-
gps_subgroup_search • Show schema
Hide schema
{'Agroup': True, 'Zgroup': False, 'abelian': True, 'ambient': '128.1931', 'ambient_counter': 1931, 'ambient_order': 128, 'ambient_tex': '(C_2^2\\times C_8):C_2^2', 'central': False, 'central_factor': False, 'centralizer_order': 16, 'characteristic': False, 'core_order': 8, 'counter': 36, 'cyclic': False, 'direct': None, 'hall': 0, 'label': '128.1931.8.k1', 'maximal': False, 'maximal_normal': False, 'metabelian': True, 'metacyclic': False, 'minimal': False, 'minimal_normal': False, 'nilpotent': True, 'normal': False, 'old_label': '8.k1', 'outer_equivalence': True, 'perfect': False, 'proper': True, 'quotient': None, 'quotient_Agroup': None, 'quotient_abelian': None, 'quotient_cyclic': None, 'quotient_hash': None, 'quotient_metabelian': None, 'quotient_nilpotent': None, 'quotient_order': 8, 'quotient_simple': None, 'quotient_solvable': None, 'quotient_supersolvable': None, 'quotient_tex': None, 'simple': False, 'solvable': True, 'special_labels': [], 'split': None, 'standard_generators': False, 'stem': False, 'subgroup': '16.14', 'subgroup_hash': 14, 'subgroup_order': 16, 'subgroup_tex': 'C_2^4', 'supersolvable': True, 'sylow': 0}
-
gps_subgroup_data • Show schema
Hide schema
{'ambient': '128.1931', 'aut_centralizer_order': 32, 'aut_label': '8.k1', 'aut_quo_index': None, 'aut_stab_index': 4, 'aut_weyl_group': '32.27', 'aut_weyl_index': 128, 'centralizer': '8.k1', 'complements': None, 'conjugacy_class_count': 2, 'contained_in': ['4.b1', '4.o1', '4.p1'], 'contains': ['16.a1', '16.f1', '16.i1', '16.v1'], 'core': '16.a1', 'coset_action_label': None, 'count': 4, 'diagramx': [1794, -1, 1797, -1], 'generators': [1, 2, 8, 64], 'label': '128.1931.8.k1', 'mobius_quo': None, 'mobius_sub': 0, 'normal_closure': '4.b1', 'normal_contained_in': None, 'normal_contains': None, 'normalizer': '2.c1', 'old_label': '8.k1', 'projective_image': '32.46', 'quotient_action_image': None, 'quotient_action_kernel': None, 'quotient_action_kernel_order': None, 'quotient_fusion': None, 'short_label': '8.k1', 'subgroup_fusion': None, 'weyl_group': '4.2'}
-
gps_groups • Show schema
Hide schema
{'Agroup': True, 'Zgroup': False, 'abelian': True, 'abelian_quotient': '16.14', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 0, 'aut_exponent': 420, 'aut_gen_orders': [6, 3], 'aut_gens': [[1, 2, 4, 8], [12, 4, 5, 3], [10, 14, 7, 5]], 'aut_group': '20160.a', 'aut_hash': 3764836782182912467, 'aut_nilpotency_class': -1, 'aut_nilpotent': False, 'aut_order': 20160, 'aut_permdeg': 8, 'aut_perms': [5193, 5760], 'aut_phi_ratio': 2520.0, 'aut_solvable': False, 'aut_stats': [[1, 1, 1, 1], [2, 1, 15, 1]], 'aut_supersolvable': False, 'aut_tex': 'A_8', 'autcent_abelian': False, 'autcent_cyclic': False, 'autcent_exponent': 420, 'autcent_group': '20160.a', 'autcent_hash': 3764836782182912467, 'autcent_nilpotent': False, 'autcent_order': 20160, 'autcent_solvable': False, 'autcent_split': True, 'autcent_supersolvable': False, 'autcent_tex': 