-
gps_subgroup_search • Show schema
Hide schema
{'Agroup': True, 'Zgroup': False, 'abelian': True, 'ambient': '1185408.a', 'ambient_counter': 1, 'ambient_order': 1185408, 'ambient_tex': 'D_7^3.C_6^2:D_6', 'central': False, 'central_factor': False, 'centralizer_order': None, 'characteristic': True, 'core_order': 2744, 'counter': 982, 'cyclic': False, 'direct': None, 'hall': 0, 'label': '1185408.a.432._.D', 'maximal': False, 'maximal_normal': False, 'metabelian': True, 'metacyclic': False, 'minimal': False, 'minimal_normal': False, 'nilpotent': True, 'normal': True, 'old_label': '432.D', 'outer_equivalence': False, 'perfect': False, 'proper': True, 'quotient': '432.538', 'quotient_Agroup': False, 'quotient_abelian': False, 'quotient_cyclic': False, 'quotient_hash': None, 'quotient_metabelian': False, 'quotient_nilpotent': False, 'quotient_order': 432, 'quotient_simple': False, 'quotient_solvable': True, 'quotient_supersolvable': False, 'quotient_tex': 'C_6^2:D_6', 'simple': False, 'solvable': True, 'special_labels': [], 'split': None, 'standard_generators': False, 'stem': False, 'subgroup': None, 'subgroup_hash': None, 'subgroup_order': 2744, 'subgroup_tex': 'C_{14}^3', 'supersolvable': True, 'sylow': 0}
-
gps_subgroup_data • Show schema
Hide schema
{'ambient': '1185408.a', 'aut_centralizer_order': None, 'aut_label': None, 'aut_quo_index': None, 'aut_stab_index': None, 'aut_weyl_group': None, 'aut_weyl_index': None, 'centralizer': None, 'complements': None, 'conjugacy_class_count': 1, 'contained_in': None, 'contains': None, 'core': None, 'coset_action_label': None, 'count': 1, 'diagramx': None, 'generators': [42336, 169344, 592704, 859680, 12, 1028160], 'label': '1185408.a.432._.D', 'mobius_quo': None, 'mobius_sub': None, 'normal_closure': None, 'normal_contained_in': None, 'normal_contains': None, 'normalizer': None, 'old_label': '432.D', 'projective_image': None, 'quotient_action_image': None, 'quotient_action_kernel': None, 'quotient_action_kernel_order': None, 'quotient_fusion': None, 'short_label': '432._.D', 'subgroup_fusion': None, 'weyl_group': None}
-
label None does not appear in gps_groups
-
gps_groups • Show schema
Hide schema
{'Agroup': False, 'Zgroup': False, 'abelian': False, 'abelian_quotient': '8.5', 'all_subgroups_known': False, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 4, 'aut_exponent': 252, 'aut_gen_orders': [12, 42, 18, 6, 42, 12], 'aut_gens': [[1, 2, 12, 24, 144, 6048, 84672], [656209, 764698, 592716, 723636, 884592, 501984, 145152], [110173, 246146, 12, 174552, 919440, 187488, 931392], [425933, 232814, 592716, 841992, 191640, 554700, 5196], [1117625, 547358, 592716, 834216, 591672, 1063596, 2604], [94245, 1026014, 592704, 587184, 907368, 845856, 145164], [892221, 755566, 12, 36324, 450996, 902028, 596172]], 'aut_group': None, 'aut_hash': 5207978107673879692, 'aut_nilpotency_class': -1, 'aut_nilpotent': False, 'aut_order': 14224896, 'aut_permdeg': 588, 