-
gps_subgroup_search • Show schema
Hide schema
{'Agroup': True, 'Zgroup': True, 'abelian': True, 'ambient': '1504.53', 'ambient_counter': 53, 'ambient_order': 1504, 'ambient_tex': 'C_{94}.C_4^2', 'central': False, 'central_factor': False, 'centralizer_order': 752, 'characteristic': True, 'core_order': 47, 'counter': 38, 'cyclic': True, 'direct': False, 'hall': 47, 'label': '1504.53.32.a1.a1', 'maximal': False, 'maximal_normal': False, 'metabelian': True, 'metacyclic': True, 'minimal': True, 'minimal_normal': True, 'nilpotent': True, 'normal': True, 'old_label': '32.a1.a1', 'outer_equivalence': False, 'perfect': False, 'proper': True, 'quotient': '32.2', 'quotient_Agroup': False, 'quotient_abelian': False, 'quotient_cyclic': False, 'quotient_hash': 2, 'quotient_metabelian': True, 'quotient_nilpotent': True, 'quotient_order': 32, 'quotient_simple': False, 'quotient_solvable': True, 'quotient_supersolvable': True, 'quotient_tex': 'C_2.C_4^2', 'simple': True, 'solvable': True, 'special_labels': ['L2', 'C5'], 'split': True, 'standard_generators': False, 'stem': False, 'subgroup': '47.1', 'subgroup_hash': 1, 'subgroup_order': 47, 'subgroup_tex': 'C_{47}', 'supersolvable': True, 'sylow': 47}
-
gps_subgroup_data • Show schema
Hide schema
{'ambient': '1504.53', 'aut_centralizer_order': 6016, 'aut_label': '32.a1', 'aut_quo_index': 3, 'aut_stab_index': 1, 'aut_weyl_group': '46.2', 'aut_weyl_index': 6016, 'centralizer': '2.a1.a1', 'complements': [], 'conjugacy_class_count': 1, 'contained_in': ['16.a1.a1', '16.b1.a1', '16.c1.a1', '16.c1.b1', '16.d1.a1', '16.d1.b1', '16.e1.a1'], 'contains': ['1504.a1.a1'], 'core': '32.a1.a1', 'coset_action_label': None, 'count': 1, 'diagramx': [3603, 6342, 3917, 4423, 3493, 3698, 4044, 3984], 'generators': [32], 'label': '1504.53.32.a1.a1', 'mobius_quo': -1, 'mobius_sub': 0, 'normal_closure': '32.a1.a1', 'normal_contained_in': ['16.e1.a1', '16.a1.a1', '16.b1.a1', '16.c1.a1', '16.c1.b1', '16.d1.a1', '16.d1.b1'], 'normal_contains': ['1504.a1.a1'], 'normalizer': '1.a1.a1', 'old_label': '32.a1.a1', 'projective_image': '1504.53', 'quotient_action_image': '2.1', 'quotient_action_kernel': '16.10', 'quotient_action_kernel_order': 16, 'quotient_fusion': None, 'short_label': '32.a1.a1', 'subgroup_fusion': None, 'weyl_group': '2.1'}
-
gps_groups • Show schema
Hide schema
{'Agroup': True, 'Zgroup': True, 'abelian': True, 'abelian_quotient': '47.1', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': True, 'aut_cyclic': True, 'aut_derived_length': 1, 'aut_exponent': 46, 'aut_gen_orders': [46], 'aut_gens': [[1], [19]], 'aut_group': '46.2', 'aut_hash': 2, 'aut_nilpotency_class': 1, 'aut_nilpotent': True, 'aut_order': 46, 'aut_permdeg': 25, 'aut_perms': [645176417744346808320000], 'aut_phi_ratio': 1.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [47, 1, 46, 1]], 'aut_supersolvable': True, 'aut_tex': 'C_{46}', 'autcent_abelian': True, 'autcent_cyclic': True, 'autcent_exponent': 46, 'autcent_group': '46.2', 'autcent_hash': 2, 'autcent_nilpotent': True, 'autcent_order': 46, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': True, 'autcent_tex': 'C_{46}', 'autcentquo_abelian': True, 'autcentquo_cyclic': True, 'autcentquo_exponent': 1, 'autcentquo_group': '1.1', 'autcentquo_hash': 1, 'autcentquo_nilpotent': True, 'autcentquo_order': 1, 'autcentquo_solvable': True, 'autcentquo_supersolvable': True, 'autcentquo_tex': 'C_1', 'cc_stats': [[1, 1, 1], [47, 1, 46]], 'center_label': '47.1', 'center_order': 47, 'central_product': False, 'central_quotient': '1.1', 'commutator_count': 0, 'commutator_label': '1.1', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['47.1'], 'composition_length': 1, 'conjugacy_classes_known': True, 'counter': 1, 'cyclic': True, 'derived_length': 1, 'dihedral': False, 'direct_factorization': [], 'direct_product': False, 'div_stats': [[1, 1, 1, 1], [47, 1, 46, 1]], 'element_repr_type': 