'A_8', 'autcentquo_abelian': True, 'autcentquo_cyclic': True, 'autcentquo_exponent': 1, 'autcentquo_group': '1.1', 'autcentquo_hash': 1, 'autcentquo_nilpotent': True, 'autcentquo_order': 1, 'autcentquo_solvable': True, 'autcentquo_supersolvable': True, 'autcentquo_tex': 'C_1', 'cc_stats': [[1, 1, 1], [2, 1, 15]], 'center_label': '16.14', 'center_order': 16, 'central_product': True, 'central_quotient': '1.1', 'commutator_count': 0, 'commutator_label': '1.1', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1', '2.1', '2.1', '2.1'], 'composition_length': 4, 'conjugacy_classes_known': True, 'counter': 14, 'cyclic': False, 'derived_length': 1, 'dihedral': False, 'direct_factorization': [['2.1', 4]], 'direct_product': True, 'div_stats': [[1, 1, 1, 1], [2, 1, 1, 15]], 'element_repr_type': 'PC', 'elementary': 2, 'eulerian_function': 1, 'exponent': 2, 'exponents_of_order': [4], 'factors_of_aut_order': [2, 3, 5, 7], 'factors_of_order': [2], 'faithful_reps': [], 'familial': False, 'frattini_label': '1.1', 'frattini_quotient': '16.14', 'hash': 14, 'hyperelementary': 2, 'inner_abelian': True, 'inner_cyclic': True, 'inner_exponent': 1, 'inner_gen_orders': [1, 1, 1, 1], 'inner_gens': [[1, 2, 4, 8], [1, 2, 4, 8], [1, 2, 4, 8], [1, 2, 4, 8]], 'inner_hash': 1, 'inner_nilpotent': True, 'inner_order': 1, 'inner_split': True, 'inner_tex': 'C_1', 'inner_used': [], 'irrC_degree': -1, 'irrQ_degree': -1, 'irrQ_dim': -1, 'irrR_degree': -1, 'irrep_stats': [[1, 16]], 'label': '16.14', 'linC_count': 840, 'linC_degree': 4, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': 4, 'linQ_degree_count': 840, 'linQ_dim': 4, 'linQ_dim_count': 840, 'linR_count': 840, 'linR_degree': 4, 'maximal_subgroups_known': True, 'metabelian': True, 'metacyclic': False, 'monomial': True, 'name': 'C2^4', 'ngens': 4, 'nilpotency_class': 1, 'nilpotent': True, 'normal_counts': [0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 2, 'number_characteristic_subgroups': 2, 'number_conjugacy_classes': 16, 'number_divisions': 16, 'number_normal_subgroups': 67, 'number_subgroup_autclasses': 5, 'number_subgroup_classes': 67, 'number_subgroups': 67, 'old_label': None, 'order': 16, 'order_factorization_type': 3, 'order_stats': [[1, 1], [2, 15]], 'outer_abelian': False, 'outer_cyclic': False, 'outer_equivalence': False, 'outer_exponent': 420, 'outer_gen_orders': [6, 3], 'outer_gen_pows': [0, 0], 'outer_gens': [[12, 4, 5, 3], [10, 14, 7, 5]], 'outer_group': '20160.a', 'outer_hash': 3764836782182912467, 'outer_nilpotent': False, 'outer_order': 20160, 'outer_permdeg': 8, 'outer_perms': [5193, 5760], 'outer_solvable': False, 'outer_supersolvable': False, 'outer_tex': 'A_8', 'pc_rank': 4, 'perfect': False, 'permutation_degree': 8, 'pgroup': 2, 'primary_abelian_invariants': [2, 2, 2, 2], 'quasisimple': False, 'rank': 4, 'rational': True, 'rational_characters_known': True, 'ratrep_stats': [[1, 16]], 'representations': {'PC': {'code': 0, 'gens': [1, 2, 3, 4], 'pres': [4, -2, 2, 2, 2]}, 