-
gps_subgroup_search • Show schema
Hide schema
{'Agroup': True, 'Zgroup': True, 'abelian': True, 'ambient': '1536.1699', 'ambient_counter': 1699, 'ambient_order': 1536, 'ambient_tex': 'C_8\\times C_{192}', 'central': True, 'central_factor': False, 'centralizer_order': 1536, 'characteristic': True, 'core_order': 4, 'counter': 75, 'cyclic': True, 'direct': False, 'hall': 0, 'label': '1536.1699.384.c1', 'maximal': False, 'maximal_normal': False, 'metabelian': True, 'metacyclic': True, 'minimal': False, 'minimal_normal': False, 'nilpotent': True, 'normal': True, 'old_label': '384.c1', 'outer_equivalence': True, 'perfect': False, 'proper': True, 'quotient': '384.532', 'quotient_Agroup': True, 'quotient_abelian': True, 'quotient_cyclic': False, 'quotient_hash': 532, 'quotient_metabelian': True, 'quotient_nilpotent': True, 'quotient_order': 384, 'quotient_simple': False, 'quotient_solvable': True, 'quotient_supersolvable': True, 'quotient_tex': 'C_4\\times C_{96}', 'simple': False, 'solvable': True, 'special_labels': [], 'split': False, 'standard_generators': False, 'stem': False, 'subgroup': '4.1', 'subgroup_hash': 1, 'subgroup_order': 4, 'subgroup_tex': 'C_4', 'supersolvable': True, 'sylow': 0}
-
gps_subgroup_data • Show schema
Hide schema
{'ambient': '1536.1699', 'aut_centralizer_order': 8192, 'aut_label': '384.c1', 'aut_quo_index': 1, 'aut_stab_index': 1, 'aut_weyl_group': '2.1', 'aut_weyl_index': 8192, 'centralizer': '1.a1', 'complements': [], 'conjugacy_class_count': 1, 'contained_in': ['128.c1', '192.c1', '192.d1'], 'contains': ['768.b1'], 'core': '384.c1', 'coset_action_label': None, 'count': 1, 'diagramx': [2790, 2790, 3689, 3689], 'generators': [388], 'label': '1536.1699.384.c1', 'mobius_quo': 0, 'mobius_sub': 0, 'normal_closure': '384.c1', 'normal_contained_in': ['128.c1', '192.c1', '192.d1'], 'normal_contains': ['768.b1'], 'normalizer': '1.a1', 'old_label': '384.c1', 'projective_image': '384.532', 'quotient_action_image': '1.1', 'quotient_action_kernel': '384.532', 'quotient_action_kernel_order': 384, 'quotient_fusion': None, 'short_label': '384.c1', 'subgroup_fusion': None, 'weyl_group': '1.1'}
-
gps_groups • Show schema
Hide schema
{'Agroup': True, 'Zgroup': True, 'abelian': True, 'abelian_quotient': '4.1', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': True, 'aut_cyclic': True, 'aut_derived_length': 1, 'aut_exponent': 2, 'aut_gen_orders': [2], 'aut_gens': [[1], [3]], 'aut_group': '2.1', 'aut_hash': 1, 'aut_nilpotency_class': 1, 'aut_nilpotent': True, 'aut_order': 2, 'aut_permdeg': 2, 'aut_perms': [1], 'aut_phi_ratio': 1.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [4, 1, 2, 1]], 'aut_supersolvable': True, 'aut_tex': 'C_2', 'autcent_abelian': True, 'autcent_cyclic': True, 'autcent_exponent': 2, 'autcent_group': '2.1', 'autcent_hash': 1, 'autcent_nilpotent': True, 'autcent_order': 2, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': True, 'autcent_tex': 'C_2', 'autcentquo_abelian': True, 'autcentquo_cyclic': True, 'autcentquo_exponent': 1, 'autcentquo_group': '1.1', 'autcentquo_hash': 1, 'autcentquo_nilpotent': True, 'autcentquo_order': 1, 'autcentquo_solvable': True, 'autcentquo_supersolvable': True, 'autcentquo_tex': 'C_1', 'cc_stats': [[1, 1, 1], [2, 1, 1], [4, 1, 2]], 'center_label': '4.1', 'center_order': 4, 'central_product': False, 'central_quotient': '1.1', 'commutator_count': 0, 'commutator_label': '1.1', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1', '2.1'], 