-
gps_subgroup_search • Show schema
Hide schema
{'Agroup': True, 'Zgroup': False, 'abelian': True, 'ambient': '128.859', 'ambient_counter': 859, 'ambient_order': 128, 'ambient_tex': 'C_2^4.D_4', 'central': False, 'central_factor': False, 'centralizer_order': 16, 'characteristic': True, 'core_order': 16, 'counter': 37, 'cyclic': False, 'direct': False, 'hall': 0, 'label': '128.859.8.h1.a1', 'maximal': False, 'maximal_normal': False, 'metabelian': True, 'metacyclic': True, 'minimal': False, 'minimal_normal': False, 'nilpotent': True, 'normal': True, 'old_label': '8.h1.a1', 'outer_equivalence': False, 'perfect': False, 'proper': True, 'quotient': '8.2', 'quotient_Agroup': True, 'quotient_abelian': True, 'quotient_cyclic': False, 'quotient_hash': 2, 'quotient_metabelian': True, 'quotient_nilpotent': True, 'quotient_order': 8, 'quotient_simple': False, 'quotient_solvable': True, 'quotient_supersolvable': True, 'quotient_tex': 'C_2\\times C_4', 'simple': False, 'solvable': True, 'special_labels': [], 'split': True, 'standard_generators': False, 'stem': False, 'subgroup': '16.2', 'subgroup_hash': 2, 'subgroup_order': 16, 'subgroup_tex': 'C_4^2', 'supersolvable': True, 'sylow': 0}
-
gps_subgroup_data • Show schema
Hide schema
{'ambient': '128.859', 'aut_centralizer_order': 32, 'aut_label': '8.h1', 'aut_quo_index': 2, 'aut_stab_index': 1, 'aut_weyl_group': '32.27', 'aut_weyl_index': 32, 'centralizer': '8.h1.a1', 'complements': ['16.t1.a1', '16.t1.a2', '16.t1.b2', '16.t1.b1'], 'conjugacy_class_count': 1, 'contained_in': ['4.c1.a1', '4.d1.a1', '4.g1.a1'], 'contains': ['16.d1.a1', '16.k1.a1'], 'core': '8.h1.a1', 'coset_action_label': None, 'count': 1, 'diagramx': [6751, 6097, 5279, 7800, 6832, 5990, 5306, 7934], 'generators': [33, 24], 'label': '128.859.8.h1.a1', 'mobius_quo': 0, 'mobius_sub': 0, 'normal_closure': '8.h1.a1', 'normal_contained_in': ['4.c1.a1', '4.d1.a1', '4.g1.a1'], 'normal_contains': ['16.d1.a1'], 'normalizer': '1.a1.a1', 'old_label': '8.h1.a1', 'projective_image': '64.90', 'quotient_action_image': '8.2', 'quotient_action_kernel': '1.1', 'quotient_action_kernel_order': 1, 'quotient_fusion': None, 'short_label': '8.h1.a1', 'subgroup_fusion': None, 'weyl_group': '8.2'}
-
gps_groups • Show schema
Hide schema
{'Agroup': True, 'Zgroup': False, 'abelian': True, 'abelian_quotient': '16.2', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 3, 'aut_exponent': 12, 'aut_gen_orders': [2, 2, 6, 2, 2], 'aut_gens': [[1, 4], [3, 5], [3, 12], [14, 13], [9, 6], [3, 14]], 'aut_group': '96.195', 'aut_hash': 195, 'aut_nilpotency_class': -1, 'aut_nilpotent': False, 'aut_order': 96, 'aut_permdeg': 8, 'aut_perms': [134, 16, 1447, 11520, 5160], 'aut_phi_ratio': 12.