-
gps_subgroup_search • Show schema
Hide schema
{'Agroup': False, 'Zgroup': False, 'abelian': False, 'ambient': '148176.s', 'ambient_counter': 19, 'ambient_order': 148176, 'ambient_tex': 'C_7^3:(C_6^2:D_6)', 'central': False, 'central_factor': False, 'centralizer_order': 2, 'characteristic': False, 'core_order': 3087, 'counter': 29, 'cyclic': False, 'direct': None, 'hall': 0, 'label': '148176.s.8.b1.b1', 'maximal': False, 'maximal_normal': False, 'metabelian': False, 'metacyclic': False, 'minimal': False, 'minimal_normal': False, 'nilpotent': False, 'normal': False, 'old_label': '8.b1.b1', 'outer_equivalence': False, 'perfect': False, 'proper': True, 'quotient': None, 'quotient_Agroup': None, 'quotient_abelian': None, 'quotient_cyclic': None, 'quotient_hash': None, 'quotient_metabelian': None, 'quotient_nilpotent': None, 'quotient_order': 8, 'quotient_simple': None, 'quotient_solvable': None, 'quotient_supersolvable': None, 'quotient_tex': None, 'simple': False, 'solvable': True, 'special_labels': [], 'split': None, 'standard_generators': False, 'stem': False, 'subgroup': '18522.q', 'subgroup_hash': 4981235326282517820, 'subgroup_order': 18522, 'subgroup_tex': 'C_7^3:C_3^2:S_3', 'supersolvable': False, 'sylow': 0}
-
gps_subgroup_data • Show schema
Hide schema
{'ambient': '148176.s', 'aut_centralizer_order': None, 'aut_label': '8.b1', 'aut_quo_index': None, 'aut_stab_index': None, 'aut_weyl_group': None, 'aut_weyl_index': None, 'centralizer': '74088.a1.a1', 'complements': None, 'conjugacy_class_count': 1, 'contained_in': ['2.b1.b1', '4.b1.a1'], 'contains': ['16.a1.a1', '24.c1.b1', '24.d1.d1', '24.d1.e1', '24.d1.f1', '2744.b1.b1'], 'core': '48.a1.a1', 'coset_action_label': None, 'count': 4, 'diagramx': [1098, -1, 7952, -1, 1714, -1, 1847, -1], 'generators': [129631, 130032, 37296, 84696, 5200, 21168, 136512], 'label': '148176.s.8.b1.b1', 'mobius_quo': None, 'mobius_sub': 1, 'normal_closure': '2.b1.b1', 'normal_contained_in': None, 'normal_contains': None, 'normalizer': '4.b1.a1', 'old_label': '8.b1.b1', 'projective_image': '148176.s', 'quotient_action_image': None, 'quotient_action_kernel': None, 'quotient_action_kernel_order': None, 'quotient_fusion': None, 'short_label': '8.b1.b1', 'subgroup_fusion': None, 'weyl_group': '18522.q'}
-
gps_groups • Show schema
Hide schema
{'Agroup': False, 'Zgroup': False, 'abelian': False, 'abelian_quotient': '2.1', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 6, 'aut_exponent': 252, 'aut_gen_orders': [3, 18], 'aut_gens': [[1, 2, 6, 18, 378, 2646], [9835, 15758, 6, 288, 378, 2646], [479, 17472, 17380, 18152, 6264, 6642]], 'aut_group': None, 'aut_hash': 4061174464532135472, 'aut_nilpotency_class': -1, 'aut_nilpotent': False, 'aut_order': 444528, 'aut_permdeg': 63, 'aut_perms': [1561256972709163435746238807376563724991638141008314849961959810734853799986551633637189, 1318306919327821762059867839945419029851837343882720720683293788282423758295691715071918], 'aut_phi_ratio': 84.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 63, 1, 1], [3, 294, 4, 1], [3, 343, 1, 2], [6, 3087, 1, 2], [7, 9, 8, 1], [7, 27, 8, 1], [7, 54, 1, 1], [14, 189, 8, 2], [21, 882, 8, 1]], 'aut_supersolvable': False, 'aut_tex': 'C_7^3.\\He_3.Q_8.C_6', 'autcent_abelian': True, 'autcent_cyclic': True, 'autcent_exponent': 1, 'autcent_group': '1.1', 'autcent_hash': 1, 'autcent_nilpotent': True, 'autcent_order': 1, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': True, 'autcent_tex': 'C_1', 'autcentquo_abelian': False, 'autcentquo_cyclic': False, 'autcentquo_exponent': 252, 'autcentquo_group': None, 'autcentquo_hash': 4061174464532135472, 'autcentquo_nilpotent': False, 'autcentquo_order': 444528, 'autcentquo_solvable': True, 'autcentquo_supersolvable': False, 'autcentquo_tex': 'C_7^3.