'composition_length': 2, 'conjugacy_classes_known': True, 'counter': 1, 'cyclic': True, 'derived_length': 1, 'dihedral': False, 'direct_factorization': [], 'direct_product': False, 'div_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [4, 1, 2, 1]], 'element_repr_type': 'PC', 'elementary': 2, 'eulerian_function': 1, 'exponent': 4, 'exponents_of_order': [2], 'factors_of_aut_order': [2], 'factors_of_order': [2], 'faithful_reps': [[1, 0, 2]], 'familial': True, 'frattini_label': '2.1', 'frattini_quotient': '2.1', 'hash': 1, 'hyperelementary': 2, 'inner_abelian': True, 'inner_cyclic': True, 'inner_exponent': 1, 'inner_gen_orders': [1], 'inner_gens': [[1]], 'inner_hash': 1, 'inner_nilpotent': True, 'inner_order': 1, 'inner_split': True, 'inner_tex': 'C_1', 'inner_used': [], 'irrC_degree': 1, 'irrQ_degree': 2, 'irrQ_dim': 2, 'irrR_degree': 2, 'irrep_stats': [[1, 4]], 'label': '4.1', 'linC_count': 2, 'linC_degree': 1, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': 2, 'linQ_degree_count': 1, 'linQ_dim': 2, 'linQ_dim_count': 1, 'linR_count': 1, 'linR_degree': 2, 'maximal_subgroups_known': True, 'metabelian': True, 'metacyclic': True, 'monomial': True, 'name': 'C4', 'ngens': 1, 'nilpotency_class': 1, 'nilpotent': True, 'normal_counts': [0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 3, 'number_characteristic_subgroups': 3, 'number_conjugacy_classes': 4, 'number_divisions': 3, 'number_normal_subgroups': 3, 'number_subgroup_autclasses': 3, 'number_subgroup_classes': 3, 'number_subgroups': 3, 'old_label': None, 'order': 4, 'order_factorization_type': 2, 'order_stats': [[1, 1], [2, 1], [4, 2]], 'outer_abelian': True, 'outer_cyclic': True, 'outer_equivalence': False, 'outer_exponent': 2, 'outer_gen_orders': [2], 'outer_gen_pows': [0], 'outer_gens': [[3]], 'outer_group': '2.1', 'outer_hash': 1, 'outer_nilpotent': True, 'outer_order': 2, 'outer_permdeg': 2, 'outer_perms': [1], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'C_2', 'pc_rank': 1, 'perfect': False, 'permutation_degree': 4, 'pgroup': 2, 'primary_abelian_invariants': [4], 'quasisimple': False, 'rank': 1, 'rational': False, 'rational_characters_known': True, 'ratrep_stats': [[1, 2], [2, 1]], 'representations': {'PC': {'code': 5, 'gens': [1], 'pres': [2, -2, -2, 4]}, 'GLZ': {'b': 3, 'd': 2, 'gens': [46]}, 'Lie': [{'d': 2, 'q': 3, 'gens': [56, 15], 'family': 'CSOPlus'}], 'GLFp': {'d': 2, 'p': 3, 'gens': [21]}, 'Perm': {'d': 4, 'gens': [22, 7]}}, 'schur_multiplier': [], 'semidirect_product': False, 'simple': False, 'smith_abelian_invariants': [4], 'solvability_type': 0, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': True, 'sylow_subgroups_known': True, 'tex_name': 'C_4', 'transitive_degree': 4, 'wreath_data': None, 'wreath_product': False}
-
gps_groups • Show schema
Hide schema
{'Agroup': True, 'Zgroup': False, 'abelian': True, 'abelian_quotient': '1536.1699', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 3, 'aut_exponent': 16, 'aut_gen_orders': [8, 16, 16, 16, 16, 8, 8, 2], 'aut_gens': [[1, 8], [1159, 188], [773, 1261], [771, 348], [583, 680], [193, 426], [1155, 189], [5, 905], [1, 1292]], 'aut_group': None, 'aut_hash': 2189271166472134719, 'aut_nilpotency_class': 4, 'aut_nilpotent': True, 'aut_order': 16384, 'aut_permdeg': 258, 