'aut_perms': [617515529831999317075772626510663317826373068994513009802845730408747267053815473354109831725081310608389446332804549399367138551192610781068710760826784271817074897563225877601336675408057593037952492317945694405709816142067766602335463445148193092830567873429836919038903863054756707687370542593761703647567279014046742860228730481784878271725856960464734173801452733891436364778028898297721591064218017898695401638920474921483003125297807383512870451189680345352970497302585038065576917419283821365189603870931608302386859430495955701013233462700830756917845341215659380556372562519811752034856874779824978494518821484317953037280907487502100191807283868105823367847440646466657365459609363506837075036266273275635413850573859010304310209884882890071551935286671008083150554973645308736560973055044248748307062310610737818251276461084937430058528573146166144532871237158712697606929641288242981426449660992287556882905917442378101316859470314028193682793544729912804851671364787911023166750164450273853377526330996485267748118908996550813880787749131272552345082470825980893948208829029459983898978937385275148870236023174144041068717221522652221750145582969821361069128681784243155803040582059176949631375523652680066023692389191923529580738763053259250864798823658480411542928669480930993960451439841658137287142232094301651004056395989049754468515080928067664729129859, 2949646173469535361696291175053041174454320014088347155553889319839009577124225088821821176599787633896347885877857474560566465590671416845232603096464136885167876588499990075331018299762528827102264918290501599508270792530352093862253552916502138499557518534299559789695120582492950901646424358639445044934114594329088024267106664490998729212393502665442912693223891008724299202096248078516314467893249291794333058785875410577016623490475372090053502973516670011536074885926985012149926395387973788856223449659677356271315884555988539479050821864994023435598909522088335083181306168447105562198168777787359698149181801055993979603990621947210727914219751655924708506775075237942461149961462294298372711123251325544771819715189259693234594535192155906434379734621621733593384256827832755340925426086675937593611195619623233806178905714843129079632560969064915950294513208008364576597057669754370775248090741952390905547609031473397068819170315981077052089416514373120766288805603712325956403117904854396817616033024959830452086697579737026248524372293592349855606548119235052808075516685576669953026868069381521526756466782562696900150585568524586161654429663996189424654962225364496744243644168032466704236144938492405277974421426999542101365721549209387469057201559566514710364176289818253424593479848501459350173187586406111086383119250563263761141822553286764210829058634, 5394016570315693327526012389257462574490905838397381757280407156438221061885321263989112636147604679426490641968842161786135431109985693084244109409545120000150903472682438806340067276123602127722306031615965971781212939068987368283837958171846223383758980614597142981520507742171949839380225247015805094296534751819947457803407404652056409491919759317949973787490117049857380842010657117441247376660431262326288485390611697234852789631925716938486701877241004254088510827484909744956985354002970480955570473595435679173345113883431492656543408120875201944744514132069127052582476099109092006597233941723565859762599811138729887197973881537197421883563285803454901982567045986829242269836359245510877234839437476017447345891123493002025399158628103940887062710038821514080774802788001003897893561504805833778869315699481424690947998546506216316391073176