\\He_3.Q_8.C_6', 'cc_stats': [[1, 1, 1], [2, 63, 1], [3, 294, 4], [3, 343, 2], [6, 3087, 2], [7, 9, 8], [7, 27, 8], [7, 54, 1], [14, 189, 16], [21, 882, 8]], 'center_label': '1.1', 'center_order': 1, 'central_product': False, 'central_quotient': '18522.q', 'commutator_count': 1, 'commutator_label': '9261.e', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1', '3.1', '3.1', '3.1', '7.1', '7.1', '7.1'], 'composition_length': 7, 'conjugacy_classes_known': True, 'counter': 17, 'cyclic': False, 'derived_length': 4, 'dihedral': False, 'direct_factorization': [], 'direct_product': False, 'div_stats': [[1, 1, 1, 1], [2, 63, 1, 1], [3, 294, 1, 4], [3, 343, 2, 1], [6, 3087, 2, 1], [7, 9, 2, 4], [7, 27, 2, 4], [7, 54, 1, 1], [14, 189, 2, 8], [21, 882, 2, 4]], 'element_repr_type': 'PC', 'elementary': 1, 'eulerian_function': 7411824, 'exponent': 42, 'exponents_of_order': [3, 3, 1], 'factors_of_aut_order': [2, 3, 7], 'factors_of_order': [2, 3, 7], 'faithful_reps': [[9, 0, 16], [18, 0, 8], [27, 0, 16], [54, 1, 1]], 'familial': False, 'frattini_label': '1.1', 'frattini_quotient': '18522.q', 'hash': 4981235326282517820, 'hyperelementary': 1, 'inner_abelian': False, 'inner_cyclic': False, 'inner_exponent': 42, 'inner_gen_orders': [6, 3, 21, 21, 7, 7], 'inner_gens': [[1, 14044, 4440, 7320, 8100, 10584], [707, 2, 462, 16806, 15444, 6048], [10273, 12200, 6, 1044, 9450, 2646], [18421, 11798, 2004, 18, 6804, 5292], [11179, 6482, 12102, 14760, 378, 2646], [10585, 17768, 6, 15894, 378, 2646]], 'inner_hash': 4981235326282517820, 'inner_nilpotent': False, 'inner_order': 18522, 'inner_split': True, 'inner_tex': 'C_7^3:C_3^2:S_3', 'inner_used': [1, 2, 3], 'irrC_degree': 9, 'irrQ_degree': 18, 'irrQ_dim': 18, 'irrR_degree': 18, 'irrep_stats': [[1, 2], [2, 4], [3, 4], [9, 16], [18, 8], [27, 16], [54, 1]], 'label': '18522.q', 'linC_count': None, 'linC_degree': None, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': None, 'linQ_degree_count': None, 'linQ_dim': None, 'linQ_dim_count': None, 'linR_count': None, 'linR_degree': None, 'maximal_subgroups_known': True, 'metabelian': False, 'metacyclic': False, 'monomial': True, 'name': 'C7^3:C3^2:S3', 'ngens': 7, 'nilpotency_class': -1, 'nilpotent': False, 'normal_counts': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 13, 'number_characteristic_subgroups': 5, 'number_conjugacy_classes': 51, 'number_divisions': 29, 'number_normal_subgroups': 9, 'number_subgroup_autclasses': 54, 'number_subgroup_classes': 156, 'number_subgroups': 22276, 'old_label': None, 'order': 18522, 'order_factorization_type': 321, 'order_stats': [[1, 1], [2, 63], [3, 1862], [6, 6174], [7, 342], [14, 3024], [21, 7056]], 'outer_abelian': False, 'outer_cyclic': False, 'outer_equivalence': True, 'outer_exponent': 12, 'outer_gen_orders': [3, 4], 'outer_gen_pows': [10068, 10068], 'outer_gens': [[17393, 8068, 7400, 2620, 15444, 12582], [6967, 10892, 11468, 7600, 18306, 15552]], 'outer_group': '24.3', 'outer_hash': 3, 'outer_nilpotent': False, 'outer_order': 24, 'outer_permdeg': 8, 'outer_perms': [430, 11657], 'outer_solvable': True, 'outer_supersolvable': False, 'outer_tex': '\\SL(2,3)', 'pc_rank': 6, 'perfect': False, 'permutation_degree': 21, 'pgroup': 0, 'primary_abelian_invariants': [2], 'quasisimple': False, 'rank': 3, 'rational': False, 'rational_characters_known': True, 'ratrep_stats': [[1, 2], [2, 4], [6, 2], [18, 8], [36, 4], [54, 9]], 