'GLZ': {'b': 3, 'd': 4, 'gens': [7233746, 7115648, 35812976, 7115160]}, 'GLFp': {'d': 4, 'p': 2, 'gens': [33837, 18465, 27183, 18467]}, 'Perm': {'d': 8, 'gens': [5040, 120, 6, 1]}}, 'schur_multiplier': [2, 2, 2, 2, 2, 2], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [2, 2, 2, 2], 'solvability_type': 2, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': True, 'sylow_subgroups_known': True, 'tex_name': 'C_2^4', 'transitive_degree': 16, 'wreath_data': None, 'wreath_product': False}
-
gps_groups • Show schema
Hide schema
{'Agroup': False, 'Zgroup': False, 'abelian': False, 'abelian_quotient': '16.14', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 2, 'aut_exponent': 8, 'aut_gen_orders': [2, 2, 2, 8, 2, 2, 2, 4, 2, 2, 2], 'aut_gens': [[1, 2, 4, 16], [73, 74, 12, 88], [1, 74, 12, 112], [65, 2, 4, 80], [39, 21, 83, 118], [65, 74, 76, 16], [65, 74, 76, 80], [65, 99, 101, 126], [1, 98, 100, 16], [9, 66, 68, 88], [73, 74, 68, 24], [9, 66, 4, 16]], 'aut_group': '4096.bqy', 'aut_hash': 4768925310847737472, 'aut_nilpotency_class': 3, 'aut_nilpotent': True, 'aut_order': 4096, 'aut_permdeg': 24, 'aut_perms': [84402489008472650283846, 9457069711888788151680, 84402486517233620736000, 236670430602918107563080, 79140119494563783551298, 84760253652542665496898, 343101113825617627638190, 138772745213472038954880, 78731266399553903403846, 84402486517233620754259, 78731266399553903401581], 'aut_phi_ratio': 64.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [2, 1, 2, 1], [2, 4, 1, 1], [2, 4, 2, 1], [2, 8, 4, 1], [4, 2, 1, 2], [4, 4, 1, 1], [4, 4, 2, 1], [4, 8, 4, 1], [8, 4, 4, 1], [8, 8, 2, 1]], 'aut_supersolvable': True, 'aut_tex': 'C_2^6.D_4^2', 'autcent_abelian': True, 'autcent_cyclic': False, 'autcent_exponent': 2, 'autcent_group': '256.56092', 'autcent_hash': 56092, 'autcent_nilpotent': True, 'autcent_order': 256, 'autcent_solvable': True, 'autcent_split': False, 'autcent_supersolvable': True, 'autcent_tex': 'C_2^8', 'autcentquo_abelian': False, 'autcentquo_cyclic': False, 'autcentquo_exponent': 4, 'autcentquo_group': '16.11', 'autcentquo_hash': 11, 'autcentquo_nilpotent': True, 'autcentquo_order': 16, 'autcentquo_solvable': True, 'autcentquo_supersolvable': True, 'autcentquo_tex': 'C_2\\times D_4', 'cc_stats': [[1, 1, 1], [2, 1, 3], [2, 4, 3], [2, 8, 4], [4, 2, 2], [4, 4, 3], [4, 8, 4], [8, 4, 4], [8, 8, 2]], 'center_label': '4.2', 'center_order': 4, 'central_product': False, 'central_quotient': '32.46', 'commutator_count': 1, 'commutator_label': '8.2', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1', '2.1', '2.1', '2.1', '2.1', '2.1', '2.1'], 'composition_length': 7, 'conjugacy_classes_known': True, 'counter': 1931, 'cyclic': False, 'derived_length': 2, 'dihedral': False, 'direct_factorization': [], 'direct_product': False, 'div_stats': [[1, 1, 1, 1], [2, 1, 1, 3], [2, 4, 1, 3], [2, 8, 1, 4], [4, 2, 1, 2], [4, 4, 1, 3], [4, 8, 1, 4], [8, 4, 2, 2], [8, 8, 1, 2]], 'element_repr_type': 'PC', 'elementary': 2, 'eulerian_function': 