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 1, 3, 1], [4, 1, 12, 1]], 'aut_supersolvable': False, 'aut_tex': '\\GL(2,\\mathbb{Z}/4)', 'autcent_abelian': False, 'autcent_cyclic': False, 'autcent_exponent': 12, 'autcent_group': '96.195', 'autcent_hash': 195, 'autcent_nilpotent': False, 'autcent_order': 96, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': False, 'autcent_tex': '\\GL(2,\\mathbb{Z}/4)', 'autcentquo_abelian': True, 'autcentquo_cyclic': True, 'autcentquo_exponent': 1, 'autcentquo_group': '1.1', 'autcentquo_hash': 1, 'autcentquo_nilpotent': True, 'autcentquo_order': 1, 'autcentquo_solvable': True, 'autcentquo_supersolvable': True, 'autcentquo_tex': 'C_1', 'cc_stats': [[1, 1, 1], [2, 1, 3], [4, 1, 12]], 'center_label': '16.2', 'center_order': 16, 'central_product': True, 'central_quotient': '1.1', 'commutator_count': 0, 'commutator_label': '1.1', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1', '2.1', '2.1', '2.1'], 'composition_length': 4, 'conjugacy_classes_known': True, 'counter': 2, 'cyclic': False, 'derived_length': 1, 'dihedral': False, 'direct_factorization': [['4.1', 2]], 'direct_product': True, 'div_stats': [[1, 1, 1, 1], [2, 1, 1, 3], [4, 1, 2, 6]], 'element_repr_type': 'PC', 'elementary': 2, 'eulerian_function': 1, 'exponent': 4, 'exponents_of_order': [4], 'factors_of_aut_order': [2, 3], 'factors_of_order': [2], 'faithful_reps': [], 'familial': False, 'frattini_label': '4.2', 'frattini_quotient': '4.2', 'hash': 2, 'hyperelementary': 2, 'inner_abelian': True, 'inner_cyclic': True, 'inner_exponent': 1, 'inner_gen_orders': [1, 1], 'inner_gens': [[1, 4], [1, 4]], 'inner_hash': 1, 'inner_nilpotent': True, 'inner_order': 1, 'inner_split': True, 'inner_tex': 'C_1', 'inner_used': [], 'irrC_degree': -1, 'irrQ_degree': -1, 'irrQ_dim': -1, 'irrR_degree': -1, 'irrep_stats': [[1, 16]], 'label': '16.2', 'linC_count': 48, 'linC_degree': 2, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': 4, 'linQ_degree_count': 12, 'linQ_dim': 4, 'linQ_dim_count': 12, 'linR_count': 12, 'linR_degree': 4, 'maximal_subgroups_known': True, 'metabelian': True, 'metacyclic': True, 'monomial': True, 'name': 'C4^2', 'ngens': 2, 'nilpotency_class': 1, 'nilpotent': True, 'normal_counts': [0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 3, 'number_characteristic_subgroups': 3, 'number_conjugacy_classes': 16, 'number_divisions': 10, 'number_normal_subgroups': 15, 'number_subgroup_autclasses': 6, 'number_subgroup_classes': 15, 'number_subgroups': 15, 'old_label': None, 'order': 16, 'order_factorization_type': 3, 'order_stats': [[1, 1], [2, 3], [4, 12]], 'outer_abelian': False, 'outer_cyclic': False, 'outer_equivalence': False, 'outer_exponent': 12, 'outer_gen_orders': [2, 2, 6, 2, 2], 'outer_gen_pows': [0, 0, 0, 0, 0], 'outer_gens': [[3, 5], [3, 12], [14, 13], [9, 6], [3, 14]], 'outer_group': '96.195', 'outer_hash': 195, 'outer_nilpotent': False, 'outer_order': 96, 'outer_permdeg': 8, 'outer_perms': [134, 16, 1447, 11520, 5160], 'outer_solvable': True, 'outer_supersolvable': False, 'outer_tex': '\\GL(2,\\mathbb{Z}/4)', 'pc_rank': 2, 'perfect': False, 'permutation_degree': 8, 'pgroup': 2, 'primary_abelian_invariants': [4, 4], 'quasisimple': False, 'rank': 2, 'rational': False, 'rational_characters_known': True, 'ratrep_stats': [[1, 4], [2, 6]], 'representations': {'PC': {'code': 10245, 'gens': [1, 3], 'pres': [4, 2, 2, 2, 2, 8, 34]}, 'GLZ': {'b': 3, 'd': 4, 'gens': [16917782, 35931238]}, 'GLFp': {'d': 2, 'p': 5, 'gens': [251, 377]}, 'Perm': {'d': 8, 'gens': [16560, 22, 5160, 7]}}, 'schur_multiplier': [4], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [4, 4], 'solvability_type': 1, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': True, 'sylow_subgroups_known': True, 'tex_name': 'C_4^2', 'transitive_degree': 16, 'wreath_data': None, 'wreath_product': False}