'PC', 'elementary': 47, 'eulerian_function': 1, 'exponent': 47, 'exponents_of_order': [1], 'factors_of_aut_order': [2, 23], 'factors_of_order': [47], 'faithful_reps': [[1, 0, 46]], 'familial': True, 'frattini_label': '1.1', 'frattini_quotient': '47.1', 'hash': 1, 'hyperelementary': 47, 'inner_abelian': True, 'inner_cyclic': True, 'inner_exponent': 1, 'inner_gen_orders': [1], 'inner_gens': [[1]], 'inner_hash': 1, 'inner_nilpotent': True, 'inner_order': 1, 'inner_split': True, 'inner_tex': 'C_1', 'inner_used': [], 'irrC_degree': 1, 'irrQ_degree': 46, 'irrQ_dim': 46, 'irrR_degree': 2, 'irrep_stats': [[1, 47]], 'label': '47.1', 'linC_count': 46, 'linC_degree': 1, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': 46, 'linQ_degree_count': 1, 'linQ_dim': 46, 'linQ_dim_count': 1, 'linR_count': 23, 'linR_degree': 2, 'maximal_subgroups_known': True, 'metabelian': True, 'metacyclic': True, 'monomial': True, 'name': 'C47', 'ngens': 1, 'nilpotency_class': 1, 'nilpotent': True, 'normal_counts': [0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 2, 'number_characteristic_subgroups': 2, 'number_conjugacy_classes': 47, 'number_divisions': 2, 'number_normal_subgroups': 2, 'number_subgroup_autclasses': 2, 'number_subgroup_classes': 2, 'number_subgroups': 2, 'old_label': None, 'order': 47, 'order_factorization_type': 1, 'order_stats': [[1, 1], [47, 46]], 'outer_abelian': True, 'outer_cyclic': True, 'outer_equivalence': False, 'outer_exponent': 46, 'outer_gen_orders': [46], 'outer_gen_pows': [0], 'outer_gens': [[19]], 'outer_group': '46.2', 'outer_hash': 2, 'outer_nilpotent': True, 'outer_order': 46, 'outer_permdeg': 25, 'outer_perms': [645176417744346808320000], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'C_{46}', 'pc_rank': 1, 'perfect': False, 'permutation_degree': 47, 'pgroup': 47, 'primary_abelian_invariants': [47], 'quasisimple': False, 'rank': 1, 'rational': False, 'rational_characters_known': True, 'ratrep_stats': [[1, 1], [46, 1]], 'representations': {'PC': {'code': 0, 'gens': [1], 'pres': [1, -47]}, 'Lie': [{'d': 1, 'q': 47, 'family': 'ASigmaL'}], 'GLFp': {'d': 2, 'p': 47, 'gens': [103871]}, 'Perm': {'d': 47, 'gens': [253120619351356091693114049724811725076235980636160000000000]}}, 'schur_multiplier': [], 'semidirect_product': False, 'simple': True, 'smith_abelian_invariants': [47], 'solvability_type': 0, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': True, 'sylow_subgroups_known': True, 'tex_name': 'C_{47}', 'transitive_degree': 47, 'wreath_data': None, 'wreath_product': False}
-
gps_groups • Show schema
Hide schema
{'Agroup': False, 'Zgroup': False, 'abelian': False, 'abelian_quotient': '16.2', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 2, 'aut_exponent': 4324, 'aut_gen_orders': [92, 46, 92, 46, 46, 46], 'aut_gens': [[1, 4, 8], [873, 4, 1452], [915, 4, 796], [1261, 4, 906], [1201, 4, 1388], [645, 4, 78], [1137, 4, 876]], 'aut_group': None, 'aut_hash': 5502248537084025009, 'aut_nilpotency_class': -1, 'aut_nilpotent': False, 'aut_order': 276736, 'aut_permdeg': 752, 'aut_perms': [107779414042024307244682613120455721011000966165472231009430312368087161856374805604885592723014952224110451699989147023358596944040040270682709961967411617466829321191584693333287549843204705325954620901794466496207042359093344092412260064924826948243945614201460221602081202828351015676497483734559616960018008742760618322520510427748040187151636013904346934603953271988910594224541472351862454147908216702611743016679951767808980963118876499510931126522869828368665892449402640250078228587868309264334711664272654691969611923683959260747466632166061939848083096061609943642378997647226394961684548592469168534603594783644104938528334419795577305825304832249511615671887207891303679178152267952366563220638744628160782664580518066734010324525868507939963082246494914712205863145595610641653631440660553312219348