-
gps_subgroup_search • Show schema
Hide schema
{'Agroup': True, 'Zgroup': False, 'abelian': True, 'ambient': '128.1844', 'ambient_counter': 1844, 'ambient_order': 128, 'ambient_tex': 'C_4^2.D_4', 'central': False, 'central_factor': False, 'centralizer_order': 16, 'characteristic': False, 'core_order': 2, 'counter': 186, 'cyclic': False, 'direct': None, 'hall': 0, 'label': '128.1844.32.f1.a1', 'maximal': False, 'maximal_normal': False, 'metabelian': True, 'metacyclic': True, 'minimal': False, 'minimal_normal': False, 'nilpotent': True, 'normal': False, 'old_label': '32.f1.a1', 'outer_equivalence': False, 'perfect': False, 'proper': True, 'quotient': None, 'quotient_Agroup': None, 'quotient_abelian': None, 'quotient_cyclic': None, 'quotient_hash': None, 'quotient_metabelian': None, 'quotient_nilpotent': None, 'quotient_order': 32, 'quotient_simple': None, 'quotient_solvable': None, 'quotient_supersolvable': None, 'quotient_tex': None, 'simple': False, 'solvable': True, 'special_labels': [], 'split': None, 'standard_generators': False, 'stem': False, 'subgroup': '4.2', 'subgroup_hash': 2, 'subgroup_order': 4, 'subgroup_tex': 'C_2^2', 'supersolvable': True, 'sylow': 0}
-
gps_subgroup_data • Show schema
Hide schema
{'ambient': '128.1844', 'aut_centralizer_order': None, 'aut_label': '32.f1', 'aut_quo_index': None, 'aut_stab_index': None, 'aut_weyl_group': None, 'aut_weyl_index': None, 'centralizer': '8.q1.a1', 'complements': None, 'conjugacy_class_count': 1, 'contained_in': ['16.i1.a1', '16.n1.a1', '16.n1.b1'], 'contains': ['64.a1.a1', '64.e1.a1'], 'core': '64.a1.a1', 'coset_action_label': None, 'count': 4, 'diagramx': [3078, -1, 2727, -1, 2719, -1, 2740, -1], 'generators': [22, 8], 'label': '128.1844.32.f1.a1', 'mobius_quo': None, 'mobius_sub': 0, 'normal_closure': '8.d1.a1', 'normal_contained_in': None, 'normal_contains': None, 'normalizer': '4.u1.a1', 'old_label': '32.f1.a1', 'projective_image': None, 'quotient_action_image': None, 'quotient_action_kernel': None, 'quotient_action_kernel_order': None, 'quotient_fusion': None, 'short_label': '32.f1.a1', 'subgroup_fusion': None, 'weyl_group': None}
-
gps_groups • Show schema
Hide schema
{'Agroup': True, 'Zgroup': False, 'abelian': True, 'abelian_quotient': '4.2', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 2, 'aut_exponent': 6, 'aut_gen_orders': [2, 3], 'aut_gens': [[1, 2], [3, 2], [2, 3]], 'aut_group': '6.1', 'aut_hash': 1, 'aut_nilpotency_class': -1, 'aut_nilpotent': False, 'aut_order': 6, 'aut_permdeg': 3, 'aut_perms': [1, 4], 'aut_phi_ratio': 3.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 1, 3, 1]], 'aut_supersolvable': True, 'aut_tex': 'S_3', 'autcent_abelian': False, 'autcent_cyclic': False, 'autcent_exponent': 6, 'autcent_group': '6.1', 'autcent_hash': 1, 'autcent_nilpotent': False, 'autcent_order': 6, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': True, 'autcent_tex': 'S_3', 'autcentquo_abelian': True, 'autcentquo_cyclic': True, 'autcentquo_exponent': 1, 'autcentquo_group': '1.1', 'autcentquo_hash': 1, 'autcentquo_nilpotent': True, 'autcentquo_order': 1, 'autcentquo_solvable': True, 'autcentquo_supersolvable': True, 'autcentquo_tex': 'C_1', 'cc_stats': [[1, 1, 1], [2, 1, 3]], 'center_label': '4.2', 'center_order': 4, 'central_product': True, 'central_quotient': '1.1', 'commutator_count': 0, 'commutator_label': '1.1', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1', '2.1'], 'composition_length': 2, 'conjugacy_classes_known': True, 'counter': 2, 'cyclic': False, 'derived_length': 1, 'dihedral': True, 'direct_factorization': [['2.1', 2]], 'direct_product': True, 'div_stats': [[1, 1, 1, 1], [2, 1, 1, 3]], 'element_repr_type': 'PC', 'elementary': 2, 'eulerian_function': 1, 'exponent': 2, 'exponents_of_order': [2], 'factors_of_aut_order': [2, 3], 'factors_of_order': [2], 'faithful_reps': [], 'familial': True, 'frattini_label': '1.1', 'frattini_quotient': '4.2', 'hash': 2, 'hyperelementary': 2, 'inner_abelian': True, 'inner_cyclic': True, 'inner_exponent': 