-
gps_groups • Show schema
Hide schema
{'Agroup': False, 'Zgroup': False, 'abelian': False, 'abelian_quotient': '16.10', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 3, 'aut_exponent': 8, 'aut_gen_orders': [2, 4, 8, 4, 2, 2, 2], 'aut_gens': [[1, 2, 8, 32], [1, 23, 88, 96], [17, 83, 72, 40], [65, 39, 72, 32], [17, 11, 24, 48], [17, 18, 24, 96], [1, 18, 8, 48], [1, 66, 8, 32]], 'aut_group': '1024.dnl', 'aut_hash': 454949056087899745, 'aut_nilpotency_class': 4, 'aut_nilpotent': True, 'aut_order': 1024, 'aut_permdeg': 32, 'aut_perms': [100414795240405806888590965839612792, 227725482748526830191907336617153578, 156424791988753458629266170407386412, 114373803356749651352900683219216781, 132062060875511454089921909158913812, 4253203942958765799836767412308383, 133586507436308610366929320990404538], 'aut_phi_ratio': 16.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [2, 2, 1, 1], [2, 2, 2, 1], [2, 4, 2, 2], [2, 8, 1, 1], [4, 4, 1, 2], [4, 8, 1, 3], [4, 8, 8, 1]], 'aut_supersolvable': True, 'aut_tex': 'C_2^4.D_4^2', 'autcent_abelian': True, 'autcent_cyclic': False, 'autcent_exponent': 2, 'autcent_group': '8.5', 'autcent_hash': 5, 'autcent_nilpotent': True, 'autcent_order': 8, 'autcent_solvable': True, 'autcent_split': False, 'autcent_supersolvable': True, 'autcent_tex': 'C_2^3', 'autcentquo_abelian': False, 'autcentquo_cyclic': False, 'autcentquo_exponent': 4, 'autcentquo_group': '128.1755', 'autcentquo_hash': 1755, 'autcentquo_nilpotent': True, 'autcentquo_order': 128, 'autcentquo_solvable': True, 'autcentquo_supersolvable': True, 'autcentquo_tex': 'C_2^4:D_4', 'cc_stats': [[1, 1, 1], [2, 1, 1], [2, 2, 3], [2, 4, 4], [2, 8, 1], [4, 4, 2], [4, 8, 11]], 'center_label': '2.1', 'center_order': 2, 'central_product': False, 'central_quotient': '64.90', 'commutator_count': 1, 'commutator_label': '8.2', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1', '2.1', '2.1', '2.1', '2.1', '2.1', '2.1'], 'composition_length': 7, 'conjugacy_classes_known': True, 'counter': 859, 'cyclic': False, 'derived_length': 2, 'dihedral': False, 'direct_factorization': [], 'direct_product': False, 'div_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [2, 2, 1, 3], [2, 4, 1, 4], [2, 8, 1, 1], [4, 4, 1, 2], [4, 8, 1, 3], [4, 8, 2, 4]], 'element_repr_type': 'PC', 'elementary': 2, 'eulerian_function': 672, 'exponent': 4, 'exponents_of_order': [7], 'factors_of_aut_order': [2], 'factors_of_order': [2], 'faithful_reps': [[8, 1, 1]], 'familial': False, 'frattini_label': '16.11', 'frattini_quotient': '8.5', 'hash': 859, 'hyperelementary': 2, 'inner_abelian': False, 'inner_cyclic': False, 'inner_exponent': 4, 'inner_gen_orders': [2, 4, 2, 4], 'inner_gens': [[1, 2, 8, 48], [1, 2, 88, 56], [1, 82, 8, 32], [17, 10, 8, 32]], 'inner_hash': 90, 'inner_nilpotent': True, 'inner_order': 64, 'inner_split': False, 'inner_tex': 'C_2^4:C_4', 'inner_used': [1, 2, 3, 4], 'irrC_degree': 8, 'irrQ_degree': 8, 'irrQ_dim': 8, 'irrR_degree': 8, 