145709435817958199722447366800730036598567651164933474144624606446009699726149536972083231189087266757814294530342113088070932189844528021334408896986498884743150080665898125673195953598811310173461307580566240599498548890167707174929064622594909228566533324335557968438135960244957897818191530979459709282815370193907326560293595266095307172946151074648517076059544519046404805487376717266746060548514320332343545236957854134535005797355308875561970346334159838597213471791777848744581668310795806364091159865016114009031145833681305893748471954847527169392912046359895176480099842582023215394618669034562977858950997065798604845507560155735817849500750467890842832928182587126666999629593290685983111238172872057333169948575956382071345212262514196805424543839095705515200500359026625010405691649386171000462269467504521254471047572822326354277870640996119538815251921571443967338240383988263851809750447422540447788006508111114671610363707666904324963738793938664669617563304633308707941808723653362299591172975599004543450, 92476724224375172358377692909674861573240776762518318356060491949875138163364951411458158322690355854042388309124208501248132417023440497417015044350809746981697584523071867113726904307450419069615063991838441802267828108642221649489569141661963749925131271936975346732761021240290887660833227177271221033573769904439193001238849174053380470729903008253985438617534026132360074369376019324604030988829933366703635941624614144225907399301482070202067594843228961897544509298438790408224228832292697190051279322617518124825723846169480111120282663955580278998087077434046783199119152864179301874752422685333713806554139996649793747556592903584020351265684651299938032041586712431297013154050688025245930214404519248291833218347510495781651234372902730692395770872481544417322726248816079527168685038553017698540718694951375630992434734381111256539101922235456714190120423785482320408065546519710628405795184997198052879966310351396618397237585056298047701395988000048736953654582875428042455901240184517434817867468085290773353997113495967967269245346895813672172234952290469541090905024699747499768397840096748938073261444361682796958625640349125905147643386881507839454871062560891877196995540210948497119616638173505547202339071037304061643840529599829126464780192995259339426261326510886170562994335141208793440101945203523966383124595405233338297998102262264784495273917008268248433277790051787350087717451812633712270121975673678213297578119868673310418797935048720927207196346323140451791070226411561516891351126854127756331079079130836040027545599581481985062673556940926852559092675513475537633108010003983392546954154690033515478706089038330022954214313744153589878643865296051194497195442280770841667934891739075720940150638883456798805123102961015651334056452864336246443517669576929899292985316941198739017445381305853146847008, 38134577219411513825198157059570923378626345687556636813023468117427904756744962625982862217714612278029157862210726163177115277227597176823488391346392201117018112776263875038195908201377014727855083525726745804826463421503683078172397798555169564736674156801826603673515036479172135046785349149984249386058899050382873951914407313792286575327922381799439830009058391831798030537908685965772208739627113021484343731347514926450449708368923820260029298142043940185484734153636778942183372733261758157185731861724806976826745730972019382357156297377397759405732510797324696550688037183642859236273905611055566891547249641296863834923447123153524819162704210937380868435762165013849717659978775799045025999858787481635337992994562076471641523495866983635647087186447658309496851250474475619955253175321525030110056550175744592828418052048893780637369753163121300277547873608602853717758516550463753844383261053428403150130686056766122733252849694790774916344245267848606541795480819604072549876691975247960149719383