-
gps_subgroup_search • Show schema
Hide schema
{'Agroup': True, 'Zgroup': True, 'abelian': False, 'ambient': '126000.a', 'ambient_counter': 1, 'ambient_order': 126000, 'ambient_tex': '\\PSU(3,5)', 'central': False, 'central_factor': False, 'centralizer_order': 2, 'characteristic': False, 'core_order': 1, 'counter': 35, 'cyclic': False, 'direct': None, 'hall': 0, 'label': '126000.a.3150.a1.a1', 'maximal': False, 'maximal_normal': False, 'metabelian': True, 'metacyclic': None, 'minimal': False, 'minimal_normal': False, 'nilpotent': False, 'normal': False, 'old_label': '3150.a1.a1', 'outer_equivalence': False, 'perfect': False, 'proper': True, 'quotient': None, 'quotient_Agroup': None, 'quotient_abelian': None, 'quotient_cyclic': None, 'quotient_hash': None, 'quotient_metabelian': None, 'quotient_nilpotent': None, 'quotient_order': 3150, 'quotient_simple': None, 'quotient_solvable': None, 'quotient_supersolvable': None, 'quotient_tex': None, 'simple': False, 'solvable': True, 'special_labels': [], 'split': None, 'standard_generators': False, 'stem': False, 'subgroup': '40.3', 'subgroup_hash': 3, 'subgroup_order': 40, 'subgroup_tex': 'C_5:C_8', 'supersolvable': True, 'sylow': 0}
-
gps_subgroup_data • Show schema
Hide schema
{'ambient': '126000.a', 'aut_centralizer_order': None, 'aut_label': '3150.a1', 'aut_quo_index': None, 'aut_stab_index': None, 'aut_weyl_group': None, 'aut_weyl_index': None, 'centralizer': '63000.a1.a1', 'complements': None, 'conjugacy_class_count': 1, 'contained_in': ['126.a1.a1', '525.a1.a1'], 'contains': ['6300.a1.a1', '15750.a1.a1'], 'core': '126000.a1.a1', 'coset_action_label': None, 'count': 3150, 'diagramx': [1140, -1, 7608, -1, 1864, -1, 1729, -1], 'generators': [1850837234387, 617265399018, 1723001285964, 1157692785072], 'label': '126000.a.3150.a1.a1', 'mobius_quo': None, 'mobius_sub': 1, 'normal_closure': '1.a1.a1', 'normal_contained_in': None, 'normal_contains': None, 'normalizer': '3150.a1.a1', 'old_label': '3150.a1.a1', 'projective_image': '126000.a', 'quotient_action_image': None, 'quotient_action_kernel': None, 'quotient_action_kernel_order': None, 'quotient_fusion': None, 'short_label': '3150.a1.a1', 'subgroup_fusion': None, 'weyl_group': '20.3'}
-
gps_groups • Show schema
Hide schema
{'Agroup': True, 'Zgroup': True, 'abelian': False, 'abelian_quotient': '8.1', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 2, 'aut_exponent': 20, 'aut_gen_orders': [4, 10], 'aut_gens': [[1, 8], [1, 24], [37, 8]], 'aut_group': '40.12', 'aut_hash': 12, 'aut_nilpotency_class': -1, 'aut_nilpotent': False, 'aut_order': 40, 'aut_permdeg': 7, 'aut_perms': [169, 2929], 'aut_phi_ratio': 2.5, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [4, 5, 1, 2], [5, 4, 1, 1], [8, 5, 2, 2], [10, 4, 1, 1]], 'aut_supersolvable': True, 'aut_tex': 'C_2\\times F_5', 'autcent_abelian': True, 'autcent_cyclic': True, 'autcent_exponent': 2, 'autcent_group': '2.1', 'autcent_hash': 1, 'autcent_nilpotent': True, 'autcent_order': 2, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': True, 'autcent_tex': 'C_2', 'autcentquo_abelian': False, 'autcentquo_cyclic': False, 'autcentquo_exponent': 20, 'autcentquo_group': '20.3', 'autcentquo_hash': 3, 'autcentquo_nilpotent': False, 'autcentquo_order': 20, 'autcentquo_solvable': True, 'autcentquo_supersolvable': True, 'autcentquo_tex': 'F_5', 'cc_stats': [[1, 1, 1], [2, 1, 1], [4, 5, 2], [5, 4, 1], [8, 5, 4], [10, 4, 1]], 'center_label': '2.1', 'center_order': 2, 'central_product': False, 'central_quotient': '20.3', 'commutator_count': 1, 'commutator_label': '5.1', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1', '2.1', '2.1', '5.1'], 'composition_length': 4, 'conjugacy_classes_known': True, 'counter': 3, 'cyclic': False, 'derived_length': 2, 'dihedral': False, 'direct_factorization': [], 'direct_product': False, 