000275719166288321878001134155149139975016942029969648418048652127101644982886912431920482129693646211497232952382190211070739493717263824532814207690873218034646954582674557808291282217812622938023653167319985127653646080978728286860881647878750054247005566453917500043158047179138801935125882324063313519890489349384776763654268228185315847630451441209247459354303400560975466839570379191084363403501397699994975947648467856148570663240653250147333272314739576103664016881195097162369223869244231581525601855283671672511, 2305854389693265960781539440563607075735897314194851247458534912907629647047560047596063220016984550936322735828678483091783633870501343391545614397074409096608100807778113197738862962224566150147863393211083589125160761031758823617698643984087860836490776407845816079396584766888372209276847546166166221416285328676747274893640506548139012746309988432143216332951042096897063182774532303101264258197670283396106930453167530275112613791833928266237067675663927557936609961136715733196549557360663208207510929311533049616643869801395473382692627195772413966112057488455217376661178551039220977985337100619131619124014703965354637528004612177820945453971240484199283325483771152706605185463289841141499129348375641551888861865508417743046389441715522469672290587509303907710437670103794819939595190430853103182528902336741511342744311377189025779294371661979628400100250174117228272047814446021971370135707684299661177141665730751810189436394634091183305902818201945197081112783936844362865477098358138131898255968896291353838966716129930739648561889702426376254125838429857705117472613778727094033458415073970129183734248973861111000814517881051007138842232977092712420032712271051879767029004273416207808946381599376603361015416312095474633195326880821175248249018630181527678848913678920022350450159215207633880616559129599551793530089482533617347220045415372848413863003687, 1400095001472869945144865753578713334820627603830543943885104323647915660336643507825510183845938858162309949566939706333134298278607608094115891080538461049609269107180320048986289654336698385317870966999271716984293261831665582109197610245549129030886713677028032638871459967422301287970481668219026690966528528201284712645150227690463836937276942118598236774213775537150052517710741145284208891358297147849415222983681440887101481119045299586904230796261298140884133887531243652505763488684850244201440661443926630443792968894683089112122251849474476600360757848807206667893188461724750868802563994775547161318016682132202208937661836750135881049745557835368562036283440215524951116819126207028570582001509354275063123309405116264312589301162093118452344469193945869389873772817803582665369283454012173738557239880416555259491456627633877417212927017121766655113417182236842351456899576594767376716144256512666668517310072954519235209498703187610153274000166151434191234282649789551003221882235108255066272333056160191432380218466097117993406169366883022708591187608217898878922719667706623862020624580456673594582358337511214471035015656294383815082468126206493650188800550090287381742853906191977215759355297597789284647961930211155514908059936616111638338891375376838614460863992558338417685670074356961549824427136486861562232129139739868019107102530566732509002424954, 