629637205214958111642310572893594991116223037143508440794404496357924418843376496023635029889263673813058898680704710158881632826376435153326047176914878224097162141720826941461147293287457817035002284758245811436652016505981855125646740132361595003557352806137558188356627759773899786117969230887146836488475711072295744365305003324361035447612935673349954787513100249685261972582345706710423403837404284904521060979676474283362982873107983788504199382590017818757528491654159443045745500642531502251864430827174086280834684433488243300204481242638264662564782892134694802145067998175954873881175088138237249518317504112381142349535658970087033018656274860846160226233625473846055198353522824438714347450700400480595210716594980784678899034368787523008113119988444570158245517976595347832346539346622300002585871660050946443, 73911894578749938350503708573030242944546745751832915555285166966713844347056424842495123312032358194759049721218084607472881664362992785345710280073908236372434554090493667050422513921829129345243120303814525702454547166803405155211944743766841901222972878139304028418694366743970486475601392967380854063127112114139955957973960441572664643796202357700403361676060080234180076895541305871052654800490959340874856580394464575454911639792588431663195084722018093654495842651540117921194222502428393149869695851505759948896634614352346663257433087803000931090472000871909859138216721158958039950219039230558468595160742513168663368204170346678848745779074359842763225660911314830047146803618775104388167629860334911310788318064094253399447225187768195204691316206575659569382923974024284289125513447400364194388224629212654228589387155358875073825336220009304348862453588836721415691154842059449917589746023965418243873091985074117051861867713994336916218750299684312552139496112465396381007807988817612125806609214241629520000815306777442343957873634260729088022509523777600885415227152320418893712445492426315934875769575629748456520536645893505024134936370516834975529411507116057878734510930990839439353875567916643929258354207322760243288700642095211151997569778174988250470372002438859775374036610382269150513698307555594263113965747123817440035989115896967582735808476156769146900893886400257602027710103614441436202953241387767116614745559736971424458085267703564188626567742970004525215917099622579936280992698419242353919565515019954543862186799344425859340147127199215440785093303782193278535257819087013633297988068312438005698636596128675023491587014835184546766374243044766121491974989958637100826171319006967309936145067483107635613833740802627864990027442317839995369431070375639396715671111807943353003859424984125633074249, 25746833550908966266961473287473704482397913356534907611416954366807433344059754845224767001082877223762803794007921120867643278975357183403058300191229709384881680526535800950434753952208461942261533437764113238035104707388547307177465227690809011078098576090645722923233234478014415511612169965583254051424739627431614174858087740034233483933874445754794500337362813251111331511550927654491019087876698979521462462247253999612547613834016638015068346858037042405519362836485945526659769149563070476809855410550723646590612496583284910174325788601388296580008259469922476796076225569801913678637324152600708609792135732920469312891368653763024851014743303195798089820828159179483954863474452656102967127787721768283211681926465951666996851607198233541869417890124842027324048022375113611698791832493888489809138921616036209470582398265389030425656669665262463172889601321789134928403113464741436589660641651728368111214563944092054871226501363114799784600072792134676448611867006470872652249144125939405577430120721351292951018562484658470489136192535094722807972144391153175347014685752057305375736017153916322027402813722017445338479791520241367980948610855065167211570183076567289392199725614900659174223288716