'irrep_stats': [[1, 16], [2, 4], [4, 2], [8, 1]], 'label': '128.859', 'linC_count': 1, 'linC_degree': 8, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': 8, 'linQ_degree_count': 1, 'linQ_dim': 8, 'linQ_dim_count': 1, 'linR_count': 1, 'linR_degree': 8, 'maximal_subgroups_known': True, 'metabelian': True, 'metacyclic': False, 'monomial': True, 'name': 'C2^4.D4', 'ngens': 3, 'nilpotency_class': 4, 'nilpotent': True, 'normal_counts': [0, 0, 0, 0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 13, 'number_characteristic_subgroups': 22, 'number_conjugacy_classes': 23, 'number_divisions': 19, 'number_normal_subgroups': 42, 'number_subgroup_autclasses': 87, 'number_subgroup_classes': 143, 'number_subgroups': 428, 'old_label': None, 'order': 128, 'order_factorization_type': 7, 'order_stats': [[1, 1], [2, 31], [4, 96]], 'outer_abelian': False, 'outer_cyclic': False, 'outer_equivalence': False, 'outer_exponent': 4, 'outer_gen_orders': [2, 2, 2, 2], 'outer_gen_pows': [37, 0, 0, 0], 'outer_gens': [[65, 43, 88, 120], [1, 6, 88, 32], [1, 3, 24, 32], [17, 2, 8, 32]], 'outer_group': '16.11', 'outer_hash': 11, 'outer_nilpotent': True, 'outer_order': 16, 'outer_permdeg': 6, 'outer_perms': [126, 55, 289, 288], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'C_2\\times D_4', 'pc_rank': 4, 'perfect': False, 'permutation_degree': 16, 'pgroup': 2, 'primary_abelian_invariants': [2, 2, 4], 'quasisimple': False, 'rank': 3, 'rational': False, 'rational_characters_known': True, 'ratrep_stats': [[1, 8], [2, 8], [4, 2], [8, 1]], 'representations': {'PC': {'code': 9976054716566501535228970, 'gens': [1, 2, 4, 6], 'pres': [7, 2, 2, 2, 2, 2, 2, 2, 36, 1242, 185, 80, 2021, 1188, 1027, 124, 1973]}, 'GLFp': {'d': 5, 'p': 2, 'gens': [19241027, 6210625, 19208257, 18750531, 30996566, 6670401, 6276161]}, 'Perm': {'d': 16, 'gens': [11219175095753, 11212821043200, 4103734089616, 5606275034856, 5606234766719, 2789792421136, 1313941673647]}}, 'schur_multiplier': [2, 2, 2, 2], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [2, 2, 4], 'solvability_type': 4, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': True, 'sylow_subgroups_known': True, 'tex_name': 'C_2^4.D_4', 'transitive_degree': 16, 'wreath_data': None, 'wreath_product': False}
-
gps_groups • Show schema
Hide schema
{'Agroup': True, 'Zgroup': False, 'abelian': True, 'abelian_quotient': '8.2', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 2, 'aut_exponent': 4, 'aut_gen_orders': [2, 4], 'aut_gens': [[1, 2], [1, 3], [5, 3]], 'aut_group': '8.3', 'aut_hash': 3, 'aut_nilpotency_class': 2, 'aut_nilpotent': True, 'aut_order': 8, 'aut_permdeg': 4, 'aut_perms': [1, 22], 'aut_phi_ratio': 2.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [2, 1, 2, 1], [4, 1, 4, 1]], 'aut_supersolvable': True, 'aut_tex': 'D_4', 'autcent_abelian': False, 'autcent_cyclic': False, 'autcent_exponent': 4, 'autcent_group': '8.3', 'autcent_hash': 3, 'autcent_nilpotent': True, 'autcent_order': 8, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': True, 'autcent_tex': 'D_4', 'autcentquo_abelian': True, 'autcentquo_cyclic': True, 'autcentquo_exponent': 1, 'autcentquo_group': '1.1', 'autcentquo_hash': 