'div_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [4, 5, 2, 1], [5, 4, 1, 1], [8, 5, 4, 1], [10, 4, 1, 1]], 'element_repr_type': 'PC', 'elementary': 1, 'eulerian_function': 24, 'exponent': 40, 'exponents_of_order': [3, 1], 'factors_of_aut_order': [2, 5], 'factors_of_order': [2, 5], 'faithful_reps': [[4, -1, 1]], 'familial': False, 'frattini_label': '2.1', 'frattini_quotient': '20.3', 'hash': 3, 'hyperelementary': 2, 'inner_abelian': False, 'inner_cyclic': False, 'inner_exponent': 20, 'inner_gen_orders': [4, 5], 'inner_gens': [[1, 16], [33, 8]], 'inner_hash': 3, 'inner_nilpotent': False, 'inner_order': 20, 'inner_split': True, 'inner_tex': 'F_5', 'inner_used': [1, 2], 'irrC_degree': 4, 'irrQ_degree': 4, 'irrQ_dim': 8, 'irrR_degree': 8, 'irrep_stats': [[1, 8], [4, 2]], 'label': '40.3', 'linC_count': 1, 'linC_degree': 4, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': 4, 'linQ_degree_count': 1, 'linQ_dim': 8, 'linQ_dim_count': 2, 'linR_count': 2, 'linR_degree': 6, 'maximal_subgroups_known': True, 'metabelian': True, 'metacyclic': True, 'monomial': True, 'name': 'C5:C8', 'ngens': 4, 'nilpotency_class': -1, 'nilpotent': False, 'normal_counts': [0, 0, 0, 0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 8, 'number_characteristic_subgroups': 6, 'number_conjugacy_classes': 10, 'number_divisions': 6, 'number_normal_subgroups': 6, 'number_subgroup_autclasses': 8, 'number_subgroup_classes': 8, 'number_subgroups': 16, 'old_label': None, 'order': 40, 'order_factorization_type': 31, 'order_stats': [[1, 1], [2, 1], [4, 10], [5, 4], [8, 20], [10, 4]], 'outer_abelian': True, 'outer_cyclic': True, 'outer_equivalence': False, 'outer_exponent': 2, 'outer_gen_orders': [2], 'outer_gen_pows': [0], 'outer_gens': [[5, 8]], 'outer_group': '2.1', 'outer_hash': 1, 'outer_nilpotent': True, 'outer_order': 2, 'outer_permdeg': 2, 'outer_perms': [1], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'C_2', 'pc_rank': 2, 'perfect': False, 'permutation_degree': 13, 'pgroup': 0, 'primary_abelian_invariants': [8], 'quasisimple': False, 'rank': 2, 'rational': False, 'rational_characters_known': True, 'ratrep_stats': [[1, 2], [2, 1], [4, 3]], 'representations': {'PC': {'code': 25403106051, 'gens': [1, 4], 'pres': [4, -2, -2, -2, -5, 8, 21, 259, 263]}, 'GLFp': {'d': 4, 'p': 3, 'gens': [2474596, 40936599, 10204754, 28816400]}, 'Perm': {'d': 13, 'gens': [43914537, 87103768, 18498, 526176000]}}, 'schur_multiplier': [], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [8], 'solvability_type': 6, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': True, 'sylow_subgroups_known': True, 'tex_name': 'C_5:C_8', 'transitive_degree': 40, 'wreath_data': None, 'wreath_product': False}
-
gps_groups • Show schema
Hide schema
{'Agroup': False, 'Zgroup': False, 'abelian': False, 'abelian_quotient': '1.1', 'all_subgroups_known': True, 'almost_simple': True, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 2, 'aut_exponent': 840, 'aut_gen_orders': [24, 5, 2], 'aut_gens': [[2288823046880, 245766370], [3082871762819, 1329953871835], [3420146851493, 696061564992], [382659606435, 2242348482782]], 'aut_group': '756000.a', 'aut_hash': 6064165764739422449, 'aut_nilpotency_class': -1, 'aut_nilpotent': False, 'aut_order': 756000, 'aut_permdeg': 504, 