347852840125120400975252519819486801864594867204907998949226928936484050490140874264495892381253337568551375410440812490897741647861059606774193567646658687517543370164978599025865414473827750205673213402895506702538735528519291982305676764497755677879947072102767401965728329965870726581746859117189152038421791148105738560771425466789523477803856249952604937626056111062109819127479901635833615617170821714125468391359143985511330920501383035201234283556349887817672359746675459677182035355948942434174905524878222044361917029940620141114963666119704226588753260855744783732092629816221067687673492793792048362518946878052, 3750469224786446556762027336147856244402882974245632808807956129684766405125666509028319413417140674265349983155280264093219409575282510722561940953188891197383814420104673802505025491692556843343768623042624537894826242016075518539805964619272330820297892528515009809176921795870913437454408997334382332397965217390765177448579124866676713047070112782900275616702016060428748861395956393376005488776562689580162555171027391314226848472794222320212830602303715144823379496006189855274200809384705430537080659833345232447996863020920225313812305414732270613766819298397868051831321815007408183076431186366387435428097168620862311377520723622744616369234858856272473763391866315961605393161735660367731425790907000262728043367543414749248602752740038021474956019334896935201216541804537510574824259088857338523162813617365279436051437976880578402965243325080541508866925386785465085211098679262282360369474942657683323136016578234841854436439744846553648768286781411333554037661632467905607056176960110927216025585673305995248324763397539749134519363273982073777022620755110510689075589666962381014038100519618502024876507530510898078652456750453467195204120247022417085558305394827663408475073287794822009894688195367677082387762041070152763280201187085682176682220521129172585919867411792786279409649656635923354533841175930753899908593036158700452975225590553798720435610520363256072150748278008654701664160452682480771918746495874990503296439612266997510947068982465405508929713643943220549762784957526759281448200540514423766352037309774123684909360350624769665126630459320437141985990236683501048493774304947065931348422815904912353524335594073817800218852497231826048710533817984475472027170344874597170112221871853217057064997318094864024872701955767210668492274505832828650557064676488373509338133770403040739481796829985861496814], 'aut_phi_ratio': 376.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 1, 1, 3], [2, 1, 2, 2], [4, 2, 4, 1], [4, 94, 8, 1], [47, 2, 23, 1], [94, 2, 23, 3], [94, 2, 46, 2], [188, 2, 184, 1]], 'aut_supersolvable': True, 'aut_tex': '(C_2\\times C_{94}).C_{46}.C_2^5', 'autcent_abelian': True, 'autcent_cyclic': False, 'autcent_exponent': 2, 'autcent_group': '64.267', 'autcent_hash': 267, 'autcent_nilpotent': True, 'autcent_order': 64, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': True, 'autcent_tex': 'C_2^6', 'autcentquo_abelian': False, 'autcentquo_cyclic': False, 'autcentquo_exponent': 2162, 'autcentquo_group': '4324.a', 'autcentquo_hash': 6, 'autcentquo_nilpotent': False, 'autcentquo_order': 4324, 'autcentquo_solvable': True, 'autcentquo_supersolvable': True, 'autcentquo_tex': 'C_2\\times F_{47}', 'cc_stats': [[1, 1, 1], [2, 1, 7], [4, 2, 4], [4, 94, 8], [47, 2, 23], [94, 2, 161], [188, 2, 184]], 'center_label': '8.5', 'center_order': 8, 'central_product': False, 'central_quotient': '188.3', 'commutator_count': 1, 'commutator_label': '94.2', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1', '2.1', '2.1', '2.1', '2.1', '47.1'], 'composition_length': 6, 'conjugacy_classes_known': True, 'counter': 53, 'cyclic': False, 'derived_length': 2, 'dihedral': False, 'direct_factorization': [], 'direct_product': False, 'div_stats': [[1, 1, 1, 1], [2, 1, 1, 7], [4, 2, 2, 2], [4, 94, 2, 