'aut_perms': [31841018882590710566880000856804929607186609803574107414213685151985547529005625981561171277511350029332290276466640191537816110426491076100274702140703367257055870951866958071052711350905241872489160633222036252971962518352511336539261987627906963114003964002071457979505414771849430228375543297561981328574641443682098280436306337081295049481475942538052517413936101834833463903551894339130507460124930777231035246740989825360424938101966411974230741808494768213717128764362234221993384495978256702050473306793, 36893648073551800743089895493173405004825819808072477023758955220167961438253849591490210425419668279679324189148299487825078195416111634351639638025284782527401392752209852522312638526623518531787695653967294216685789722341155578173086290733405929817731452730995322085831516245286258341894608012400599913557128119368658997240476544502112840215525072623446243663941963119009775490050214398632731364013861516558088486031421635108595229918699460953659296985463876342781719892074725507175023177320020337837986839906, 32373361990621943873721482917430182842545920952388231447680410823186368571898892388702001015896944533467307728963934866434968636575766384380199504842599796223180291750648605721196740728435572261590583116821961724380416038834188028155665354860521211963865662107540375541578233787597535701597635265661158337861298500063237644660314647362944147729990862380574502479233229153333711647425196318448231829729018367491538939878952560682684767793855045598181708976263414451119630927987578321292228626509559858053319615451, 22270908246682279829298712146614609296250312947018120725372701540261566439958117446102033639525292508760449648560968552233690167154330729096985301713559933186589973139113355041920754814520148360342198928982966242656903639166482215100348123630979795268242937170867800814418743124001650165917458012582065928426318708764111700049792193898294981741051275383882692631702787176386085753815507244833211312289534068870645042317559938789235242220635340581189768816394598892295778551066110033755968930096953348016019810159, 35431652224015419228105410364236961114747603974020526948691247299321895539880944793603059390126853224853323796794945198539070248626584545208533245302455899445247100585091089538158897182699389865158919927208319122849481718993085318330836914557922806845937742452411104749115807823528435581941692608443467834295868576823605922924993140530259820534394598634399852582420354914738896395349563763202373947044573157036354343383885688483407381664364961663389871041871303498312077317088271617853085466842470205045156622517, 32498137417255881289129627772776087936510260738338509626363060363081665274861625608154027448636155799698473164473577192540240517778042677779615099287957354325127352961670296457194129511225823984018722883060784299026071425235485994107962661331661544542077173406489631522873924801702546466737523062070126544265247620148105297830014020254940846279752318960910166753297276833240631645909373592595503871327212444433313178739895376412629238740620480708514551750433035899434385690253190458379476178268095213780267634313, 27387726315796508858187664741306670398624551811113890904558939194667602538480070100261540751044380774409917125125571260148597387131704190968260630933489797823136761982510283023080770317068413817693476763516698221136977709493384031134814847129138125808567345260443928463329820854527243120595952877904132045873792810195931257741742319525232198404691707593024303817742436886012083205903875368452594988442495950067186699102758352412775106850755725913066040647515871277716566984234113395307448946862634713277218676747, 