5245389506188952187293980991727162051224706882128839583375055804721861421856692202791731523019248642337543217016611049142340976790329941337876018552452547703101103412732761310606324757275233607927310674324747704832711077248284704684748876738314382952296893917118040690534803685124704475634195224145375777666027834644232440316264228422403688451891124712164348565821657675957445088304384988307362749919474777195083526369391090733850838496673235447489568791566892747798949643758960487749583350570580528582359335652433900407979369865331961969950747020089082492381165968257929594354170233576231505243544962865831111078655258981508686169461602138009332415761933059544467870733934584192543559641504362094345869107085077306741200455823224511605548655680570114047625486431737457513428115045223265646043014915233428001762052502391230429307438260243937377923680736392364596953555335379003853480360133402062066051537675199930338464654555469014728322019019023102321249050740759113867848906518971245518055519564244638811288132268005051730975010688425802127213614001164350696516169959699468442716967112181774762080401673296531125318422999651284591418799317681388507177988347196619966892868882682766946894007162679495493908402993613434188620455702921563660080052322012303131440900831931120992568220228419964267910790595285398068384200079444817661530212532280686064551972571522491026603050255], 'aut_phi_ratio': 42.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [2, 3, 1, 2], [2, 21, 4, 1], [2, 42, 2, 1], [2, 147, 2, 2], [2, 252, 2, 1], [2, 294, 1, 2], [2, 343, 2, 1], [2, 1029, 2, 1], [2, 1764, 2, 1], [3, 294, 1, 1], [3, 343, 1, 2], [3, 4704, 3, 1], [4, 252, 2, 1], [4, 1764, 2, 1], [4, 1764, 4, 1], [4, 12348, 4, 1], [6, 294, 1, 7], [6, 294, 2, 4], [6, 294, 4, 4], [6, 343, 1, 2], [6, 343, 2, 2], [6, 1029, 1, 4], [6, 1029, 2, 6], [6, 1029, 4, 2], [6, 2058, 1, 4], [6, 2058, 2, 14], [6, 2058, 4, 2], [6, 4704, 3, 1], [6, 12348, 2, 4], [6, 32928, 6, 1], [7, 18, 1, 1], [7, 72, 3, 1], [7, 108, 1, 1], [12, 12348, 2, 4], [12, 12348, 4, 4], [14, 18, 1, 3], [14, 36, 1, 2], [14, 72, 3, 1], [14, 108, 1, 3], [14, 216, 1, 2], [14, 216, 3, 2], [14, 252, 4, 2], [14, 756, 4, 1], [14, 882, 2, 2], [14, 1512, 2, 3], [14, 1764, 1, 2], [14, 3024, 6, 1], [14, 10584, 2, 1], [21, 1764, 1, 1], [21, 28224, 3, 1], [28, 1512, 2, 2], [28, 3024, 6, 1], [28, 10584, 2, 1], [28, 10584, 4, 1], [42, 1764, 1, 7], [42, 1764, 2, 4], [42, 1764, 4, 4], [42, 28224, 3, 1]], 'aut_supersolvable': False, 'aut_tex': 'C_7^3.C_2^4:\\He_3.C_6.C_2^4', 'autcent_abelian': True, 'autcent_cyclic': False, 'autcent_exponent': 2, 'autcent_group': '4.2', 'autcent_hash': 2, 'autcent_nilpotent': True, 'autcent_order': 4, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': True, 'autcent_tex': 'C_2^2', 'autcentquo_abelian': False, 'autcentquo_cyclic': False, 'autcentquo_exponent': 252, 'autcentquo_group': None, 'autcentquo_hash': 3694995943193559889, 'autcentquo_nilpotent': False, 'autcentquo_order': 3556224, 'autcentquo_solvable': True, 'autcentquo_supersolvable': False, 'autcentquo_tex': 'C_7^3.C_2^4:\\He_3.C_6.C_2^2', 'cc_stats': [[1, 1, 1], [2, 1, 1], [2, 3, 2], [2, 21, 4], [2, 42, 2], [2, 147, 4], [2, 252, 2], [2, 294, 2], [2, 343, 2], [2, 1029, 2], [2, 1764, 2], [3, 294, 1], [3, 343, 2], [3, 4704, 3], [4, 