4], [47, 2, 23, 1], [94, 2, 23, 7], [188, 2, 92, 2]], 'element_repr_type': 'PC', 'elementary': 1, 'eulerian_function': 3, 'exponent': 188, 'exponents_of_order': [5, 1], 'factors_of_aut_order': [2, 23, 47], 'factors_of_order': [2, 47], 'faithful_reps': [], 'familial': False, 'frattini_label': '8.5', 'frattini_quotient': '188.3', 'hash': 53, 'hyperelementary': 2, 'inner_abelian': False, 'inner_cyclic': False, 'inner_exponent': 94, 'inner_gen_orders': [2, 1, 94], 'inner_gens': [[1, 4, 748], [1, 4, 8], [773, 4, 8]], 'inner_hash': 3, 'inner_nilpotent': False, 'inner_order': 188, 'inner_split': True, 'inner_tex': 'D_{94}', 'inner_used': [1, 3], 'irrC_degree': -1, 'irrQ_degree': -1, 'irrQ_dim': -1, 'irrR_degree': -1, 'irrep_stats': [[1, 16], [2, 372]], 'label': '1504.53', 'linC_count': 8832, 'linC_degree': 4, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': 50, 'linQ_degree_count': 40, 'linQ_dim': 52, 'linQ_dim_count': 98, 'linR_count': 966, 'linR_degree': 6, 'maximal_subgroups_known': True, 'metabelian': True, 'metacyclic': False, 'monomial': True, 'name': 'C94.C4^2', 'ngens': 6, 'nilpotency_class': -1, 'nilpotent': False, 'normal_counts': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 15, 'number_characteristic_subgroups': 19, 'number_conjugacy_classes': 388, 'number_divisions': 24, 'number_normal_subgroups': 45, 'number_subgroup_autclasses': 44, 'number_subgroup_classes': 76, 'number_subgroups': 1158, 'old_label': None, 'order': 1504, 'order_factorization_type': 51, 'order_stats': [[1, 1], [2, 7], [4, 760], [47, 46], [94, 322], [188, 368]], 'outer_abelian': False, 'outer_cyclic': False, 'outer_equivalence': False, 'outer_exponent': 92, 'outer_gen_orders': [2, 2, 2, 2, 92], 'outer_gen_pows': [0, 0, 0, 0, 0], 'outer_gens': [[5, 4, 744], [5, 4, 760], [1, 4, 746], [757, 4, 8], [381, 4, 1066]], 'outer_group': '1472.202', 'outer_hash': 202, 'outer_nilpotent': True, 'outer_order': 1472, 'outer_permdeg': 33, 'outer_perms': [304888344611713860501504000000, 31642868488395211407360000, 542707351207385774458282361487360000, 837605342339873243136000000, 542972604454987637824172866998835200], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'C_2^5:C_{46}', 'pc_rank': 3, 'perfect': False, 'permutation_degree': 59, 'pgroup': 0, 'primary_abelian_invariants': [4, 4], 'quasisimple': False, 'rank': 2, 'rational': False, 'rational_characters_known': True, 'ratrep_stats': [[1, 4], [2, 10], [46, 4], [92, 6]], 'representations': {'PC': {'code': 3442663493942708685278350763643501, 'gens': [1, 3, 4], 'pres': [6, -2, -2, -2, 2, -2, -47, 12, 17955, 69, 44644, 88, 52997]}, 'Perm': {'d': 59, 'gens': [48400569, 40539620184665886385526472032848419790674130277871719465416987223379404426280, 94434600, 138989536, 182610840, 2431640571652210344600527854580771523410210578736886363351533888686752477772800]}}, 'schur_multiplier': [2, 2, 2], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [4, 4], 'solvability_type': 7, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': True, 'sylow_subgroups_known': True, 'tex_name': 'C_{94}.C_4^2', 'transitive_degree': 1504, 'wreath_data': None, 'wreath_product': False}
-
gps_groups • Show schema
Hide schema
{'Agroup': False, 'Zgroup': False, 'abelian': False, 'abelian_quotient': '16.2', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 3, 'aut_exponent': 12, 'aut_gen_orders': [2, 2, 2, 3, 2, 2, 2, 2], 'aut_gens': [[1, 4, 8], [29, 4, 24], [21, 4, 26], [7, 4, 28], [25, 4, 23], [19, 4, 28], [7, 4, 26], [5, 4, 12], [5, 4, 8]], 'aut_group': '384.20100', 'aut_hash': 20100, 'aut_nilpotency_class': -1, 'aut_nilpotent': False, 'aut_order': 384, 'aut_permdeg': 12, 'aut_perms': [235050896, 424023308, 183902764, 207622653, 140104852, 177005226, 165757252, 182450408], 'aut_phi_ratio': 24.