1, 'autcentquo_nilpotent': True, 'autcentquo_order': 1, 'autcentquo_solvable': True, 'autcentquo_supersolvable': True, 'autcentquo_tex': 'C_1', 'cc_stats': [[1, 1, 1], [2, 1, 3], [4, 1, 4]], 'center_label': '8.2', 'center_order': 8, 'central_product': True, 'central_quotient': '1.1', 'commutator_count': 0, 'commutator_label': '1.1', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1', '2.1', '2.1'], 'composition_length': 3, 'conjugacy_classes_known': True, 'counter': 2, 'cyclic': False, 'derived_length': 1, 'dihedral': False, 'direct_factorization': [['2.1', 1], ['4.1', 1]], 'direct_product': True, 'div_stats': [[1, 1, 1, 1], [2, 1, 1, 3], [4, 1, 2, 2]], 'element_repr_type': 'PC', 'elementary': 2, 'eulerian_function': 3, 'exponent': 4, 'exponents_of_order': [3], 'factors_of_aut_order': [2], 'factors_of_order': [2], 'faithful_reps': [], 'familial': True, 'frattini_label': '2.1', 'frattini_quotient': '4.2', 'hash': 2, 'hyperelementary': 2, 'inner_abelian': True, 'inner_cyclic': True, 'inner_exponent': 1, 'inner_gen_orders': [1, 1], 'inner_gens': [[1, 2], [1, 2]], 'inner_hash': 1, 'inner_nilpotent': True, 'inner_order': 1, 'inner_split': True, 'inner_tex': 'C_1', 'inner_used': [], 'irrC_degree': -1, 'irrQ_degree': -1, 'irrQ_dim': -1, 'irrR_degree': -1, 'irrep_stats': [[1, 8]], 'label': '8.2', 'linC_count': 12, 'linC_degree': 2, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': 3, 'linQ_degree_count': 4, 'linQ_dim': 3, 'linQ_dim_count': 4, 'linR_count': 4, 'linR_degree': 3, 'maximal_subgroups_known': True, 'metabelian': True, 'metacyclic': True, 'monomial': True, 'name': 'C2*C4', 'ngens': 2, 'nilpotency_class': 1, 'nilpotent': True, 'normal_counts': [0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 4, 'number_characteristic_subgroups': 4, 'number_conjugacy_classes': 8, 'number_divisions': 6, 'number_normal_subgroups': 8, 'number_subgroup_autclasses': 6, 'number_subgroup_classes': 8, 'number_subgroups': 8, 'old_label': None, 'order': 8, 'order_factorization_type': 3, 'order_stats': [[1, 1], [2, 3], [4, 4]], 'outer_abelian': False, 'outer_cyclic': False, 'outer_equivalence': False, 'outer_exponent': 4, 'outer_gen_orders': [2, 4], 'outer_gen_pows': [0, 0], 'outer_gens': [[1, 3], [5, 3]], 'outer_group': '8.3', 'outer_hash': 3, 'outer_nilpotent': True, 'outer_order': 8, 'outer_permdeg': 4, 'outer_perms': [1, 22], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'D_4', 'pc_rank': 2, 'perfect': False, 'permutation_degree': 6, 'pgroup': 2, 'primary_abelian_invariants': [2, 4], 'quasisimple': False, 'rank': 2, 'rational': False, 'rational_characters_known': True, 'ratrep_stats': [[1, 4], [2, 2]], 'representations': {'PC': {'code': 34, 'gens': [1, 2], 'pres': [3, -2, 2, -2, 16]}, 'GLZ': {'b': 3, 'd': 3, 'gens': [3362, 16426]}, 'GLFp': {'d': 2, 'p': 5, 'gens': [251, 504]}, 'Perm': {'d': 6, 'gens': [22, 120, 7]}}, 'schur_multiplier': [2], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [2, 4], 'solvability_type': 1, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': True, 'sylow_subgroups_known': True, 'tex_name': 'C_2\\times C_4', 'transitive_degree': 8, 'wreath_data': None, 'wreath_product': False}