1, 'inner_gen_orders': [1, 1], 'inner_gens': [[1, 2], [1, 2]], 'inner_hash': 1, 'inner_nilpotent': True, 'inner_order': 1, 'inner_split': True, 'inner_tex': 'C_1', 'inner_used': [], 'irrC_degree': -1, 'irrQ_degree': -1, 'irrQ_dim': -1, 'irrR_degree': -1, 'irrep_stats': [[1, 4]], 'label': '4.2', 'linC_count': 3, 'linC_degree': 2, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': 2, 'linQ_degree_count': 3, 'linQ_dim': 2, 'linQ_dim_count': 3, 'linR_count': 3, 'linR_degree': 2, 'maximal_subgroups_known': True, 'metabelian': True, 'metacyclic': True, 'monomial': True, 'name': 'C2^2', 'ngens': 2, 'nilpotency_class': 1, 'nilpotent': True, 'normal_counts': [0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 2, 'number_characteristic_subgroups': 2, 'number_conjugacy_classes': 4, 'number_divisions': 4, 'number_normal_subgroups': 5, 'number_subgroup_autclasses': 3, 'number_subgroup_classes': 5, 'number_subgroups': 5, 'old_label': None, 'order': 4, 'order_factorization_type': 2, 'order_stats': [[1, 1], [2, 3]], 'outer_abelian': False, 'outer_cyclic': False, 'outer_equivalence': False, 'outer_exponent': 6, 'outer_gen_orders': [2, 3], 'outer_gen_pows': [0, 0], 'outer_gens': [[3, 2], [2, 3]], 'outer_group': '6.1', 'outer_hash': 1, 'outer_nilpotent': False, 'outer_order': 6, 'outer_permdeg': 3, 'outer_perms': [1, 4], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'S_3', 'pc_rank': 2, 'perfect': False, 'permutation_degree': 4, 'pgroup': 2, 'primary_abelian_invariants': [2, 2], 'quasisimple': False, 'rank': 2, 'rational': True, 'rational_characters_known': True, 'ratrep_stats': [[1, 4]], 'representations': {'PC': {'code': 0, 'gens': [1, 2], 'pres': [2, -2, 2]}, 'GLZ': {'b': 3, 'd': 2, 'gens': [14, 12]}, 'GLFp': {'d': 2, 'p': 3, 'gens': [55, 56]}, 'Perm': {'d': 4, 'gens': [6, 1]}}, 'schur_multiplier': [2], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [2, 2], 'solvability_type': 1, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': True, 'sylow_subgroups_known': True, 'tex_name': 'C_2^2', 'transitive_degree': 4, 'wreath_data': None, 'wreath_product': False}
-
gps_groups • Show schema
Hide schema
{'Agroup': False, 'Zgroup': False, 'abelian': False, 'abelian_quotient': '16.14', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 2, 'aut_exponent': 4, 'aut_gen_orders': [2, 2, 4, 2, 4, 2, 4, 2, 4], 'aut_gens': [[1, 2, 4, 16], [9, 106, 4, 56], [1, 106, 76, 120], [73, 75, 76, 20], [65, 42, 76, 56], [9, 43, 68, 25], [65, 98, 76, 53], [9, 75, 76, 20], [9, 66, 68, 16], [65, 75, 12, 57]], 'aut_group': None, 'aut_hash': 6503238873387683494, 'aut_nilpotency_class': 2, 'aut_nilpotent': True, 'aut_order': 4096, 'aut_permdeg': 32, 'aut_perms': [135003081080518947762226718176655158, 85259159481672004819508375687681058, 34758021579197236278959259281023024, 636779021060423871904372867074288, 165956508380271845648606734682505322, 114511897974721617658155497019759882, 109223959042421752324039664105260121, 203788337988993397910067201610469960, 51330219190987428525833587964651049], 'aut_phi_ratio': 64.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 1, 1, 3], [2, 2, 2, 1], [2, 8, 2, 1], [4, 2, 2, 4], [4, 4, 1, 2], [4, 4, 4, 2], [4, 8, 2, 1], [8, 8, 4, 1]], 'aut_supersolvable': True, 'aut_tex': 'C_2^6.C_2^6', 'autcent_abelian': True, 'autcent_cyclic': False, 'autcent_exponent': 2, 'autcent_group': None, 'autcent_hash': 56092, 'autcent_nilpotent': True, 'autcent_order': 256, 'autcent_solvable': True, 'autcent_split': None, 'autcent_supersolvable': True, 'autcent_tex': 'C_2^8', 'autcentquo_abelian': None, 'autcentquo_cyclic': None, 'autcentquo_exponent': None, 'autcentquo_group': None, 'autcentquo_hash': None, 'autcentquo_nilpotent': None, 'autcentquo_order': 16, 'autcentquo_solvable': None, 'autcentquo_supersolvable': None, 'autcentquo_tex': None, 'cc_stats': [[1, 1, 1], [2, 1, 3], [2, 2, 2], [2, 8, 2], [4, 2, 8], [4, 4, 10], [4, 8, 2], [8, 8, 4]], 'center_label': '4.2', 'center_order': 4, 'central_product': False, 'central_quotient': '32.46', 