34923833858353462618231360535848247271608775611992297779365889420696517737003685527869518326248638026293052401600995689277702975540757521586988431160234006786030275317655658155047066730555189249313904156833175184468568487871540074225951816028345926904132523970639764494435815537812055674607373649859328288217597115609264858107427154481755546087312722792607675908544515180300592973614596688935322050028593352155208864838290374653564911609612582949366861873456315684569840132248229212634130205148840490761472059514], 'aut_phi_ratio': 32.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [2, 1, 2, 1], [3, 1, 2, 1], [4, 1, 2, 2], [4, 1, 8, 1], [6, 1, 2, 1], [6, 1, 4, 1], [8, 1, 4, 2], [8, 1, 8, 1], [8, 1, 32, 1], [12, 1, 4, 2], [12, 1, 16, 1], [16, 1, 16, 2], [16, 1, 32, 1], [24, 1, 8, 2], [24, 1, 16, 1], [24, 1, 64, 1], [32, 1, 64, 2], [48, 1, 32, 2], [48, 1, 64, 1], [64, 1, 256, 1], [96, 1, 128, 2], [192, 1, 512, 1]], 'aut_supersolvable': True, 'aut_tex': 'C_2.C_4^3.C_2^6.C_2', 'autcent_abelian': False, 'autcent_cyclic': False, 'autcent_exponent': 16, 'autcent_group': None, 'autcent_hash': 2189271166472134719, 'autcent_nilpotent': True, 'autcent_order': 16384, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': True, 'autcent_tex': 'C_2.C_4^3.C_2^6.C_2', 'autcentquo_abelian': True, 'autcentquo_cyclic': True, 'autcentquo_exponent': 1, 'autcentquo_group': '1.1', 'autcentquo_hash': 1, 'autcentquo_nilpotent': True, 'autcentquo_order': 1, 'autcentquo_solvable': True, 'autcentquo_supersolvable': True, 'autcentquo_tex': 'C_1', 'cc_stats': [[1, 1, 1], [2, 1, 3], [3, 1, 2], [4, 1, 12], [6, 1, 6], [8, 1, 48], [12, 1, 24], [16, 1, 64], [24, 1, 96], [32, 1, 128], [48, 1, 128], [64, 1, 256], [96, 1, 256], [192, 1, 512]], 'center_label': '1536.1699', 'center_order': 1536, 'central_product': True, 'central_quotient': '1.1', 'commutator_count': 0, 'commutator_label': '1.1', 'complements_known': True, 'complete': False, 'complex_characters_known': False, 'composition_factors': ['2.1', '2.1', '2.1', '2.1', '2.1', '2.1', '2.1', '2.1', '2.1', '3.1'], 'composition_length': 10, 'conjugacy_classes_known': True, 'counter': 1699, 'cyclic': False, 'derived_length': 1, 'dihedral': False, 'direct_factorization': [['3.1', 1], ['64.1', 1], ['8.1', 1]], 'direct_product': True, 'div_stats': [[1, 1, 1, 1], [2, 1, 1, 3], [3, 1, 2, 1], [4, 1, 2, 6], [6, 1, 2, 3], [8, 1, 4, 12], [12, 1, 4, 6], [16, 1, 8, 8], [24, 1, 8, 12], [32, 1, 16, 8], [48, 1, 16, 8], [64, 1, 32, 8], [96, 1, 32, 8], [192, 1, 64, 8]], 'element_repr_type': 'PC', 'elementary': 2, 'eulerian_function': 48, 'exponent': 192, 'exponents_of_order': [9, 1], 'factors_of_aut_order': [2], 'factors_of_order': [2, 3], 'faithful_reps': [], 'familial': False, 'frattini_label': '128.128', 'frattini_quotient': '12.5', 'hash': 1699, 'hyperelementary': 2, 'inner_abelian': True, 'inner_cyclic': True, 'inner_exponent': 1, 'inner_gen_orders': [1, 1], 'inner_gens': [[1, 8], [1, 8]], 'inner_hash': 1, 'inner_nilpotent': True, 'inner_order': 1, 'inner_split': True, 'inner_tex': 'C_1', 'inner_used': [], 'irrC_degree': -1, 'irrQ_degree': -1, 'irrQ_dim': -1, 'irrR_degree': None, 'irrep_stats': [[1, 1536]], 'label': '1536.1699', 'linC_count': None, 'linC_degree': 2, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': None, 'linQ_degree_count': None, 'linQ_dim': None, 'linQ_dim_count': None, 'linR_count': None, 'linR_degree': None, 