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [2, 1, 3, 2], [4, 2, 12, 1]], 'aut_supersolvable': False, 'aut_tex': 'C_2\\wr S_3', 'autcent_abelian': True, 'autcent_cyclic': False, 'autcent_exponent': 2, 'autcent_group': '64.267', 'autcent_hash': 267, 'autcent_nilpotent': True, 'autcent_order': 64, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': True, 'autcent_tex': 'C_2^6', 'autcentquo_abelian': False, 'autcentquo_cyclic': False, 'autcentquo_exponent': 6, 'autcentquo_group': '6.1', 'autcentquo_hash': 1, 'autcentquo_nilpotent': False, 'autcentquo_order': 6, 'autcentquo_solvable': True, 'autcentquo_supersolvable': True, 'autcentquo_tex': 'S_3', 'cc_stats': [[1, 1, 1], [2, 1, 7], [4, 2, 12]], 'center_label': '8.5', 'center_order': 8, 'central_product': False, 'central_quotient': '4.2', 'commutator_count': 1, 'commutator_label': '2.1', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1', '2.1', '2.1', '2.1', '2.1'], 'composition_length': 5, 'conjugacy_classes_known': True, 'counter': 2, 'cyclic': False, 'derived_length': 2, 'dihedral': False, 'direct_factorization': [], 'direct_product': False, 'div_stats': [[1, 1, 1, 1], [2, 1, 1, 7], [4, 2, 2, 6]], 'element_repr_type': 'PC', 'elementary': 2, 'eulerian_function': 1, 'exponent': 4, 'exponents_of_order': [5], 'factors_of_aut_order': [2, 3], 'factors_of_order': [2], 'faithful_reps': [], 'familial': False, 'frattini_label': '8.5', 'frattini_quotient': '4.2', 'hash': 2, 'hyperelementary': 2, 'inner_abelian': True, 'inner_cyclic': False, 'inner_exponent': 2, 'inner_gen_orders': [2, 1, 2], 'inner_gens': [[1, 4, 12], [1, 4, 8], [5, 4, 8]], 'inner_hash': 2, 'inner_nilpotent': True, 'inner_order': 4, 'inner_split': True, 'inner_tex': 'C_2^2', 'inner_used': [1, 3], 'irrC_degree': -1, 'irrQ_degree': -1, 'irrQ_dim': -1, 'irrR_degree': -1, 'irrep_stats': [[1, 16], [2, 4]], 'label': '32.2', 'linC_count': 192, 'linC_degree': 4, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': 6, 'linQ_degree_count': 76, 'linQ_dim': 6, 'linQ_dim_count': 49, 'linR_count': 49, 'linR_degree': 6, 'maximal_subgroups_known': True, 'metabelian': True, 'metacyclic': False, 'monomial': True, 'name': 'C2.C4^2', 'ngens': 2, 'nilpotency_class': 2, 'nilpotent': True, 'normal_counts': [0, 0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 5, 'number_characteristic_subgroups': 5, 'number_conjugacy_classes': 20, 'number_divisions': 14, 'number_normal_subgroups': 26, 'number_subgroup_autclasses': 13, 'number_subgroup_classes': 38, 'number_subgroups': 50, 'old_label': None, 'order': 32, 'order_factorization_type': 3, 'order_stats': [[1, 1], [2, 7], [4, 24]], 'outer_abelian': False, 'outer_cyclic': False, 'outer_equivalence': False, 'outer_exponent': 12, 'outer_gen_orders': [2, 2, 6, 2, 2], 'outer_gen_pows': [0, 0, 0, 0, 0], 'outer_gens': [[3, 4, 9], [3, 4, 24], [30, 4, 25], [17, 4, 10], [7, 4, 30]], 'outer_group': '96.195', 'outer_hash': 195, 'outer_nilpotent': False, 'outer_order': 96, 'outer_permdeg': 8, 'outer_perms': [127, 23, 1442, 11520, 5160], 'outer_solvable': True, 'outer_supersolvable': False, 'outer_tex': '\\GL(2,\\mathbb{Z}/4)', 'pc_rank': 3, 'perfect': False, 'permutation_degree': 12, 'pgroup': 2, 'primary_abelian_invariants': [4, 4], 'quasisimple': False, 'rank': 2, 'rational': False, 'rational_characters_known': True, 'ratrep_stats': [[1, 4], [2, 10]], 'representations': {'PC': {'code': 67764297, 'gens': [1, 3, 4], 'pres': [5, 2, 2, 2, 2, 2, 10, 243, 58]}, 'GLZ': {'b': 3, 'd': 6, 'gens': [125101743012388990, 91655865498367938]}, 'GLFp': {'d': 4, 'p': 5, 'gens': [122109387504, 122297461254, 30594431879, 149885733128, 61113682502]}, 'Perm': {'d': 12, 'gens': [43908489, 5887, 16, 87091216, 11520]}}, 'schur_multiplier': [2, 2, 2], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [4, 4], 'solvability_type': 4, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': True, 'sylow_subgroups_known': True, 'tex_name': 'C_2.C_4^2', 'transitive_degree': 32, 'wreath_data': None, 'wreath_product': False}