-
gps_subgroup_search • Show schema
Hide schema
{'Agroup': False, 'Zgroup': False, 'abelian': False, 'ambient': '1344.9757', 'ambient_counter': 9757, 'ambient_order': 1344, 'ambient_tex': 'C_{84}.C_2^4', 'central': False, 'central_factor': False, 'centralizer_order': 6, 'characteristic': False, 'core_order': 336, 'counter': 34, 'cyclic': False, 'direct': False, 'hall': 0, 'label': '1344.9757.4.m1.b1', 'maximal': False, 'maximal_normal': False, 'metabelian': True, 'metacyclic': False, 'minimal': False, 'minimal_normal': False, 'nilpotent': False, 'normal': True, 'old_label': '4.m1.b1', 'outer_equivalence': False, 'perfect': False, 'proper': True, 'quotient': '4.2', 'quotient_Agroup': True, 'quotient_abelian': True, 'quotient_cyclic': False, 'quotient_hash': 2, 'quotient_metabelian': True, 'quotient_nilpotent': True, 'quotient_order': 4, 'quotient_simple': False, 'quotient_solvable': True, 'quotient_supersolvable': True, 'quotient_tex': 'C_2^2', 'simple': False, 'solvable': True, 'special_labels': [], 'split': False, 'standard_generators': False, 'stem': False, 'subgroup': '336.180', 'subgroup_hash': 180, 'subgroup_order': 336, 'subgroup_tex': 'C_{12}.D_{14}', 'supersolvable': True, 'sylow': 0}
-
gps_subgroup_data • Show schema
Hide schema
{'ambient': '1344.9757', 'aut_centralizer_order': None, 'aut_label': '4.m1', 'aut_quo_index': None, 'aut_stab_index': None, 'aut_weyl_group': None, 'aut_weyl_index': None, 'centralizer': '224.a1.a1', 'complements': [], 'conjugacy_class_count': 1, 'contained_in': ['2.d1.a1', '2.i1.b1', '2.k1.b1'], 'contains': ['8.d1.b1', '8.g1.b1', '8.i1.a1', '8.w1.b1', '8.bc1.b1', '12.e1.b1', '28.r1.b1'], 'core': '4.m1.b1', 'coset_action_label': None, 'count': 1, 'diagramx': None, 'generators': [721, 192, 680, 448, 338, 672], 'label': '1344.9757.4.m1.b1', 'mobius_quo': None, 'mobius_sub': None, 'normal_closure': '4.m1.b1', 'normal_contained_in': ['2.d1.a1', '2.i1.b1', '2.k1.b1'], 'normal_contains': ['8.d1.b1', '8.g1.b1', '8.i1.a1', '12.e1.b1'], 'normalizer': '1.a1.a1', 'old_label': '4.m1.b1', 'projective_image': None, 'quotient_action_image': None, 'quotient_action_kernel': None, 'quotient_action_kernel_order': None, 'quotient_fusion': None, 'short_label': '4.m1.b1', 'subgroup_fusion': None, 'weyl_group': None}
-
gps_groups • Show schema
Hide schema
{'Agroup': False, 'Zgroup': False, 'abelian': False, 'abelian_quotient': '24.15', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 3, 'aut_exponent': 84, 'aut_gen_orders': [2, 12, 2, 42, 2, 2, 6, 3, 2], 'aut_gens': [[1, 2, 4], [1, 170, 4], [84, 26, 233], [1, 170, 116], [252, 218, 285], [1, 170, 172], [169, 170, 285], [84, 122, 53], [84, 2, 173], [169, 2, 4]], 'aut_group': '4032.dm', 'aut_hash': 1109498847577771145, 'aut_nilpotency_class': -1, 'aut_nilpotent': False, 'aut_order': 4032, 'aut_permdeg': 22, 'aut_perms': [1592122556622507925, 359601115291625253085, 1592122556644688995, 71478800535664538604, 16227993133530642325, 738799912054014410995, 365618810021845122495, 377343857399825836800, 717873310151576006400], 'aut_phi_ratio': 42.