'maximal_subgroups_known': True, 'metabelian': True, 'metacyclic': True, 'monomial': True, 'name': 'C8*C192', 'ngens': 10, 'nilpotency_class': 1, 'nilpotent': True, 'normal_counts': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 32, 'number_characteristic_subgroups': 44, 'number_conjugacy_classes': 1536, 'number_divisions': 92, 'number_normal_subgroups': 164, 'number_subgroup_autclasses': 80, 'number_subgroup_classes': 164, 'number_subgroups': 164, 'old_label': None, 'order': 1536, 'order_factorization_type': 51, 'order_stats': [[1, 1], [2, 3], [3, 2], [4, 12], [6, 6], [8, 48], [12, 24], [16, 64], [24, 96], [32, 128], [48, 128], [64, 256], [96, 256], [192, 512]], 'outer_abelian': False, 'outer_cyclic': False, 'outer_equivalence': True, 'outer_exponent': 16, 'outer_gen_orders': [16, 16, 8, 16, 8, 4, 8, 16], 'outer_gen_pows': [0, 0, 0, 0, 0, 0, 0, 0], 'outer_gens': [[965, 620], [1155, 1246], [961, 1451], [963, 1496], [5, 972], [385, 526], [577, 952], [197, 11]], 'outer_group': None, 'outer_hash': 2189271166472134719, 'outer_nilpotent': True, 'outer_order': 16384, 'outer_permdeg': 258, 'outer_perms': [18358179626667156039112646703987974999661196236173549016950179919869238621373316488793476195394086124287603692104989048247450062731883739591253364692538188442181600748365787537749889901292649657316932001278137523589572693342423540514193947729978023339586129495467785574169951191806930946224939104175200578901812441804083379812286881056510315412198350139052868755216446112731127488974653271744506403832901423695485220724739190327298930305106706975661845830038123180055710988237542194816227399535150503538995985924, 33080192097892686709569266033455134226051388225739657526296019859653380587512915277343325307336111778117250491124982140850389380564770692616184576891288759162404107241989106831011558757001146884499187744532215683957888016359686750399787781435984382737970858982548669878398924947960968034861510675177832779102967889549473674948062775390160333760270198755041426347016457514545824213869369677788386024517156993494254493334527248165392494225090009558091054630080751793805742401769896410300848161322879021423105473930, 55714200886009990450275626415133441160218829295824149635527297741330502515944479416088464062371598011385889208093700534742342422244414536891402682002854403290334109516311583136496913985885239238353734620663024507585505396790821537871928007939311795022136741167600056234510556436211181381797158491642451639558501790060053938613584556634925425343631803470270890957478457521889711963101496928190263716997644809032096711333739520726329270163948817631227157184051557920222132415142719677900074569023067668574684917836, 54081242946734956060978528052323164086268076163074947321286464571236212435344361237787214961167872074405350770746055186458834551369216308779598545233698087430108570581176322727786784237317052339522995276068799302588830436356861243944411266653983570011518992455823589176234989376352251740113515904463690435057923140117879708525253102899099534186717406926212714992126752550717355574694802097267867762613989423713025897700553540576044285552505070025317764502710074760873756381749600132964108047245560407629633473306, 22102721317499982574343488334059408996743160060789628168071892292227780196715716911359927538955091547371768683261068077913321584811365262405051552307772252766501543409337885690860670487048408796977058213057576992925534124711151203503308658508763534314730585961553513596604124415613909108725738585380697825177330704380255960802319407494345826255477806858437858475700035551839875942411199553306431959737389125274145442118824002587901319777729620224438857714640645588452586729969767398686983885157161894226704865359, 