'commutator_count': 1, 'commutator_label': '8.2', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1', '2.1', '2.1', '2.1', '2.1', '2.1', '2.1'], 'composition_length': 7, 'conjugacy_classes_known': True, 'counter': 1844, 'cyclic': False, 'derived_length': 2, 'dihedral': False, 'direct_factorization': [], 'direct_product': False, 'div_stats': [[1, 1, 1, 1], [2, 1, 1, 3], [2, 2, 1, 2], [2, 8, 1, 2], [4, 2, 1, 4], [4, 2, 2, 2], [4, 4, 1, 6], [4, 4, 2, 2], [4, 8, 1, 2], [8, 8, 1, 4]], 'element_repr_type': 'PC', 'elementary': 2, 'eulerian_function': 20160, 'exponent': 8, 'exponents_of_order': [7], 'factors_of_aut_order': [2], 'factors_of_order': [2], 'faithful_reps': [], 'familial': False, 'frattini_label': '8.2', 'frattini_quotient': '16.14', 'hash': 1844, 'hyperelementary': 2, 'inner_abelian': False, 'inner_cyclic': False, 'inner_exponent': 4, 'inner_gen_orders': [2, 2, 2, 4], 'inner_gens': [[1, 2, 4, 88], [1, 2, 4, 120], [1, 2, 4, 80], [73, 42, 68, 16]], 'inner_hash': 46, 'inner_nilpotent': True, 'inner_order': 32, 'inner_split': None, 'inner_tex': 'C_2^2\\times D_4', 'inner_used': [1, 2, 3, 4], 'irrC_degree': -1, 'irrQ_degree': -1, 'irrQ_dim': -1, 'irrR_degree': -1, 'irrep_stats': [[1, 16], [2, 12], [4, 4]], 'label': '128.1844', 'linC_count': 32, 'linC_degree': 6, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': 8, 'linQ_degree_count': 20, 'linQ_dim': 8, 'linQ_dim_count': 8, 'linR_count': 8, 'linR_degree': 8, 'maximal_subgroups_known': True, 'metabelian': True, 'metacyclic': False, 'monomial': True, 'name': 'C4^2.D4', 'ngens': 4, 'nilpotency_class': 3, 'nilpotent': True, 'normal_counts': [0, 0, 0, 0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 16, 'number_characteristic_subgroups': 28, 'number_conjugacy_classes': 32, 'number_divisions': 28, 'number_normal_subgroups': 92, 'number_subgroup_autclasses': 112, 'number_subgroup_classes': 212, 'number_subgroups': 404, 'old_label': None, 'order': 128, 'order_factorization_type': 7, 'order_stats': [[1, 1], [2, 23], [4, 72], [8, 32]], 'outer_abelian': False, 'outer_cyclic': False, 'outer_equivalence': False, 'outer_exponent': 4, 'outer_gen_orders': [2, 4, 4, 2, 2, 2], 'outer_gen_pows': [0, 0, 0, 96, 4, 0], 'outer_gens': [[73, 2, 68, 117], [9, 11, 68, 116], [73, 75, 76, 124], [65, 11, 68, 116], [9, 2, 68, 53], [65, 2, 68, 16]], 'outer_group': '128.2320', 'outer_hash': 2320, 'outer_nilpotent': True, 'outer_order': 128, 'outer_permdeg': 64, 'outer_perms': [15965439471920292659868283069289812938395927428269080498648307942121705992002395289423059, 88319322633806483532711142165975878549462342837805836306900022812204811107448592277866255, 54086455639433220222550211795551696011558850720056496058976965931564221158892472634361371, 92348482031158821118274125766945116445078416477710766660207234103826589754244719586446789, 56100908596713611982608070282476079270259078543214317783485675616413384855019654222589059, 42596952150924125474421605174710652236666141107231196771212195835167987718140198634430520], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'D_4\\times C_2^4', 'pc_rank': 4, 'perfect': False, 'permutation_degree': 16, 'pgroup': 2, 'primary_abelian_invariants': [2, 2, 2, 2], 'quasisimple': False, 'rank': 4, 'rational': False, 'rational_characters_known': True, 'ratrep_stats': [[1, 16], [2, 4], [4, 8]], 'representations': {'PC': {'code': 76199212627659497718326, 'gens': [1, 2, 3, 5], 'pres': [7, 2, 2, 2, 2, 2, 2, 2, 456, 58, 3084, 2111, 718, 102, 2028, 124]}, 'GLZN': {'d': 2, 'p': 40, 'gens': [1127433, 576009, 1089237, 2369027, 64801, 1498887, 64401]}, 'Perm': {'d': 16, 'gens': [26468469509, 1321086781135, 2885033899855, 1308672301294, 17764, 4297243484644, 1321086775680]}}, 'schur_multiplier': [2, 2, 2, 2], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [2, 2, 2, 2], 'solvability_type': 4, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': True, 'sylow_subgroups_known': True, 'tex_name': 'C_4^2.D_4', 'transitive_degree': 64, 'wreath_data': None, 'wreath_product': False}