], [2, 5, 6, 1], [4, 2, 4, 1], [4, 10, 4, 1], [4, 10, 8, 2], [5, 4, 1, 1], [10, 4, 1, 1], [10, 4, 6, 1], [20, 4, 8, 1]], 'aut_supersolvable': False, 'aut_tex': 'F_5\\times C_2^6:(C_2\\times S_4)', 'autcent_abelian': False, 'autcent_cyclic': False, 'autcent_exponent': 12, 'autcent_group': '1536.408640869', 'autcent_hash': 4599629986281706675, 'autcent_nilpotent': False, 'autcent_order': 1536, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': False, 'autcent_tex': 'C_2^6:S_4', 'autcentquo_abelian': False, 'autcentquo_cyclic': False, 'autcentquo_exponent': 20, 'autcentquo_group': '40.12', 'autcentquo_hash': 12, 'autcentquo_nilpotent': False, 'autcentquo_order': 40, 'autcentquo_solvable': True, 'autcentquo_supersolvable': True, 'autcentquo_tex': 'C_2\\times F_5', 'cc_stats': [[1, 1, 1], [2, 1, 7], [2, 5, 8], [4, 2, 4], [4, 10, 20], [5, 4, 1], [10, 4, 7], [20, 4, 8]], 'center_label': '8.5', 'center_order': 8, 'central_product': True, 'central_quotient': '40.12', 'commutator_count': 1, 'commutator_label': '10.2', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1', '2.1', '2.1', '2.1', '2.1', '2.1', '5.1'], 'composition_length': 7, 'conjugacy_classes_known': True, 'counter': 1591, 'cyclic': False, 'derived_length': 2, 'dihedral': False, 'direct_factorization': [['2.1', 2], ['80.31', 1]], 'direct_product': True, 'div_stats': [[1, 1, 1, 1], [2, 1, 1, 7], [2, 5, 1, 8], [4, 2, 1, 4], [4, 10, 1, 4], [4, 10, 2, 8], [5, 4, 1, 1], [10, 4, 1, 7], [20, 4, 2, 4]], 'element_repr_type': 'PC', 'elementary': 1, 'eulerian_function': 52080, 'exponent': 20, 'exponents_of_order': [6, 1], 'factors_of_aut_order': [2, 3, 5], 'factors_of_order': [2, 5], 'faithful_reps': [], 'familial': False, 'frattini_label': '2.1', 'frattini_quotient': '160.236', 'hash': 1591, 'hyperelementary': 2, 'inner_abelian': False, 'inner_cyclic': False, 'inner_exponent': 20, 'inner_gen_orders': [1, 4, 1, 10], 'inner_gens': [[1, 2, 8, 16], [1, 2, 8, 48], [1, 2, 8, 16], [1, 290, 8, 16]], 'inner_hash': 12, 'inner_nilpotent': False, 'inner_order': 40, 'inner_split': False, 'inner_tex': 'C_2\\times F_5', 'inner_used': [2, 4], 'irrC_degree': -1, 'irrQ_degree': -1, 'irrQ_dim': -1, 'irrR_degree': -1, 'irrep_stats': [[1, 32], [2, 8], [4, 16]], 'label': '320.1591', 'linC_count': None, 'linC_degree': None, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': None, 'linQ_degree_count': None, 'linQ_dim': None, 'linQ_dim_count': None, 'linR_count': None, 'linR_degree': None, 'maximal_subgroups_known': True, 'metabelian': True, 'metacyclic': False, 'monomial': True, 'name': 'D10.C2^4', 'ngens': 7, 'nilpotency_class': -1, 'nilpotent': False, 'normal_counts': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 14, 'number_characteristic_subgroups': 15, 'number_conjugacy_classes': 56, 'number_divisions': 44, 'number_normal_subgroups': 196, 'number_subgroup_autclasses': 78, 'number_subgroup_classes': 418, 'number_subgroups': 1386, 'old_label': None, 'order': 320, 'order_factorization_type': 51, 'order_stats': [[1, 1], [2, 47], [4, 208], [5, 4], [10, 28], [20, 32]], 'outer_abelian': False, 'outer_cyclic': False, 'outer_equivalence': True, 'outer_exponent': 12, 'outer_gen_orders': [2, 3, 2, 2, 2, 2, 2, 2, 2, 2], 'outer_gen_pows': [0, 0, 80, 0, 0, 0, 0, 0, 0, 0], 'outer_gens': [[9, 10, 8, 176], [8, 11, 9, 17], [1, 90, 8, 16], [1, 163, 168, 176], [161, 10, 8, 16], [161, 11, 168, 25], [161, 10, 8, 184], [1, 2, 8, 176], [1, 3, 8, 16], [1, 10, 8, 16]], 'outer_group': '1536.408632661', 'outer_hash': 6321312703651895429, 'outer_nilpotent': False, 'outer_order': 1536, 'outer_permdeg': 16, 'outer_perms': [4296764107855, 262017867456, 4302991486080, 7, 126, 2877842004342, 5413204742273, 5167, 2878807236480, 1321086775680], 'outer_solvable': True, 'outer_supersolvable': False, 'outer_tex': 'C_2^6:S_4', 'pc_rank': 4, 'perfect': False, 'permutation_degree': 13, 'pgroup': 0, 'primary_abelian_invariants': [2, 2, 2, 4], 'quasisimple': False, 'rank': 4, 'rational': False, 'rational_characters_known': True, 'ratrep_stats': [[1, 16], [2, 16], [4, 8], [8, 4]], 'representations': {'PC': {'code': 728382543465111153222064060268547, 'gens': [1, 2, 4, 5], 'pres': [7, -2, -2, -2, -2, -2, -2, -5, 36, 851, 1278, 102, 2028, 3043, 124, 4717, 3156]}, 'GLZN': {'d': 2, 'p': 20, 'gens': [8009, 8201, 28219, 72009, 24069, 8081, 152019]}, 'Perm': {'d': 13, 'gens': [482671449, 1037927520, 1037968560, 1437136560, 16, 1037836800, 34]}}, 'schur_multiplier': [2, 2, 2, 2, 2, 2], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [2, 2, 2, 4], 'solvability_type': 7, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': True, 'sylow_subgroups_known': True, 'tex_name': 'D_{10}.C_2^4', 'transitive_degree': 80, 'wreath_data': None, 'wreath_product': False}