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [2, 7, 2, 1], [3, 1, 2, 1], [4, 2, 3, 1], [4, 14, 3, 1], [6, 1, 2, 1], [6, 7, 4, 1], [7, 2, 3, 1], [12, 2, 6, 1], [12, 14, 6, 1], [14, 2, 3, 1], [21, 2, 6, 1], [28, 4, 9, 1], [42, 2, 6, 1], [84, 4, 18, 1]], 'aut_supersolvable': False, 'aut_tex': 'C_2^2\\times S_4\\times F_7', 'autcent_abelian': True, 'autcent_cyclic': False, 'autcent_exponent': 2, 'autcent_group': '16.14', 'autcent_hash': 14, 'autcent_nilpotent': True, 'autcent_order': 16, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': True, 'autcent_tex': 'C_2^4', 'autcentquo_abelian': False, 'autcentquo_cyclic': False, 'autcentquo_exponent': 42, 'autcentquo_group': '252.26', 'autcentquo_hash': 26, 'autcentquo_nilpotent': False, 'autcentquo_order': 252, 'autcentquo_solvable': True, 'autcentquo_supersolvable': True, 'autcentquo_tex': 'S_3\\times F_7', 'cc_stats': [[1, 1, 1], [2, 1, 1], [2, 7, 2], [3, 1, 2], [4, 2, 3], [4, 14, 3], [6, 1, 2], [6, 7, 4], [7, 2, 3], [12, 2, 6], [12, 14, 6], [14, 2, 3], [21, 2, 6], [28, 4, 9], [42, 2, 6], [84, 4, 18]], 'center_label': '6.2', 'center_order': 6, 'central_product': True, 'central_quotient': '56.12', 'commutator_count': 1, 'commutator_label': '14.2', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1', '2.1', '2.1', '2.1', '3.1', '7.1'], 'composition_length': 6, 'conjugacy_classes_known': True, 'counter': 180, 'cyclic': False, 'derived_length': 2, 'dihedral': False, 'direct_factorization': [['14.1', 1], ['3.1', 1], ['8.4', 1]], 'direct_product': True, 'div_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [2, 7, 1, 2], [3, 1, 2, 1], [4, 2, 1, 3], [4, 14, 1, 3], [6, 1, 2, 1], [6, 7, 2, 2], [7, 2, 3, 1], [12, 2, 2, 3], [12, 14, 2, 3], [14, 2, 3, 1], [21, 2, 6, 1], [28, 4, 3, 3], [42, 2, 6, 1], [84, 4, 6, 3]], 'element_repr_type': 'PC', 'elementary': 1, 'eulerian_function': 2912, 'exponent': 84, 'exponents_of_order': [4, 1, 1], 'factors_of_aut_order': [2, 3, 7], 'factors_of_order': [2, 3, 7], 'faithful_reps': [[4, 0, 6]], 'familial': False, 'frattini_label': '2.1', 'frattini_quotient': '168.54', 'hash': 180, 'hyperelementary': 2, 'inner_abelian': False, 'inner_cyclic': False, 'inner_exponent': 14, 'inner_gen_orders': [2, 2, 14], 'inner_gens': [[1, 2, 172], [1, 2, 52], [169, 290, 4]], 'inner_hash': 12, 'inner_nilpotent': False, 'inner_order': 56, 'inner_split': True, 'inner_tex': 'C_2\\times D_{14}', 'inner_used': [1, 2, 3], 'irrC_degree': 4, 'irrQ_degree': 24, 'irrQ_dim': 24, 'irrR_degree': 8, 'irrep_stats': [[1, 24], [2, 42], [4, 9]], 'label': '336.180', 'linC_count': 198, 'linC_degree': 4, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': 10, 'linQ_degree_count': 72, 'linQ_dim': 10, 'linQ_dim_count': 8, 'linR_count': 24, 'linR_degree': 6, 'maximal_subgroups_known': True, 'metabelian': True, 'metacyclic': False, 'monomial': True, 'name': 'C12.D14', 'ngens': 6, 'nilpotency_class': -1, 'nilpotent': False, 'normal_counts': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 16, 'number_characteristic_subgroups': 16, 'number_conjugacy_classes': 75, 'number_divisions': 30, 'number_normal_subgroups': 50, 'number_subgroup_autclasses': 40, 'number_subgroup_classes': 76, 'number_subgroups': 232, 'old_label': None, 'order': 336, 'order_factorization_type': 311, 