'aut_perms': [21985313400636296173376690810740096415651070564094933514135787023644331371804055062447570266497553753530425624381082192284034912191721101669534647927090323523097405538967204242894239707635468210566892426555247749271440432227986027922954077617774001241638692997620570740266993176388974240843518346316342743125513778790683745452299796112471484731712535307879482199189400636365331321902178344439371819089928562143321131695839127830420832001006697017967192122060924578660370497108462208839853737201666392904304320453141871206185560134358731703797895598616246247118847705543549809955561698827933098946628036671032529103110825895257376561246493526354056371875775327841153178606808833391470852756020385136941121221580520654631388481772133816359399466545040950883774890982412327790423636090791141891450883347216691373189026698928301752534086832164036563614420279207124304203692939637748073847058056471002567283185676916660607884765638503888980620848670846114762451541833067634667138802074893628271412854855197388685266147781644409306043711503141274392517762201792383843621900474739781587854283847894371396127817177869221055746453688621629173932193617708, 1703232100499087753844060794811289627346653233488913677040374854316259734438091767589996478646145008794837271903280686024231098625233992469229909772408257623210958003376289528298509499496573627525406365334588132886513661926277813019301601697754762922830098516280861512662119660274270885851285344027136563471340054656557017333067598260772945028114937447706176300901448841193016123924931602725826301251100761910023216078193096056790442092894389735521264290858551270258621670264576231261984659164484053025003427045418731513997771409879681993792243174962391742630994147296745747197392792476782370347617675555390952830732747286881315554852068009906877374369800633237733058804203259387985629519869531007426330853115043846014978922547735902339170899571663268915360437258740295533455641167496127010485880452332207279303947280776174200382880703751758491349085664498726006887800301482049710562954627910077266706229795986635480445863317269963895175557020227582546083705156810315210101759602850604304437197210107266873744096966278778799600996560639683314273904410008415190335005179313532778166092174712893978374803462863386878903051259674792341011451418918, 6967863761771646907570688258404965151964989823732782307201572523462434704165345918446627187104345364696684219663053834829110055870590929621833550960939557787195728102048104161625796195155061059567604639164816598864707383216481780339499318387386744489697810854637172234632243527267401057090816955663833910371617351536567844249188000821403405626252880038696325389364678805774053029315833868424343318537839695338090408583313002494833500403139470198943814567082047950888502061611695482825403146201869278396675496203554590096641787321626378208542668823266886970543166642240459022644945258633185264519623199440938403933892320945846349688911837065209526634034778342977478858142985578861563106316512572044941111447531824712087993244718230553205670741414848895797873858104123280582117903655554904691697269639274796186948695798922069128015331451878482455885337545825030527137940953218290756188124063782330739720139179034122278374591589515645678119092260009640677661960666822078851248243403167601033948400782929310338341452057985208513517856968370157262800221013662960265881205996105870344012149661853162719051883214617122075867459062170807215015400165106], 'aut_phi_ratio': 26.25, 'aut_solvable': False, 'aut_stats': [[1, 1, 1, 1], [2, 525, 1, 1], [3, 3500, 1, 1], [4, 15750, 1, 1], [5, 504, 1, 1], [5, 5040, 3, 1], [6, 10500, 1, 1], [7, 18000, 2, 1], [8, 15750, 2, 1], [10, 12600, 1, 1]], 'aut_supersolvable': False, 'aut_tex': '\\PGammaU(3,5)', 'autcent_abelian': True, 'autcent_cyclic': True, 'autcent_exponent': 1, 'autcent_group': '1.1', 'autcent_hash': 1, 'autcent_nilpotent': True, 'autcent_order': 1, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': True, 'autcent_tex': 'C_1', 'autcentquo_abelian': False, 'autcentquo_cyclic': False, 'autcentquo_exponent': 840, 'autcentquo_group': '756000.a', 'autcentquo_hash': 6064165764739422449, 'autcentquo_nilpotent': False, 'autcentquo_order': 756000, 'autcentquo_solvable': False, 'autcentquo_supersolvable': False, 'autcentquo_tex': '\\PGammaU(3,5)', 'cc_stats': [[1, 1, 1], [2, 525, 1], [3, 3500, 1], [4, 15750, 1], [5, 504, 