'representations': {'PC': {'code': '2476221336175889615170135909922109921182192538864327163383202322012963472977470164388170911', 'gens': [1, 2, 3, 4, 6, 7], 'pres': [7, -2, -3, -3, 3, -7, 7, 7, 23982, 196617, 93242, 4860, 55582, 204963, 235294, 4889, 108, 317524, 138926, 648, 340205, 324336, 66169, 15902, 518622, 148189, 14433]}, 'Perm': {'d': 21, 'gens': [18428720747012313890, 51090942109530359706, 20388914196081981350]}}, 'schur_multiplier': [], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [2], 'solvability_type': 11, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': False, 'sylow_subgroups_known': True, 'tex_name': 'C_7^3:C_3^2:S_3', 'transitive_degree': 21, 'wreath_data': None, 'wreath_product': False}
-
gps_groups • Show schema
Hide schema
{'Agroup': False, 'Zgroup': False, 'abelian': False, 'abelian_quotient': '4.2', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 4, 'aut_exponent': 252, 'aut_gen_orders': [42, 6, 6, 42, 42, 7], 'aut_gens': [[1, 2, 12, 72, 3024, 21168], [121831, 123934, 63732, 113976, 123984, 30240], [21011, 127874, 85368, 99012, 32832, 99792], [34273, 13886, 66540, 118008, 93744, 105840], [139039, 49610, 145596, 83016, 142128, 21168], [117943, 1178, 32412, 72216, 3024, 21168], [433, 106706, 1308, 72, 3024, 21168]], 'aut_group': '889056.f', 'aut_hash': 457624535830838621, 'aut_nilpotency_class': -1, 'aut_nilpotent': False, 'aut_order': 889056, 'aut_permdeg': 252, 'aut_perms': [139078708674078884791779923869716259775657163584871273938656855666316966372141812848432539858494329128530337566735949405160278109067012052814392600742857553345374890509889275436677977711917122034812909530199743734887547953684795946342663654591403641729225004342985349643648132808183056394356714238684534398018827877499131315689956461363648674473095643693338233578531611266609402063346121225768437787599068379422892220915731558500110316556756775871762603809365818431529210712592183742184569534967840, 2878956146197494763830892534223122524655336346276564204623635320263364018847998794085568812071963400745821596244458054001938773615328345209238326879820720209405198457673104952512045977238351544894290628936366676085093174286330031088092773103700782723123383535547388402723917405959638476034135649506041297302171294226733422367794285086485590201210730869404396336421141849512322300659198202242484164447614883610823560429868803348505458201627593696400587090580210342404438376688302491825210823601033, 134907951050264978529959093506148162285178809107171541318994400890720345747319970780375846406309299224069483003855702694997401367758196393104178433071986914281531422713201631576314073751616560953986906105061310573647494697528852452655951860350727784640289374883170958841019187599893738717530582203916131740040378086211098615991448536582803334086579151925997079721493220079320304717340562576381574672689496611742137075372443038401236612933475682167003974921244719299308875678162726580423127507965006, 61312885912165965269067136514349766135538349308349683704336838405166169198979103719052785665190200910624752580615143784366226852034865521249693719669538933908657009160908858848869967875413353818724778067515003363911972797632723562050212753492881517195902660434768473755303772221482885989468430473626693217784748079610824731962453671796485928370495581223524960956078569758714111919485874795438717418870982491416226476045742391206179634128394067123263952690367935612609769944356454349891987383745666, 