'order_stats': [[1, 1], [2, 15], [3, 2], [4, 48], [6, 30], [7, 6], [12, 96], [14, 6], [21, 12], [28, 36], [42, 12], [84, 72]], 'outer_abelian': False, 'outer_cyclic': False, 'outer_equivalence': False, 'outer_exponent': 6, 'outer_gen_orders': [2, 6, 6], 'outer_gen_pows': [0, 1, 0], 'outer_gens': [[1, 170, 4], [1, 2, 293], [84, 2, 285]], 'outer_group': '72.48', 'outer_hash': 48, 'outer_nilpotent': False, 'outer_order': 72, 'outer_permdeg': 10, 'outer_perms': [367920, 1174465, 806403], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'C_6\\times D_6', 'pc_rank': 3, 'perfect': False, 'permutation_degree': 18, 'pgroup': 0, 'primary_abelian_invariants': [2, 2, 2, 3], 'quasisimple': False, 'rank': 3, 'rational': False, 'rational_characters_known': True, 'ratrep_stats': [[1, 8], [2, 10], [4, 2], [6, 4], [12, 5], [24, 1]], 'representations': {'PC': {'code': 39831437670041429204012080117067, 'gens': [1, 2, 3], 'pres': [6, -2, -2, -2, -2, -3, -7, 1008, 3098, 476, 50, 1257, 69, 3130, 118, 5195]}, 'GLZN': {'d': 2, 'p': 21, 'gens': [9325, 126881, 61776, 80557, 74096, 37048]}, 'Perm': {'d': 18, 'gens': [358477173331327, 775800571392000, 1156090040582400, 403200, 358477173331200, 973]}}, 'schur_multiplier': [2, 2], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [2, 2, 6], 'solvability_type': 7, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': True, 'sylow_subgroups_known': True, 'tex_name': 'C_{12}.D_{14}', 'transitive_degree': 168, 'wreath_data': None, 'wreath_product': False}
-
gps_groups • Show schema
Hide schema
{'Agroup': False, 'Zgroup': False, 'abelian': False, 'abelian_quotient': '16.14', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 2, 'aut_exponent': 84, 'aut_gen_orders': [6, 4, 12, 6, 6, 12, 2, 12], 'aut_gens': [[1, 2, 4, 16], [769, 2, 228, 1168], [1249, 682, 452, 656], [145, 346, 116, 368], [673, 682, 1132, 976], [1297, 338, 564, 944], [433, 1018, 1236, 1072], [97, 682, 460, 1328], [721, 338, 1236, 848]], 'aut_group': None, 'aut_hash': 9161810123478319507, 'aut_nilpotency_class': -1, 'aut_nilpotent': False, 'aut_order': 32256, 'aut_permdeg': 48, 'aut_perms': [7398884183266007391493895269890145076901217921157999642939850, 6605922859111909520947083521092049640895330411267865262328463, 2124600924995266193374467288029688512925050484800225530693691, 6088795337555928168959951039929492715255969455919012266947269, 4756646506993872514111143120914100239738996186004800053031403, 6605956438249488774495738682827608585752995687680611715222429, 1090375159488928380541251133676535979850313516239301534113279, 107836441753519940908192103170173974855911913377861692720], 'aut_phi_ratio': 84.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [2, 2, 1, 1], [2, 12, 1, 1], [2, 14, 2, 1], [2, 28, 1, 1], [3, 2, 1, 1], [4, 2, 1, 2], [4, 4, 2, 1], [4, 12, 1, 1], [4, 14, 2, 1], [4, 28, 1, 1], [4, 84, 2, 1], [6, 2, 1, 1], [6, 4, 1, 1], [6, 28, 2, 2], [7, 2, 3, 1], [8, 12, 2, 1], [8, 42, 2, 1], [8, 84, 1, 1], [12, 4, 1, 2], [12, 4, 4, 1], [12, 28, 2, 2], [14, 2, 3, 1], [14, 4, 3, 1], [14, 24, 3, 1], [21, 4, 3, 1], [28, 4, 3, 2], [28, 8, 6, 1], [28, 24, 3, 1], [42, 4, 3, 1], [42, 4, 6, 1], [56, 24, 6, 1], [84, 8, 3, 2], [84, 8, 12, 1]], 'aut_supersolvable': True, 'aut_tex': 'C_{42}.