8380519142590380691972055708508502315371022130095580446732307543745588303343846630028659489682057179531017599032217865280198004251050043463702001549731847962000768948794536554891749759249440514147610844815172869840223580563107918370573355918982494611711758471614854174486143325436114812620425333752026656231497684855481913801326048078094499573626987579913009361127289379708502317886467876041790798513428042353173329071053477084486554486385654016340202285252008191204862014244247770464052425086907323233133967524, 22872249791442575257373321517805338320746388763366360072657328246380419995595565587903253413042648053986736179576005950565378782945711223789082400403059207424118216801132861254086769812278443608581648106773725890020537894947812793256372501311867112184102793646369564321876951027639022868954453711896832937363423668631883329453438065333971267173936764361154390971345424266079034978697914827078396324672813015420905423133708125723517568693881076861442940252512499851453723003351516934676931058641228516336609307249, 46086647328856940301595938549527505850600575512302984591938131010688760373169833035906798822365529916776221442484878483951221617489730650212111051622278325744272744880614739162501985666089439594995793667910806493493530360525509748715190643655042565465013766664978845228015226563628019116765442747959644816665407287194267037548026534446661096365771137041938029915698153338412686363429607653109412273047011400469656141088513739908835733380381182515727023870113084491517054325452746023695491354354158758406316710590], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'C_2.C_4^3.C_2^6.C_2', 'pc_rank': 2, 'perfect': False, 'permutation_degree': 75, 'pgroup': 0, 'primary_abelian_invariants': [8, 64, 3], 'quasisimple': False, 'rank': 2, 'rational': False, 'rational_characters_known': True, 'ratrep_stats': [[1, 4], [2, 10], [4, 18], [8, 20], [16, 16], [32, 16], [64, 8]], 'representations': {'PC': {'code': '372826471164606928706864452580217245395969', 'gens': [1, 4], 'pres': [10, -2, -2, -2, -2, -2, -2, -2, -2, -2, -3, 20, 51, 113, 144, 175, 206, 237, 268]}, 'GLFp': {'d': 2, 'p': 193, 'gens': [1337164603, 754851110]}, 'Perm': {'d': 75, 'gens': [34812819462234954428607685341897082192301945708552738688865836491528209085355972467097600000000, 2342588841580508410423734921329644840075247833653813500790076806185010650425874457190025134080000000000000000, 17125731743961598921943674325579392227242124480672411041416803851981460023914660624295657472000, 1001305899656801207125599609903299291487045244424726240969792252144359227041592370889603678208000000000000000, 8282187884824921168611668818381987555972846584752266182758164987540677113354309924032688179200, 330849790591367232825143178964023768926091937952705210247376975078109789451986591384082579456000000000000000, 3860415955256618126428729875983775624818504154288173718968029842331521501914651066812729456320, 1649530213841581475001430175259373643701598531447003215154104016101461640635225996085127825760, 544471857487925546941072384503952816534977960565454352280865841524404515036981945541028258664, 4]}}, 'schur_multiplier': [8], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [8, 192], 'solvability_type': 1, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': True, 'sylow_subgroups_known': True, 'tex_name': 'C_8\\times C_{192}', 'transitive_degree': 1536, 'wreath_data': None, 'wreath_product': False}
