-
gps_subgroup_search • Show schema
Hide schema
{'Agroup': True, 'Zgroup': True, 'abelian': True, 'ambient': '128.1745', 'ambient_counter': 1745, 'ambient_order': 128, 'ambient_tex': '(C_2\\times Q_8):D_4', 'central': False, 'central_factor': False, 'centralizer_order': 32, 'characteristic': False, 'core_order': 1, 'counter': 167, 'cyclic': True, 'direct': None, 'hall': 0, 'label': '128.1745.64.e1', 'maximal': False, 'maximal_normal': False, 'metabelian': True, 'metacyclic': True, 'minimal': True, 'minimal_normal': False, 'nilpotent': True, 'normal': False, 'old_label': '64.e1', 'outer_equivalence': True, 'perfect': False, 'proper': True, 'quotient': None, 'quotient_Agroup': None, 'quotient_abelian': None, 'quotient_cyclic': None, 'quotient_hash': None, 'quotient_metabelian': None, 'quotient_nilpotent': None, 'quotient_order': 64, 'quotient_simple': None, 'quotient_solvable': None, 'quotient_supersolvable': None, 'quotient_tex': None, 'simple': True, 'solvable': True, 'special_labels': [], 'split': None, 'standard_generators': False, 'stem': False, 'subgroup': '2.1', 'subgroup_hash': 1, 'subgroup_order': 2, 'subgroup_tex': 'C_2', 'supersolvable': True, 'sylow': 0}
-
gps_subgroup_data • Show schema
Hide schema
{'ambient': '128.1745', 'aut_centralizer_order': 256, 'aut_label': '64.e1', 'aut_quo_index': None, 'aut_stab_index': 8, 'aut_weyl_group': '1.1', 'aut_weyl_index': 2048, 'centralizer': '4.j1', 'complements': None, 'conjugacy_class_count': 2, 'contained_in': ['32.g1', '32.j1', '32.r1'], 'contains': ['128.a1'], 'core': '128.a1', 'coset_action_label': None, 'count': 8, 'diagramx': [7401, -1, 7374, -1], 'generators': [1], 'label': '128.1745.64.e1', 'mobius_quo': None, 'mobius_sub': 0, 'normal_closure': '16.b1', 'normal_contained_in': None, 'normal_contains': None, 'normalizer': '4.j1', 'old_label': '64.e1', 'projective_image': '128.1745', 'quotient_action_image': None, 'quotient_action_kernel': None, 'quotient_action_kernel_order': None, 'quotient_fusion': None, 'short_label': '64.e1', 'subgroup_fusion': None, 'weyl_group': '1.1'}
-
gps_groups • Show schema
Hide schema
{'Agroup': True, 'Zgroup': True, 'abelian': True, 'abelian_quotient': '2.1', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': True, 'aut_cyclic': True, 'aut_derived_length': 0, 'aut_exponent': 1, 'aut_gen_orders': [], 'aut_gens': [[1]], 'aut_group': '1.1', 'aut_hash': 1, 'aut_nilpotency_class': 0, 'aut_nilpotent': True, 'aut_order': 1, 'aut_permdeg': 1, 'aut_perms': [], 'aut_phi_ratio': 1.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 1, 1, 1]], 'aut_supersolvable': True, 'aut_tex': 'C_1', 'autcent_abelian': True, 'autcent_cyclic': True, 'autcent_exponent': 1, 'autcent_group': '1.1', 'autcent_hash': 1, 'autcent_nilpotent': True, 'autcent_order': 1, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': True, 'autcent_tex': 'C_1', 'autcentquo_abelian': True, 'autcentquo_cyclic': True, 'autcentquo_exponent': 1, 'autcentquo_group': '1.1', 'autcentquo_hash': 1, 'autcentquo_nilpotent': True, 'autcentquo_order': 1, 'autcentquo_solvable': True, 'autcentquo_supersolvable': True, 'autcentquo_tex': 'C_1', 'cc_stats': [[1, 1, 1], [2, 1, 1]], 'center_label': '2.1', 'center_order': 2, 'central_product': False, 'central_quotient': '1.1', 'commutator_count': 0, 'commutator_label': '1.1', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1'], 'composition_length': 1, 'conjugacy_classes_known': True, 'counter': 1, 'cyclic': True, 'derived_length': 1, 'dihedral': True, 'direct_factorization': [], 'direct_product': False, 'div_stats': [[1, 1, 1, 1], [2, 1, 1, 1]], 'element_repr_type': 'PC', 'elementary': 2, 'eulerian_function': 1, 'exponent': 2, 'exponents_of_order': [1], 'factors_of_aut_order': [], 'factors_of_order': [2], 'faithful_reps': [[1, 1, 1]], 'familial': True, 'frattini_label': '1.1', 'frattini_quotient': '2.1', 'hash': 1, 'hyperelementary': 2, 'inner_abelian': True, 'inner_cyclic': True, 