(C_2^5\\times C_6).C_2^2', 'autcent_abelian': True, 'autcent_cyclic': False, 'autcent_exponent': 2, 'autcent_group': '16.14', 'autcent_hash': 14, 'autcent_nilpotent': True, 'autcent_order': 16, 'autcent_solvable': True, 'autcent_split': False, 'autcent_supersolvable': True, 'autcent_tex': 'C_2^4', 'autcentquo_abelian': False, 'autcentquo_cyclic': False, 'autcentquo_exponent': 42, 'autcentquo_group': None, 'autcentquo_hash': 5451351369529179689, 'autcentquo_nilpotent': False, 'autcentquo_order': 2016, 'autcentquo_solvable': True, 'autcentquo_supersolvable': True, 'autcentquo_tex': 'C_2^3\\times S_3\\times F_7', 'cc_stats': [[1, 1, 1], [2, 1, 1], [2, 2, 1], [2, 12, 1], [2, 14, 2], [2, 28, 1], [3, 2, 1], [4, 2, 2], [4, 4, 2], [4, 12, 1], [4, 14, 2], [4, 28, 1], [4, 84, 2], [6, 2, 1], [6, 4, 1], [6, 28, 4], [7, 2, 3], [8, 12, 2], [8, 42, 2], [8, 84, 1], [12, 4, 6], [12, 28, 4], [14, 2, 3], [14, 4, 3], [14, 24, 3], [21, 4, 3], [28, 4, 6], [28, 8, 6], [28, 24, 3], [42, 4, 9], [56, 24, 6], [84, 8, 18]], 'center_label': '2.1', 'center_order': 2, 'central_product': False, 'central_quotient': '672.1175', 'commutator_count': 1, 'commutator_label': '84.6', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1', '2.1', '2.1', '2.1', '2.1', '2.1', '3.1', '7.1'], 'composition_length': 8, 'conjugacy_classes_known': True, 'counter': 9757, 'cyclic': False, 'derived_length': 2, 'dihedral': False, 'direct_factorization': [], 'direct_product': False, 'div_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [2, 2, 1, 1], [2, 12, 1, 1], [2, 14, 1, 2], [2, 28, 1, 1], [3, 2, 1, 1], [4, 2, 1, 2], [4, 4, 1, 2], [4, 12, 1, 1], [4, 14, 1, 2], [4, 28, 1, 1], [4, 84, 1, 2], [6, 2, 1, 1], [6, 4, 1, 1], [6, 28, 1, 2], [6, 28, 2, 1], [7, 2, 3, 1], [8, 12, 1, 2], [8, 42, 2, 1], [8, 84, 1, 1], [12, 4, 1, 2], [12, 4, 2, 2], [12, 28, 1, 2], [12, 28, 2, 1], [14, 2, 3, 1], [14, 4, 3, 1], [14, 24, 3, 1], [21, 4, 3, 1], [28, 4, 3, 2], [28, 8, 3, 2], [28, 24, 3, 1], [42, 4, 3, 1], [42, 4, 6, 1], [56, 24, 3, 2], [84, 8, 3, 2], [84, 8, 6, 2]], 'element_repr_type': 'PC', 'elementary': 1, 'eulerian_function': 29877120, 'exponent': 168, 'exponents_of_order': [6, 1, 1], 'factors_of_aut_order': [2, 3, 7], 'factors_of_order': [2, 3, 7], 'faithful_reps': [[8, -1, 6]], 'familial': False, 'frattini_label': '4.1', 'frattini_quotient': '336.219', 'hash': 9757, 'hyperelementary': 2, 'inner_abelian': False, 'inner_cyclic': False, 'inner_exponent': 84, 'inner_gen_orders': [2, 2, 4, 42], 'inner_gens': [[1, 2, 4, 880], [1, 2, 684, 688], [1, 10, 4, 1136], [481, 674, 228, 16]], 'inner_hash': 1175, 'inner_nilpotent': False, 'inner_order': 672, 'inner_split': True, 'inner_tex': 'D_{42}:C_2^3', 'inner_used': [1, 2, 3, 4], 'irrC_degree': 8, 'irrQ_degree': 48, 'irrQ_dim': 96, 'irrR_degree': 16, 'irrep_stats': [[1, 16], [2, 44], [4, 32], [8, 10]], 'label': '1344.9757', 'linC_count': None, 'linC_degree': None, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': None, 'linQ_degree_count': None, 'linQ_dim': None, 'linQ_dim_count': None, 'linR_count': None, 'linR_degree': None, 'maximal_subgroups_known': True, 