-
gps_groups • Show schema
Hide schema
{'Agroup': True, 'Zgroup': False, 'abelian': True, 'abelian_quotient': '384.532', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 2, 'aut_exponent': 8, 'aut_gen_orders': [4, 8, 8, 8, 8, 8, 2], 'aut_gens': [[1, 4], [1, 29], [291, 20], [3, 54], [99, 31], [291, 22], [193, 148], [3, 71]], 'aut_group': None, 'aut_hash': 5742833041917793096, 'aut_nilpotency_class': 3, 'aut_nilpotent': True, 'aut_order': 1024, 'aut_permdeg': 66, 'aut_perms': [243189963974859202607454136997298039025663147781282029828299739771200369831293009216508488198, 410741478158499480265406375878735608760127074225021549026165854535442998319178766922279735118, 436015664375231830610752407440483091313375503543998022204554494606271290589074703624095715273, 124557387193115743098380372462655382932798198667080968568544050507406051628355686373182055309, 378266230077094113756979680964592852012550403812221274114903590528714707826815966598346360191, 526081825426694816638019697196979019228796591572160962778483511570432558495783909884534165500, 418527432415342383755063538830697719341828981890418592802625349513858138919080595273914215954], 'aut_phi_ratio': 8.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [2, 1, 2, 1], [3, 1, 2, 1], [4, 1, 2, 2], [4, 1, 8, 1], [6, 1, 2, 1], [6, 1, 4, 1], [8, 1, 4, 2], [8, 1, 8, 1], [12, 1, 4, 2], [12, 1, 16, 1], [16, 1, 16, 2], [24, 1, 8, 2], [24, 1, 16, 1], [32, 1, 64, 1], [48, 1, 32, 2], [96, 1, 128, 1]], 'aut_supersolvable': True, 'aut_tex': 'C_4^2:C_2^2.C_2^4', 'autcent_abelian': False, 'autcent_cyclic': False, 'autcent_exponent': 8, 'autcent_group': None, 'autcent_hash': 5742833041917793096, 'autcent_nilpotent': True, 'autcent_order': 1024, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': True, 'autcent_tex': 'C_4^2:C_2^2.C_2^4', 'autcentquo_abelian': True, 'autcentquo_cyclic': True, 'autcentquo_exponent': 1, 'autcentquo_group': '1.1', 'autcentquo_hash': 1, 'autcentquo_nilpotent': True, 'autcentquo_order': 1, 'autcentquo_solvable': True, 'autcentquo_supersolvable': True, 'autcentquo_tex': 'C_1', 'cc_stats': [[1, 1, 1], [2, 1, 3], [3, 1, 2], [4, 1, 12], [6, 1, 6], [8, 1, 16], [12, 1, 24], [16, 1, 32], [24, 1, 32], [32, 1, 64], [48, 1, 64], [96, 1, 128]], 'center_label': '384.532', 'center_order': 384, 'central_product': True, 'central_quotient': '1.1', 'commutator_count': 0, 'commutator_label': '1.1', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1', '2.1', '2.1', '2.1', '2.1', '2.1', '2.1', '3.1'], 'composition_length': 8, 'conjugacy_classes_known': True, 'counter': 532, 'cyclic': False, 'derived_length': 1, 'dihedral': False, 'direct_factorization': [['3.1', 1], ['32.1', 1], ['4.1', 1]], 'direct_product': True, 'div_stats': [[1, 1, 1, 1], [2, 1, 1, 3], [3, 1, 2, 1], [4, 1, 2, 6], [6, 1, 2, 3], [8, 1, 4, 4], [12, 1, 4, 6], [16, 1, 8, 4], [24, 1, 8, 4], [32, 1, 16, 4], [48, 1, 16, 4], [96, 1, 32, 4]], 'element_repr_type': 'PC', 'elementary': 2, 'eulerian_function': 48, 'exponent': 96, 'exponents_of_order': [7, 1], 'factors_of_aut_order': [2], 'factors_of_order': [2, 3], 'faithful_reps': [], 'familial': False, 'frattini_label': '32.16', 'frattini_quotient': '12.5', 'hash': 532, 'hyperelementary': 2, 'inner_abelian': True, 