252, 2], [4, 1764, 6], [4, 12348, 4], [6, 294, 31], [6, 343, 6], [6, 1029, 24], [6, 2058, 40], [6, 4704, 3], [6, 12348, 8], [6, 32928, 6], [7, 18, 1], [7, 72, 3], [7, 108, 1], [12, 12348, 24], [14, 18, 3], [14, 36, 2], [14, 72, 3], [14, 108, 3], [14, 216, 8], [14, 252, 8], [14, 756, 4], [14, 882, 4], [14, 1512, 6], [14, 1764, 2], [14, 3024, 6], [14, 10584, 2], [21, 1764, 1], [21, 28224, 3], [28, 1512, 4], [28, 3024, 6], [28, 10584, 6], [42, 1764, 31], [42, 28224, 3]], 'center_label': '2.1', 'center_order': 2, 'central_product': None, 'central_quotient': '592704.e', 'commutator_count': 2, 'commutator_label': '148176.o', 'complements_known': False, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1', '2.1', '2.1', '2.1', '2.1', '2.1', '2.1', '3.1', '3.1', '3.1', '7.1', '7.1', '7.1'], 'composition_length': 13, 'conjugacy_classes_known': True, 'counter': 1, 'cyclic': False, 'derived_length': 4, 'dihedral': False, 'direct_factorization': None, 'direct_product': True, 'div_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [2, 3, 1, 2], [2, 21, 1, 4], [2, 42, 1, 2], [2, 147, 1, 4], [2, 252, 1, 2], [2, 294, 1, 2], [2, 343, 1, 2], [2, 1029, 1, 2], [2, 1764, 1, 2], [3, 294, 1, 1], [3, 343, 2, 1], [3, 4704, 1, 3], [4, 252, 1, 2], [4, 1764, 1, 6], [4, 12348, 1, 4], [6, 294, 1, 7], [6, 294, 2, 12], [6, 343, 2, 3], [6, 1029, 2, 12], [6, 2058, 1, 8], [6, 2058, 2, 16], [6, 4704, 1, 3], [6, 12348, 2, 4], [6, 32928, 1, 6], [7, 18, 1, 1], [7, 72, 1, 3], [7, 108, 1, 1], [12, 12348, 2, 12], [14, 18, 1, 3], [14, 36, 1, 2], [14, 72, 1, 3], [14, 108, 1, 3], [14, 216, 1, 8], [14, 252, 1, 8], [14, 756, 1, 4], [14, 882, 1, 4], [14, 1512, 1, 6], [14, 1764, 1, 2], [14, 3024, 1, 6], [14, 10584, 1, 2], [21, 1764, 1, 1], [21, 28224, 1, 3], [28, 1512, 1, 4], [28, 3024, 1, 6], [28, 10584, 1, 6], [42, 1764, 1, 7], [42, 1764, 2, 12], [42, 28224, 1, 3]], 'element_repr_type': 'PC', 'elementary': 1, 'eulerian_function': None, 'exponent': 84, 'exponents_of_order': [7, 3, 3], 'factors_of_aut_order': [2, 3, 7], 'factors_of_order': [2, 3, 7], 'faithful_reps': [[18, 1, 4], [36, 0, 10], [36, 1, 7], [108, 1, 4], [216, 1, 8]], 'familial': False, 'frattini_label': '1.1', 'frattini_quotient': '1185408.a', 'hash': 5025983948110693805, 'hyperelementary': 1, 'inner_abelian': False, 'inner_cyclic': False, 'inner_exponent': 84, 'inner_gen_orders': [12, 6, 2, 6, 42, 14, 14], 'inner_gens': [[1, 130966, 592716, 1012200, 641808, 997920, 266112], [576749, 2, 592716, 976776, 720408, 382764, 876], [592705, 592706, 12, 24, 144, 6048, 84672], [1013905, 976754, 12, 24, 1044720, 1082592, 254016], [332065, 925802, 12, 231576, 144, 356832, 423360], [278209, 899438, 12, 193560, 919440, 6048, 84672], [1088641, 89870, 12, 1016088, 846864, 6048, 84672]], 'inner_hash': 1501378685565645882, 'inner_nilpotent': False, 'inner_order': 592704, 'inner_split': None, 'inner_tex': 'D_7^3.C_3^2:S_4', 'inner_used': [1, 2, 5], 'irrC_degree': 18, 'irrQ_degree': 18, 'irrQ_dim': 18, 'irrR_degree': 18, 'irrep_stats': [[1, 8], [2, 16], [3, 88], [6, 72], [18, 16], [36, 44], [72, 12], [108, 16], [144, 6], [216, 16]], 'label': '1185408.a', 'linC_count': None, 'linC_degree': None, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': None, 'linQ_degree_count': None, 'linQ_dim': None, 'linQ_dim_count': None, 