'metabelian': True, 'metacyclic': False, 'monomial': True, 'name': 'C84.C2^4', 'ngens': 8, 'nilpotency_class': -1, 'nilpotent': False, 'normal_counts': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 41, 'number_characteristic_subgroups': 66, 'number_conjugacy_classes': 102, 'number_divisions': 52, 'number_normal_subgroups': 136, 'number_subgroup_autclasses': 352, 'number_subgroup_classes': 496, 'number_subgroups': 3508, 'old_label': None, 'order': 1344, 'order_factorization_type': 311, 'order_stats': [[1, 1], [2, 71], [3, 2], [4, 248], [6, 118], [7, 6], [8, 192], [12, 136], [14, 90], [21, 12], [28, 144], [42, 36], [56, 144], [84, 144]], 'outer_abelian': True, 'outer_cyclic': False, 'outer_equivalence': False, 'outer_exponent': 6, 'outer_gen_orders': [2, 2, 2, 6], 'outer_gen_pows': [0, 0, 0, 0], 'outer_gens': [[1, 2, 4, 464], [673, 2, 4, 16], [1, 2, 4, 688], [337, 338, 340, 304]], 'outer_group': '48.52', 'outer_hash': 52, 'outer_nilpotent': True, 'outer_order': 48, 'outer_permdeg': 11, 'outer_perms': [40320, 3628800, 24, 723], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'C_2^3\\times C_6', 'pc_rank': 4, 'perfect': False, 'permutation_degree': 42, 'pgroup': 0, 'primary_abelian_invariants': [2, 2, 2, 2], 'quasisimple': False, 'rank': 4, 'rational': False, 'rational_characters_known': True, 'ratrep_stats': [[1, 16], [2, 12], [4, 4], [6, 8], [8, 2], [12, 6], [24, 3], [48, 1]], 'representations': {'PC': {'code': 43867031880665960593204412217451238638643515288126577812402945547, 'gens': [1, 2, 3, 5], 'pres': [8, -2, -2, -2, -2, -2, -2, -3, -7, 5385, 8218, 66, 10891, 2715, 35204, 13772, 11380, 116, 19973, 11157, 141, 46598, 7190, 222, 73735]}, 'Perm': {'d': 42, 'gens': [816438677858699393670790424925445379248139193607, 8701401292761284934381046272735131398, 24740528089383924376435516866838011, 34831114969901769894160164941278374, 43328436244259065405578978898675702, 50230513675554239111016559421853828, 303916116658416027343136804044800000000, 35085403596887862568986022075080631753113600000000]}}, 'schur_multiplier': [2, 2, 2, 2, 2], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [2, 2, 2, 2], 'solvability_type': 7, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': True, 'sylow_subgroups_known': True, 'tex_name': 'C_{84}.C_2^4', 'transitive_degree': 672, 'wreath_data': None, 'wreath_product': False}
-
gps_groups • Show schema
Hide schema
{'Agroup': True, 'Zgroup': False, 'abelian': True, 'abelian_quotient': '4.2', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 2, 'aut_exponent': 6, 'aut_gen_orders': [2, 3], 'aut_gens': [[1, 2], [3, 2], [2, 3]], 'aut_group': '6.1', 'aut_hash': 1, 'aut_nilpotency_class': -1, 'aut_nilpotent': False, 'aut_order': 6, 'aut_permdeg': 3, 'aut_perms': [1, 4], 'aut_phi_ratio': 3.