'inner_cyclic': True, 'inner_exponent': 1, 'inner_gen_orders': [1, 1], 'inner_gens': [[1, 4], [1, 4]], 'inner_hash': 1, 'inner_nilpotent': True, 'inner_order': 1, 'inner_split': True, 'inner_tex': 'C_1', 'inner_used': [], 'irrC_degree': -1, 'irrQ_degree': -1, 'irrQ_dim': -1, 'irrR_degree': -1, 'irrep_stats': [[1, 384]], 'label': '384.532', 'linC_count': 24576, 'linC_degree': 2, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': 20, 'linQ_degree_count': 80, 'linQ_dim': 20, 'linQ_dim_count': 80, 'linR_count': 6144, 'linR_degree': 4, 'maximal_subgroups_known': True, 'metabelian': True, 'metacyclic': True, 'monomial': True, 'name': 'C4*C96', 'ngens': 8, 'nilpotency_class': 1, 'nilpotent': True, 'normal_counts': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 24, 'number_characteristic_subgroups': 32, 'number_conjugacy_classes': 384, 'number_divisions': 44, 'number_normal_subgroups': 72, 'number_subgroup_autclasses': 48, 'number_subgroup_classes': 72, 'number_subgroups': 72, 'old_label': None, 'order': 384, 'order_factorization_type': 51, 'order_stats': [[1, 1], [2, 3], [3, 2], [4, 12], [6, 6], [8, 16], [12, 24], [16, 32], [24, 32], [32, 64], [48, 64], [96, 128]], 'outer_abelian': False, 'outer_cyclic': False, 'outer_equivalence': False, 'outer_exponent': 8, 'outer_gen_orders': [2, 2, 4, 8, 8, 4, 4], 'outer_gen_pows': [0, 0, 0, 0, 0, 0, 0], 'outer_gens': [[97, 188], [97, 316], [1, 164], [97, 334], [3, 53], [1, 101], [3, 381]], 'outer_group': None, 'outer_hash': 5742833041917793096, 'outer_nilpotent': True, 'outer_order': 1024, 'outer_permdeg': 66, 'outer_perms': [53630740422850889539781869996511991309452617847150324426743516260302848262456023824855788940, 53630740422850889539781869996487168980889705513897549698954198310480698251398421264855788940, 485868226683065457369291729908406268166134653436958116026214435876412741479796978165663274960, 250327651002329183182592735955574769091712015224390906135607639415177460012687627603850735312, 443751737551484308291789946753026124982071032134457251652408753567631176870396938791109097570, 326919224010739911361376690922175701180225529092526528420817183229197258766247668258044832498, 25121565976239793906067627975186566614859435322008127051002397901196508880188441886719999997], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'C_4^2:C_2^2.C_2^4', 'pc_rank': 2, 'perfect': False, 'permutation_degree': 39, 'pgroup': 0, 'primary_abelian_invariants': [4, 32, 3], 'quasisimple': False, 'rank': 2, 'rational': False, 'rational_characters_known': True, 'ratrep_stats': [[1, 4], [2, 10], [4, 10], [8, 8], [16, 8], [32, 4]], 'representations': {'PC': {'code': 74019015088146855619493121, 'gens': [1, 3], 'pres': [8, -2, -2, -2, -2, -2, -2, -2, -3, 16, 66, 91, 116, 141, 166]}, 'GLFp': {'d': 2, 'p': 97, 'gens': [15515447, 68450497]}, 'Perm': {'d': 39, 'gens': [9420320787564833044042482448295657472000, 1596595358582256025372653631463384678400000000, 4, 4553316871647675141030596900032688179200, 523394610793391012977475223548225126400000000, 2119814913695370483408246361737529456320, 903065845799780519864142501070727825760, 295496195434689904216526716510628258664]}}, 'schur_multiplier': [4], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [4, 96], 'solvability_type': 1, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': True, 'sylow_subgroups_known': True, 'tex_name': 'C_4\\times C_{96}', 'transitive_degree': 384, 'wreath_data': None, 'wreath_product': False}