20160, 'exponent': 8, 'exponents_of_order': [7], 'factors_of_aut_order': [2], 'factors_of_order': [2], 'faithful_reps': [], 'familial': False, 'frattini_label': '8.2', 'frattini_quotient': '16.14', 'hash': 1931, 'hyperelementary': 2, 'inner_abelian': False, 'inner_cyclic': False, 'inner_exponent': 4, 'inner_gen_orders': [2, 2, 2, 4], 'inner_gens': [[1, 2, 68, 24], [1, 2, 12, 112], [65, 10, 4, 48], [9, 34, 100, 16]], 'inner_hash': 46, 'inner_nilpotent': True, 'inner_order': 32, 'inner_split': False, 'inner_tex': 'C_2^2\\times D_4', 'inner_used': [1, 2, 3, 4], 'irrC_degree': -1, 'irrQ_degree': -1, 'irrQ_dim': -1, 'irrR_degree': -1, 'irrep_stats': [[1, 16], [2, 4], [4, 6]], 'label': '128.1931', 'linC_count': None, 'linC_degree': None, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': None, 'linQ_degree_count': None, 'linQ_dim': None, 'linQ_dim_count': None, 'linR_count': None, 'linR_degree': None, 'maximal_subgroups_known': True, 'metabelian': True, 'metacyclic': False, 'monomial': True, 'name': '(C2^2*C8):C2^2', 'ngens': 4, 'nilpotency_class': 3, 'nilpotent': True, 'normal_counts': [0, 0, 0, 0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 13, 'number_characteristic_subgroups': 16, 'number_conjugacy_classes': 26, 'number_divisions': 24, 'number_normal_subgroups': 84, 'number_subgroup_autclasses': 93, 'number_subgroup_classes': 221, 'number_subgroups': 588, 'old_label': None, 'order': 128, 'order_factorization_type': 7, 'order_stats': [[1, 1], [2, 47], [4, 48], [8, 32]], 'outer_abelian': False, 'outer_cyclic': False, 'outer_equivalence': True, 'outer_exponent': 4, 'outer_gen_orders': [2, 2, 4, 2, 4], 'outer_gen_pows': [0, 0, 0, 0, 96], 'outer_gens': [[1, 66, 4, 16], [65, 74, 4, 80], [1, 11, 13, 30], [65, 2, 4, 80], [103, 125, 59, 118]], 'outer_group': '128.1135', 'outer_hash': 1135, 'outer_nilpotent': True, 'outer_order': 128, 'outer_permdeg': 12, 'outer_perms': [164062086, 22182600, 182610862, 178981920, 48441000], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'C_2^4:D_4', 'pc_rank': 4, 'perfect': False, 'permutation_degree': 24, 'pgroup': 2, 'primary_abelian_invariants': [2, 2, 2, 2], 'quasisimple': False, 'rank': 4, 'rational': False, 'rational_characters_known': True, 'ratrep_stats': [[1, 16], [2, 4], [4, 2], [8, 2]], 'representations': {'PC': {'code': 1257360218332373565139899060, 'gens': [1, 2, 3, 5], 'pres': [7, 2, 2, 2, 2, 2, 2, 2, 1430, 135, 58, 844, 1971, 438, 102, 2028, 1027, 124]}, 'Perm': {'d': 24, 'gens': [26222953225866216384770, 56320128310915916703299, 57342316064110625734650, 56217919727871146655055, 84709796904948932214244, 111758179102158882603364, 84709796904948932196480]}}, 'schur_multiplier': [2, 2, 2, 4], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [2, 2, 2, 2], 'solvability_type': 4, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': True, 'sylow_subgroups_known': True, 'tex_name': '(C_2^2\\times C_8):C_2^2', 'transitive_degree': 32, 'wreath_data': None, 'wreath_product': False}