86049040887989972421361143425904045080486294905156230265814346866487636919194498878206180763673157944598882136488127268283840065552671228368376995804053900451918523593956161063590480121490212148015528696166287836454730870042763209510996135526233387909318490575281726560692535232393718675485883411904870938651806482634751829583685798653196052257636296930591875597057244285738988321448940220808826205370424375030135847513491558014933920536799789560696092714452424359760709877201868787534949352453506, 127903523419733604406143859208221560077938947422597996797721549358975169761426923644616506892185759145520376143277007890184832445321820239837336528980726042126633512114458086336088054464323185006012345835685011984429434797946190145254393875006301091427118505357244823798289711038441289361785237862051272103522808387813195258480533005233870788052703807922728613211108555620642471116647085319815304367391925315333126745263407459042078659809484224523589847105908323055328369081603437127745526804545116], 'aut_phi_ratio': 21.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [2, 126, 2, 1], [2, 147, 1, 2], [3, 294, 1, 1], [3, 343, 1, 2], [3, 1176, 3, 1], [4, 6174, 2, 1], [6, 294, 1, 3], [6, 343, 1, 2], [6, 1029, 1, 4], [6, 1176, 3, 1], [6, 2058, 1, 4], [6, 6174, 2, 2], [7, 18, 1, 1], [7, 36, 6, 1], [7, 108, 1, 1], [12, 6174, 2, 2], [14, 18, 1, 1], [14, 36, 6, 1], [14, 108, 1, 1], [14, 378, 4, 1], [14, 756, 2, 1], [14, 756, 12, 1], [14, 882, 1, 2], [21, 1764, 1, 1], [21, 3528, 6, 1], [42, 1764, 1, 3], [42, 3528, 6, 1]], 'aut_supersolvable': False, 'aut_tex': 'C_2.F_7\\wr S_3', 'autcent_abelian': True, 'autcent_cyclic': True, 'autcent_exponent': 2, 'autcent_group': '2.1', 'autcent_hash': 1, 'autcent_nilpotent': True, 'autcent_order': 2, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': True, 'autcent_tex': 'C_2', 'autcentquo_abelian': False, 'autcentquo_cyclic': False, 'autcentquo_exponent': 252, 'autcentquo_group': '444528.a', 'autcentquo_hash': 7234548934325017631, 'autcentquo_nilpotent': False, 'autcentquo_order': 444528, 'autcentquo_solvable': True, 'autcentquo_supersolvable': False, 'autcentquo_tex': 'F_7\\wr S_3', 'cc_stats': [[1, 1, 1], [2, 1, 1], [2, 126, 2], [2, 147, 2], [3, 294, 1], [3, 343, 2], [3, 1176, 3], [4, 6174, 2], [6, 294, 3], [6, 343, 2], [6, 1029, 4], [6, 1176, 3], [6, 2058, 4], [6, 6174, 4], [7, 18, 1], [7, 36, 6], [7, 108, 1], [12, 6174, 4], [14, 18, 1], [14, 36, 6], [14, 108, 1], [14, 378, 4], [14, 756, 14], [14, 882, 2], [21, 1764, 1], [21, 3528, 6], [42, 1764, 3], [42, 3528, 6]], 'center_label': '2.1', 'center_order': 2, 'central_product': True, 'central_quotient': '74088.q', 'commutator_count': 2, 'commutator_label': '37044.t', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1', '2.1', '2.1', '2.1', '3.1', '3.1', '3.1', '7.1', '7.1', '7.1'], 'composition_length': 10, 'conjugacy_classes_known': True, 'counter': 19, 'cyclic': False, 'derived_length': 4, 'dihedral': False, 'direct_factorization': [['2.1', 1], ['74088.q', 1]], 'direct_product': True, 'div_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [2, 126, 1, 2], [2, 147, 1, 2], [3, 294, 1, 1], [3, 343, 2, 1], [3, 1176, 1, 3], [4, 6174, 1, 2], [6, 294, 1, 3], [6, 343, 2, 1], [6, 1029, 2, 2], [6, 1176, 1, 3], [6, 2058, 2, 2], [6, 6174, 2, 2], [7, 18, 1, 1], [7, 36, 2, 3], [7, 108, 1, 1], [12, 6174, 2, 2], [14, 18, 1, 1], [14, 36, 2, 3], [14, 108, 1, 1], [14, 378, 2, 2], [14, 756, 1, 2], [14, 756, 2, 6], [14, 882, 1, 2], [21, 1764, 1, 1], [21, 3528, 2, 3], [42, 1764, 1, 3], [42, 3528, 2, 3]], 'element_repr_type': 'PC', 'elementary': 1, 'eulerian_function': 1334128320, 'exponent': 84, 'exponents_of_order': [4, 3, 3], 'factors_of_aut_order': [2, 3, 7], 'factors_of_order': [2, 3, 7], 'faithful_reps': [[18, 0, 2], [18, 1, 2], [36, -1, 1], [36, 0, 12], [36, 1, 1], [72, 0, 6], [108, 