'linR_count': None, 'linR_degree': None, 'maximal_subgroups_known': True, 'metabelian': False, 'metacyclic': False, 'monomial': None, 'name': 'D7^3.C6^2:D6', 'ngens': 13, 'nilpotency_class': -1, 'nilpotent': False, 'normal_counts': [1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 3, 0, 0, 0, 9, 0, 1, 0, 0, 0, 0, 4, 0, 0, 4, 0, 3, 0, 0, 0, 9, 0, 0, 0, 3, 0, 4, 0, 4, 0, 0, 0, 1, 0, 9, 0, 3, 0, 0, 0, 7, 0, 1, 0, 0, 12, 0, 1, 0, 4, 7, 0, 7, 1], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 138, 'number_characteristic_subgroups': 37, 'number_conjugacy_classes': 294, 'number_divisions': 222, 'number_normal_subgroups': 110, 'number_subgroup_autclasses': None, 'number_subgroup_classes': None, 'number_subgroups': None, 'old_label': None, 'order': 1185408, 'order_factorization_type': 321, 'order_stats': [[1, 1], [2, 8127], [3, 15092], [4, 60480], [6, 428652], [7, 342], [12, 296352], [14, 62874], [21, 86436], [28, 87696], [42, 139356]], 'outer_abelian': True, 'outer_cyclic': False, 'outer_equivalence': False, 'outer_exponent': 6, 'outer_gen_orders': [2, 2, 6], 'outer_gen_pows': [85584, 1001860, 64896], 'outer_gens': [[656209, 764698, 592716, 723636, 884592, 501984, 145152], [1117625, 547358, 592716, 834216, 591672, 1063596, 2604], [425933, 232814, 592716, 841992, 191640, 554700, 5196]], 'outer_group': '24.15', 'outer_hash': 15, 'outer_nilpotent': True, 'outer_order': 24, 'outer_permdeg': 24, 'outer_perms': [26066624305540955915536, 111813811581843615722298, 84780562536248466818261], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'C_2^2\\times C_6', 'pc_rank': 7, 'perfect': False, 'permutation_degree': 27, 'pgroup': 0, 'primary_abelian_invariants': [2, 2, 2], 'quasisimple': False, 'rank': 3, 'rational': False, 'rational_characters_known': True, 'ratrep_stats': [[1, 8], [2, 16], [3, 24], [6, 48], [12, 28], [18, 16], [36, 20], [72, 24], [108, 16], [144, 6], [216, 16]], 'representations': {'PC': {'code': '1311773825818871817996253679734792305885898547630921570373872177763323583698992079894011212111763616498322501699773146533632478038372992618879281684850309207682842882455744309693912480259026750927154262974203327244919136101192355087243479321626650044492608260463260626582039851043755487396603912738380558808762923338596903352618173448116335463328031207543595808905398944783761561268637636320574727537129', 'gens': [1, 2, 4, 5, 7, 10, 12], 'pres': [13, 2, 2, 3, 2, 2, 3, 2, 3, 7, 2, 7, 2, 7, 12260976, 3405117, 66, 3371318, 30821235, 15410632, 7705181, 65793004, 31745237, 18611610, 186, 39832421, 27363042, 17017447, 58404534, 32778583, 21763319, 3961288, 2005256, 266, 91982599, 38029076, 23326401, 1532603, 2342568, 410, 505448, 24058965, 14859970, 12696, 4285, 129729609, 24879682, 3453875, 5864101, 147494, 322227, 177550, 386, 103783690, 48679511, 7382268, 5333390, 72147, 708796, 348449, 41513483, 68352, 39155257, 1651167, 2476732, 458729, 504606, 466, 89945868, 146041, 31174454, 3577456, 1192541, 993810, 397591]}, 'Perm': {'d': 27, 'gens': [855133419404601712199024252, 436933163868543545356661929, 65328046543234987464924838]}}, 'schur_multiplier': [2, 2, 2, 2, 2, 2], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [2, 2, 2], 'solvability_type': 17, 'solvable': True, 'subgroup_inclusions_known': False, 'subgroup_index_bound': 32, 'supersolvable': False, 'sylow_subgroups_known': False, 'tex_name': 'D_7^3.C_6^2:D_6', 'transitive_degree': 42, 'wreath_data': None, 'wreath_product': False}