'inner_exponent': 1, 'inner_gen_orders': [1], 'inner_gens': [[1]], 'inner_hash': 1, 'inner_nilpotent': True, 'inner_order': 1, 'inner_split': True, 'inner_tex': 'C_1', 'inner_used': [], 'irrC_degree': 1, 'irrQ_degree': 1, 'irrQ_dim': 1, 'irrR_degree': 1, 'irrep_stats': [[1, 2]], 'label': '2.1', 'linC_count': 1, 'linC_degree': 1, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': 1, 'linQ_degree_count': 1, 'linQ_dim': 1, 'linQ_dim_count': 1, 'linR_count': 1, 'linR_degree': 1, 'maximal_subgroups_known': True, 'metabelian': True, 'metacyclic': True, 'monomial': True, 'name': 'C2', 'ngens': 1, 'nilpotency_class': 1, 'nilpotent': True, 'normal_counts': [0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 2, 'number_characteristic_subgroups': 2, 'number_conjugacy_classes': 2, 'number_divisions': 2, 'number_normal_subgroups': 2, 'number_subgroup_autclasses': 2, 'number_subgroup_classes': 2, 'number_subgroups': 2, 'old_label': None, 'order': 2, 'order_factorization_type': 1, 'order_stats': [[1, 1], [2, 1]], 'outer_abelian': True, 'outer_cyclic': True, 'outer_equivalence': False, 'outer_exponent': 1, 'outer_gen_orders': [], 'outer_gen_pows': [], 'outer_gens': [], 'outer_group': '1.1', 'outer_hash': 1, 'outer_nilpotent': True, 'outer_order': 1, 'outer_permdeg': 1, 'outer_perms': [], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'C_1', 'pc_rank': 1, 'perfect': False, 'permutation_degree': 2, 'pgroup': 2, 'primary_abelian_invariants': [2], 'quasisimple': False, 'rank': 1, 'rational': True, 'rational_characters_known': True, 'ratrep_stats': [[1, 2]], 'representations': {'PC': {'code': 0, 'gens': [1], 'pres': [1, -2]}, 'GLZ': {'b': 3, 'd': 2, 'gens': [12]}, 'Lie': [{'d': 2, 'q': 2, 'gens': [6], 'family': 'CSOPlus'}, {'d': 2, 'q': 2, 'gens': [6], 'family': 'COPlus'}, {'d': 1, 'q': 2, 'gens': [1], 'family': 'AGL'}, {'d': 1, 'q': 2, 'gens': [1], 'family': 'AGammaL'}, {'d': 1, 'q': 2, 'gens': [1], 'family': 'ASigmaL'}], 'GLFp': {'d': 2, 'p': 2, 'gens': [11]}, 'Perm': {'d': 2, 'gens': [1]}}, 'schur_multiplier': [], 'semidirect_product': False, 'simple': True, 'smith_abelian_invariants': [2], 'solvability_type': 0, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': True, 'sylow_subgroups_known': True, 'tex_name': 'C_2', 'transitive_degree': 2, 'wreath_data': None, 'wreath_product': False}
-
gps_groups • Show schema
Hide schema
{'Agroup': False, 'Zgroup': False, 'abelian': False, 'abelian_quotient': '16.14', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 2, 'aut_exponent': 4, 'aut_gen_orders': [4, 4, 4, 2, 4, 2, 4, 4, 4], 'aut_gens': [[1, 2, 4, 8, 64], [85, 114, 4, 12, 100], [117, 114, 4, 8, 68], [113, 70, 4, 40, 68], [5, 2, 4, 24, 68], [37, 18, 4, 8, 100], [117, 98, 4, 60, 64], [5, 22, 4, 40, 96], [33, 50, 4, 40, 64], [85, 98, 4, 40, 96]], 'aut_group': None, 'aut_hash': 8226705109525456983, 'aut_nilpotency_class': 2, 'aut_nilpotent': True, 'aut_order': 2048, 'aut_permdeg': 24, 'aut_perms': [6086533800231288889125, 19161665731284278636555, 451124382764622821827460, 320707362622101258932866, 462929919725132166591870, 96767925740342038795709, 139139915624326528340328, 454496511239410376458340, 394730053500712659126958], 'aut_phi_ratio': 32.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 1, 1, 3], [2, 2, 2, 1], [2, 4, 2, 2], [2, 8, 1, 1], [4, 2, 1, 2], [4, 2, 2, 1], [4, 4, 2, 2], [4, 4, 4, 1], [4, 8, 1, 1], [4, 8, 2, 1], [8, 4, 2, 2], [8, 8, 2, 1]], 'aut_supersolvable': True, 'aut_tex': 'C_2^9.C_2^2', 'autcent_abelian': True, 'autcent_cyclic': False, 'autcent_exponent': 2, 'autcent_group': None, 'autcent_hash': 56092, 'autcent_nilpotent': True, 'autcent_order': 256, 'autcent_solvable': True, 'autcent_split': None, 'autcent_supersolvable': True, 'autcent_tex': 'C_2^8', 'autcentquo_abelian': None, 'autcentquo_cyclic': None, 'autcentquo_exponent': None, 'autcentquo_group': None, 'autcentquo_hash': None, 'autcentquo_nilpotent': None, 'autcentquo_order': 8, 