1, 2]], 'familial': False, 'frattini_label': '1.1', 'frattini_quotient': '148176.s', 'hash': 4437204777221232718, 'hyperelementary': 1, 'inner_abelian': False, 'inner_cyclic': False, 'inner_exponent': 84, 'inner_gen_orders': [6, 21, 6, 42, 7, 7], 'inner_gens': [[1, 122974, 143652, 79416, 123984, 30240], [62045, 2, 142392, 108948, 109728, 139104], [143641, 36542, 12, 59688, 117936, 63504], [77905, 47150, 112764, 72, 93744, 105840], [48385, 44498, 54444, 78696, 3024, 21168], [12097, 51410, 105852, 63576, 3024, 21168]], 'inner_hash': 9138241614343459251, 'inner_nilpotent': False, 'inner_order': 74088, 'inner_split': True, 'inner_tex': 'C_7^3:C_3^2:S_4', 'inner_used': [1, 2, 4], 'irrC_degree': 18, 'irrQ_degree': 18, 'irrQ_dim': 18, 'irrR_degree': 18, 'irrep_stats': [[1, 4], [2, 8], [3, 20], [6, 6], [18, 8], [36, 28], [72, 12], [108, 4]], 'label': '148176.s', 'linC_count': 4, 'linC_degree': 18, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': 18, 'linQ_degree_count': 2, 'linQ_dim': 18, 'linQ_dim_count': 2, 'linR_count': 2, 'linR_degree': 18, 'maximal_subgroups_known': True, 'metabelian': False, 'metacyclic': False, 'monomial': True, 'name': 'C7^3:(C6^2:D6)', 'ngens': 10, 'nilpotency_class': -1, 'nilpotent': False, 'normal_counts': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 45, 'number_characteristic_subgroups': 17, 'number_conjugacy_classes': 90, 'number_divisions': 60, 'number_normal_subgroups': 25, 'number_subgroup_autclasses': 492, 'number_subgroup_classes': 776, 'number_subgroups': 332120, 'old_label': None, 'order': 148176, 'order_factorization_type': 321, 'order_stats': [[1, 1], [2, 547], [3, 4508], [4, 12348], [6, 42140], [7, 342], [12, 24696], [14, 14202], [21, 22932], [42, 26460]], 'outer_abelian': True, 'outer_cyclic': False, 'outer_equivalence': False, 'outer_exponent': 6, 'outer_gen_orders': [2, 6], 'outer_gen_pows': [75624, 0], 'outer_gens': [[7351, 72578, 96780, 83880, 9072, 63504], [27217, 96286, 55956, 121320, 90720, 108864]], 'outer_group': '12.5', 'outer_hash': 5, 'outer_nilpotent': True, 'outer_order': 12, 'outer_permdeg': 7, 'outer_perms': [720, 28], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'C_2\\times C_6', 'pc_rank': 6, 'perfect': False, 'permutation_degree': 23, 'pgroup': 0, 'primary_abelian_invariants': [2, 2], 'quasisimple': False, 'rank': 3, 'rational': False, 'rational_characters_known': True, 'ratrep_stats': [[1, 4], [2, 8], [3, 4], [6, 10], [12, 2], [18, 4], [36, 6], [72, 12], [108, 4], [144, 6]], 'representations': {'PC': {'code': '48633405217278747056746568197493980494523037572744524018937558228975164720346385286642413961826241620859317583142385346135120506226744491367142828644945533961059555415060612674373974256656092768647188425178036447679677950666795218358711714191', 'gens': [1, 2, 4, 6, 9, 10], 'pres': [10, 2, 2, 3, 2, 3, 2, 3, 7, 7, 7, 1391280, 2459481, 51, 4018202, 93982, 5746083, 2847853, 45503, 113, 1664404, 1426214, 1398924, 4764965, 3268455, 2111245, 298475, 301545, 175, 9424806, 3045016, 1719506, 608196, 271366, 276, 138247, 846737, 2782107, 8677, 2927, 11158568, 4937778, 972028, 884558, 22728, 117238, 56768, 3024009, 6955219, 10829, 529239, 176449, 147059, 58869]}, 'Perm': {'d': 23, 'gens': [1282665932157569065585, 3533312668798103731224, 2462745785309383776174]}}, 'schur_multiplier': [2, 2], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [2, 2], 'solvability_type': 11, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': False, 'sylow_subgroups_known': True, 'tex_name': 'C_7^3:(C_6^2:D_6)', 'transitive_degree': 42, 'wreath_data': None, 'wreath_product': False}