-
gps_groups • Show schema
Hide schema
{'Agroup': False, 'Zgroup': False, 'abelian': False, 'abelian_quotient': '4.2', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 3, 'aut_exponent': 12, 'aut_gen_orders': [2, 2, 6, 6, 6], 'aut_gens': [[20003392, 16247572, 26126314, 28836015, 23066418, 17540971, 23068812], [20003392, 16247572, 20834852, 28836015, 23066418, 17540971, 23068812], [3201895, 16247572, 26126314, 28836015, 25892429, 3554814, 23068812], [20835143, 21066385, 3523728, 17301609, 30711193, 14717305, 11534406], [32244253, 16247572, 25300070, 28836015, 23066418, 30602639, 23068812], [15532640, 16247572, 26126314, 28836015, 23066418, 14717305, 23068812]], 'aut_group': '864.4000', 'aut_hash': 4000, 'aut_nilpotency_class': -1, 'aut_nilpotent': False, 'aut_order': 864, 'aut_permdeg': 36, 'aut_perms': [363686382566208298325937094320323028115593, 43384230225124538124166353082542957403604, 128067906313793925469669452696820116952414, 279207941145087404666948472736591510076470, 259136898584175864235081139638143590092965], 'aut_phi_ratio': 6.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [2, 3, 1, 2], [2, 18, 2, 1], [3, 1, 2, 1], [3, 6, 1, 1], [3, 24, 3, 1], [4, 18, 2, 1], [6, 1, 2, 1], [6, 3, 2, 2], [6, 6, 1, 3], [6, 6, 2, 2], [6, 18, 4, 1], [6, 24, 3, 1], [12, 18, 4, 1]], 'aut_supersolvable': False, 'aut_tex': 'C_2\\times C_6^2:D_6', 'autcent_abelian': True, 'autcent_cyclic': True, 'autcent_exponent': 2, 'autcent_group': '2.1', 'autcent_hash': 1, 'autcent_nilpotent': True, 'autcent_order': 2, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': True, 'autcent_tex': 'C_2', 'autcentquo_abelian': False, 'autcentquo_cyclic': False, 'autcentquo_exponent': 12, 'autcentquo_group': '432.523', 'autcentquo_hash': 523, 'autcentquo_nilpotent': False, 'autcentquo_order': 432, 'autcentquo_solvable': True, 'autcentquo_supersolvable': False, 'autcentquo_tex': 'C_6^2:D_6', 'cc_stats': [[1, 1, 1], [2, 1, 1], [2, 3, 2], [2, 18, 2], [3, 1, 2], [3, 6, 1], [3, 24, 3], [4, 18, 2], [6, 1, 2], [6, 3, 4], [6, 6, 7], [6, 18, 4], [6, 24, 3], [12, 18, 4]], 'center_label': '6.2', 'center_order': 6, 'central_product': True, 'central_quotient': '72.43', 'commutator_count': 2, 'commutator_label': '108.22', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1', '2.1', '2.1', '2.1', '3.1', '3.1', '3.1'], 'composition_length': 7, 'conjugacy_classes_known': True, 'counter': 538, 'cyclic': False, 'derived_length': 3, 'dihedral': False, 'direct_factorization': [['2.1', 1], ['216.95', 1]], 'direct_product': True, 'div_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [2, 3, 1, 2], [2, 18, 1, 2], [3, 1, 2, 1], [3, 6, 1, 1], [3, 24, 1, 3], [4, 18, 1, 2], [6, 1, 2, 1], [6, 3, 2, 2], [6, 6, 1, 3], [6, 6, 2, 2], [6, 18, 2, 2], [6, 24, 1, 3], [12, 18, 2, 2]], 'element_repr_type': 'GLFp', 'elementary': 1, 'eulerian_function': 34020, 'exponent': 12, 'exponents_of_order': [4, 3], 'factors_of_aut_order': [2, 3], 'factors_of_order': [2, 3], 'faithful_reps': [[3, 0, 4], [6, 0, 2]], 'familial': False, 'frattini_label': '3.1', 'frattini_quotient': '144.189', 'hash': 538, 'hyperelementary': 