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 1, 3, 1]], 'aut_supersolvable': True, 'aut_tex': 'S_3', 'autcent_abelian': False, 'autcent_cyclic': False, 'autcent_exponent': 6, 'autcent_group': '6.1', 'autcent_hash': 1, 'autcent_nilpotent': False, 'autcent_order': 6, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': True, 'autcent_tex': 'S_3', 'autcentquo_abelian': True, 'autcentquo_cyclic': True, 'autcentquo_exponent': 1, 'autcentquo_group': '1.1', 'autcentquo_hash': 1, 'autcentquo_nilpotent': True, 'autcentquo_order': 1, 'autcentquo_solvable': True, 'autcentquo_supersolvable': True, 'autcentquo_tex': 'C_1', 'cc_stats': [[1, 1, 1], [2, 1, 3]], 'center_label': '4.2', 'center_order': 4, 'central_product': True, 'central_quotient': '1.1', 'commutator_count': 0, 'commutator_label': '1.1', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1', '2.1'], 'composition_length': 2, 'conjugacy_classes_known': True, 'counter': 2, 'cyclic': False, 'derived_length': 1, 'dihedral': True, 'direct_factorization': [['2.1', 2]], 'direct_product': True, 'div_stats': [[1, 1, 1, 1], [2, 1, 1, 3]], 'element_repr_type': 'PC', 'elementary': 2, 'eulerian_function': 1, 'exponent': 2, 'exponents_of_order': [2], 'factors_of_aut_order': [2, 3], 'factors_of_order': [2], 'faithful_reps': [], 'familial': True, 'frattini_label': '1.1', 'frattini_quotient': '4.2', 'hash': 2, 'hyperelementary': 2, 'inner_abelian': True, 'inner_cyclic': True, 'inner_exponent': 1, 'inner_gen_orders': [1, 1], 'inner_gens': [[1, 2], [1, 2]], 'inner_hash': 1, 'inner_nilpotent': True, 'inner_order': 1, 'inner_split': True, 'inner_tex': 'C_1', 'inner_used': [], 'irrC_degree': -1, 'irrQ_degree': -1, 'irrQ_dim': -1, 'irrR_degree': -1, 'irrep_stats': [[1, 4]], 'label': '4.2', 'linC_count': 3, 'linC_degree': 2, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': 2, 'linQ_degree_count': 3, 'linQ_dim': 2, 'linQ_dim_count': 3, 'linR_count': 3, 'linR_degree': 2, 'maximal_subgroups_known': True, 'metabelian': True, 'metacyclic': True, 'monomial': True, 'name': 'C2^2', 'ngens': 2, 'nilpotency_class': 1, 'nilpotent': True, 'normal_counts': [0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 2, 'number_characteristic_subgroups': 2, 'number_conjugacy_classes': 4, 'number_divisions': 4, 'number_normal_subgroups': 5, 'number_subgroup_autclasses': 3, 'number_subgroup_classes': 5, 'number_subgroups': 5, 'old_label': None, 'order': 4, 'order_factorization_type': 2, 'order_stats': [[1, 1], [2, 3]], 'outer_abelian': False, 'outer_cyclic': False, 'outer_equivalence': False, 'outer_exponent': 6, 'outer_gen_orders': [2, 3], 'outer_gen_pows': [0, 0], 'outer_gens': [[3, 2], [2, 3]], 'outer_group': '6.1', 'outer_hash': 1, 'outer_nilpotent': False, 'outer_order': 6, 'outer_permdeg': 3, 'outer_perms': [1, 4], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'S_3', 'pc_rank': 2, 'perfect': False, 'permutation_degree': 4, 'pgroup': 2, 'primary_abelian_invariants': [2, 2], 'quasisimple': False, 'rank': 2, 'rational': True, 'rational_characters_known': True, 'ratrep_stats': [[1, 4]], 'representations': {'PC': {'code': 0, 'gens': [1, 2], 'pres': [2, -2, 2]}, 'GLZ': {'b': 3, 'd': 2, 'gens': [14, 12]}, 'GLFp': {'d': 2, 'p': 3, 'gens': [55, 56]}, 'Perm': {'d': 4, 'gens': [6, 1]}}, 'schur_multiplier': [2], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [2, 2], 'solvability_type': 1, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': True, 'sylow_subgroups_known': True, 'tex_name': 'C_2^2', 'transitive_degree': 4, 'wreath_data': None, 'wreath_product': False}