1], [5, 5040, 3], [6, 10500, 1], [7, 18000, 2], [8, 15750, 2], [10, 12600, 1]], 'center_label': '1.1', 'center_order': 1, 'central_product': False, 'central_quotient': '126000.a', 'commutator_count': 1, 'commutator_label': '126000.a', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['126000.a'], 'composition_length': 1, 'conjugacy_classes_known': True, 'counter': 1, 'cyclic': False, 'derived_length': 0, 'dihedral': False, 'direct_factorization': [], 'direct_product': False, 'div_stats': [[1, 1, 1, 1], [2, 525, 1, 1], [3, 3500, 1, 1], [4, 15750, 1, 1], [5, 504, 1, 1], [5, 5040, 1, 3], [6, 10500, 1, 1], [7, 18000, 2, 1], [8, 15750, 2, 1], [10, 12600, 1, 1]], 'element_repr_type': 'Lie', 'elementary': 1, 'eulerian_function': 19483, 'exponent': 840, 'exponents_of_order': [4, 3, 2, 1], 'factors_of_aut_order': [2, 3, 5, 7], 'factors_of_order': [2, 3, 5, 7], 'faithful_reps': [[20, -1, 1], [21, 1, 1], [28, 1, 3], [84, 1, 1], [105, 1, 1], [125, 1, 1], [126, 0, 2], [126, 1, 1], [144, 0, 2]], 'familial': True, 'frattini_label': '1.1', 'frattini_quotient': '126000.a', 'hash': 2459828284312693258, 'hyperelementary': 1, 'inner_abelian': False, 'inner_cyclic': False, 'inner_exponent': 840, 'inner_gen_orders': [8, 5], 'inner_gens': [[2288823046880, 490095820], [2526612984398, 245766370]], 'inner_hash': 2459828284312693258, 'inner_nilpotent': False, 'inner_order': 126000, 'inner_split': True, 'inner_tex': '\\PSU(3,5)', 'inner_used': [1, 2], 'irrC_degree': 20, 'irrQ_degree': 20, 'irrQ_dim': 21, 'irrR_degree': 21, 'irrep_stats': [[1, 1], [20, 1], [21, 1], [28, 3], [84, 1], [105, 1], [125, 1], [126, 3], [144, 2]], 'label': '126000.a', 'linC_count': 1, 'linC_degree': 20, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': 20, 'linQ_degree_count': 1, 'linQ_dim': 21, 'linQ_dim_count': 1, 'linR_count': 1, 'linR_degree': 21, 'maximal_subgroups_known': True, 'metabelian': False, 'metacyclic': False, 'monomial': False, 'name': 'PSU(3,5)', 'ngens': 2, 'nilpotency_class': -1, 'nilpotent': False, 'normal_counts': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 10, 'number_characteristic_subgroups': 2, 'number_conjugacy_classes': 14, 'number_divisions': 12, 'number_normal_subgroups': 2, 'number_subgroup_autclasses': 50, 'number_subgroup_classes': 80, 'number_subgroups': 179308, 'old_label': None, 'order': 126000, 'order_factorization_type': 321, 'order_stats': [[1, 1], [2, 525], [3, 3500], [4, 15750], [5, 15624], [6, 10500], [7, 36000], [8, 31500], [10, 12600]], 'outer_abelian': False, 'outer_cyclic': False, 'outer_equivalence': False, 'outer_exponent': 6, 'outer_gen_orders': [2, 3], 'outer_gen_pows': [273550032880, 2741221610660], 'outer_gens': [[2817869890364, 1361024809107], [2679028197433, 288297607691]], 'outer_group': '6.1', 'outer_hash': 1, 'outer_nilpotent': False, 'outer_order': 6, 'outer_permdeg': 3, 'outer_perms': [1, 4], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'S_3', 'pc_rank': None, 'perfect': True, 'permutation_degree': 50, 'pgroup': 0, 'primary_abelian_invariants': [], 'quasisimple': True, 'rank': 2, 'rational': False, 'rational_characters_known': True, 'ratrep_stats': [[1, 1], [20, 1], [21, 1], [28, 3], [84, 1], [105, 1], [125, 1], [126, 1], [252, 1], [288, 1]], 'representations': {'Lie': [{'d': 3, 'q': 5, 'gens': [245766370, 2288823046880], 'family': 'PSU'}], 'Perm': {'d': 50, 'gens': [1254868217757642304475528878034949162654523002517600559981109231, 633908189927600454010912420558966103240499253035585062840780050]}}, 'schur_multiplier': [3], 'semidirect_product': False, 'simple': True, 'smith_abelian_invariants': [], 'solvability_type': 13, 'solvable': False, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': False, 'sylow_subgroups_known': True, 'tex_name': '\\PSU(3,5)', 'transitive_degree': 50, 'wreath_data': None, 'wreath_product': False}