1, 'inner_abelian': False, 'inner_cyclic': False, 'inner_exponent': 12, 'inner_gen_orders': [3, 2, 2, 1, 2, 3, 1], 'inner_gens': [[20003392, 28828833, 14362990, 28836015, 25892429, 30602639, 23068812], [26944430, 16247572, 26126314, 28836015, 23066418, 23658522, 23068812], [3201895, 16247572, 26126314, 28836015, 25892429, 3554814, 23068812], [20003392, 16247572, 26126314, 28836015, 23066418, 17540971, 23068812], [18370042, 16247572, 23658428, 28836015, 23066418, 20832407, 23068812], [36720477, 28828833, 23068902, 28836015, 25892429, 17540971, 23068812], [20003392, 16247572, 26126314, 28836015, 23066418, 17540971, 23068812]], 'inner_hash': 43, 'inner_nilpotent': False, 'inner_order': 72, 'inner_split': True, 'inner_tex': 'C_3:S_4', 'inner_used': [1, 2, 3, 6], 'irrC_degree': 3, 'irrQ_degree': 6, 'irrQ_dim': 6, 'irrR_degree': 6, 'irrep_stats': [[1, 4], [2, 8], [3, 20], [6, 6]], 'label': '432.538', 'linC_count': 4, 'linC_degree': 3, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': 6, 'linQ_degree_count': 2, 'linQ_dim': 6, 'linQ_dim_count': 2, 'linR_count': 2, 'linR_degree': 6, 'maximal_subgroups_known': True, 'metabelian': False, 'metacyclic': False, 'monomial': True, 'name': 'C6^2:D6', 'ngens': 7, 'nilpotency_class': -1, 'nilpotent': False, 'normal_counts': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 20, 'number_characteristic_subgroups': 15, 'number_conjugacy_classes': 38, 'number_divisions': 28, 'number_normal_subgroups': 23, 'number_subgroup_autclasses': 100, 'number_subgroup_classes': 166, 'number_subgroups': 967, 'old_label': None, 'order': 432, 'order_factorization_type': 33, 'order_stats': [[1, 1], [2, 43], [3, 80], [4, 36], [6, 200], [12, 72]], 'outer_abelian': False, 'outer_cyclic': False, 'outer_equivalence': False, 'outer_exponent': 6, 'outer_gen_orders': [2, 6], 'outer_gen_pows': [5767203, 5767203], 'outer_gens': [[2316449, 25889986, 16366933, 17301609, 16240390, 1845860, 11534406], [35885934, 16247572, 20834852, 28836015, 23066418, 37541284, 23068812]], 'outer_group': '12.4', 'outer_hash': 4, 'outer_nilpotent': False, 'outer_order': 12, 'outer_permdeg': 5, 'outer_perms': [6, 49], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'D_6', 'pc_rank': 4, 'perfect': False, 'permutation_degree': 15, 'pgroup': 0, 'primary_abelian_invariants': [2, 2], 'quasisimple': False, 'rank': 3, 'rational': False, 'rational_characters_known': True, 'ratrep_stats': [[1, 4], [2, 8], [3, 4], [6, 10], [12, 2]], 'representations': {'PC': {'code': 3787299604069867588207616486677765964552402197, 'gens': [1, 2, 4, 6], 'pres': [7, 2, 2, 3, 2, 3, 2, 3, 141, 36, 170, 6387, 3706, 1613, 80, 15125, 1776, 3673, 124, 14118, 4129, 2372]}, 'GLZ': {'b': 3, 'd': 6, 'gens': [76907994945038348, 41624316883886018, 75254087579383732]}, 'GLFp': {'d': 3, 'p': 7, 'gens': [20003392, 16247572, 26126314, 28836015, 23066418, 17540971, 23068812]}, 'Perm': {'d': 15, 'gens': [12948732736, 127, 101084982064, 19327034160, 201344698800, 121, 126]}}, 'schur_multiplier': [2, 2], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [2, 2], 'solvability_type': 11, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': False, 'sylow_subgroups_known': True, 'tex_name': 'C_6^2:D_6', 'transitive_degree': 18, 'wreath_data': None, 'wreath_product': False}