'autcentquo_solvable': None, 'autcentquo_supersolvable': None, 'autcentquo_tex': None, 'cc_stats': [[1, 1, 1], [2, 1, 3], [2, 2, 2], [2, 4, 4], [2, 8, 1], [4, 2, 4], [4, 4, 8], [4, 8, 3], [8, 4, 4], [8, 8, 2]], 'center_label': '4.2', 'center_order': 4, 'central_product': False, 'central_quotient': '32.46', 'commutator_count': 1, 'commutator_label': '8.2', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1', '2.1', '2.1', '2.1', '2.1', '2.1', '2.1'], 'composition_length': 7, 'conjugacy_classes_known': True, 'counter': 1745, 'cyclic': False, 'derived_length': 2, 'dihedral': False, 'direct_factorization': [], 'direct_product': False, 'div_stats': [[1, 1, 1, 1], [2, 1, 1, 3], [2, 2, 1, 2], [2, 4, 1, 4], [2, 8, 1, 1], [4, 2, 1, 4], [4, 4, 1, 8], [4, 8, 1, 3], [8, 4, 2, 2], [8, 8, 1, 2]], 'element_repr_type': 'PC', 'elementary': 2, 'eulerian_function': 40320, 'exponent': 8, 'exponents_of_order': [7], 'factors_of_aut_order': [2], 'factors_of_order': [2], 'faithful_reps': [], 'familial': False, 'frattini_label': '8.2', 'frattini_quotient': '16.14', 'hash': 1745, 'hyperelementary': 2, 'inner_abelian': False, 'inner_cyclic': False, 'inner_exponent': 4, 'inner_gen_orders': [2, 2, 1, 4, 2], 'inner_gens': [[1, 2, 4, 12, 96], [1, 2, 4, 28, 64], [1, 2, 4, 8, 64], [5, 54, 4, 8, 64], [33, 2, 4, 8, 64]], 'inner_hash': 46, 'inner_nilpotent': True, 'inner_order': 32, 'inner_split': None, 'inner_tex': 'C_2^2\\times D_4', 'inner_used': [1, 2, 4, 5], 'irrC_degree': -1, 'irrQ_degree': -1, 'irrQ_dim': -1, 'irrR_degree': -1, 'irrep_stats': [[1, 16], [2, 12], [4, 4]], 'label': '128.1745', 'linC_count': None, 'linC_degree': None, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': None, 'linQ_degree_count': None, 'linQ_dim': None, 'linQ_dim_count': None, 'linR_count': None, 'linR_degree': None, 'maximal_subgroups_known': True, 'metabelian': True, 'metacyclic': False, 'monomial': True, 'name': '(C2*Q8):D4', 'ngens': 4, 'nilpotency_class': 3, 'nilpotent': True, 'normal_counts': [0, 0, 0, 0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 19, 'number_characteristic_subgroups': 38, 'number_conjugacy_classes': 32, 'number_divisions': 30, 'number_normal_subgroups': 108, 'number_subgroup_autclasses': 170, 'number_subgroup_classes': 356, 'number_subgroups': 660, 'old_label': None, 'order': 128, 'order_factorization_type': 7, 'order_stats': [[1, 1], [2, 31], [4, 64], [8, 32]], 'outer_abelian': False, 'outer_cyclic': False, 'outer_equivalence': True, 'outer_exponent': 4, 'outer_gen_orders': [4, 2, 4, 2, 2], 'outer_gen_pows': [0, 0, 0, 0, 64], 'outer_gens': [[85, 70, 4, 40, 68], [1, 6, 4, 40, 64], [117, 102, 4, 8, 100], [5, 2, 4, 40, 100], [85, 70, 4, 40, 64]], 'outer_group': '64.261', 'outer_hash': 261, 'outer_nilpotent': True, 'outer_order': 64, 'outer_permdeg': 32, 'outer_perms': [168529137041531630275808031774571858, 129118026763403716926295518705781822, 160031709717333164554774222182612418, 245570408756314293563566835423200735, 128587521055101343048984570648169659], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'D_4\\times C_2^3', 'pc_rank': 5, 'perfect': False, 'permutation_degree': 20, 'pgroup': 2, 'primary_abelian_invariants': [2, 2, 2, 2], 'quasisimple': False, 'rank': 4, 'rational': False, 'rational_characters_known': True, 'ratrep_stats': [[1, 16], [2, 12], [8, 2]], 'representations': {'PC': {'code': 1272901906746658810138, 'gens': [1, 2, 3, 4, 7], 'pres': [7, 2, 2, 2, 2, 2, 2, 2, 232, 339, 402, 80, 851, 102, 4710]}, 'Perm': {'d': 20, 'gens': [26114297024028965, 142447777514426160, 2156486777237527, 276501844784405520, 393105611186277120, 16, 527275794644539920]}}, 'schur_multiplier': [2, 2, 2, 2, 2, 2], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [2, 2, 2, 2], 'solvability_type': 4, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': True, 'sylow_subgroups_known': True, 'tex_name': '(C_2\\times Q_8):D_4', 'transitive_degree': 64, 'wreath_data': None, 'wreath_product': False}