-
gps_subgroup_search • Show schema
Hide schema
{'Agroup': True, 'Zgroup': False, 'abelian': False, 'ambient': '118206.b', 'ambient_counter': 2, 'ambient_order': 118206, 'ambient_tex': 'C_3\\times F_{199}', 'central': False, 'central_factor': False, 'centralizer_order': 3, 'characteristic': True, 'core_order': 3582, 'counter': 22, 'cyclic': False, 'direct': False, 'hall': 0, 'label': '118206.b.33.a1.a1', 'maximal': False, 'maximal_normal': False, 'metabelian': True, 'metacyclic': None, 'minimal': False, 'minimal_normal': False, 'nilpotent': False, 'normal': True, 'old_label': '33.a1.a1', 'outer_equivalence': False, 'perfect': False, 'proper': True, 'quotient': '33.1', 'quotient_Agroup': True, 'quotient_abelian': True, 'quotient_cyclic': True, 'quotient_hash': 1, 'quotient_metabelian': True, 'quotient_nilpotent': True, 'quotient_order': 33, 'quotient_simple': False, 'quotient_solvable': True, 'quotient_supersolvable': True, 'quotient_tex': 'C_{33}', 'simple': False, 'solvable': True, 'special_labels': [], 'split': False, 'standard_generators': False, 'stem': False, 'subgroup': '3582.e', 'subgroup_hash': 13, 'subgroup_order': 3582, 'subgroup_tex': 'C_{597}:C_6', 'supersolvable': True, 'sylow': 0}
-
gps_subgroup_data • Show schema
Hide schema
{'ambient': '118206.b', 'aut_centralizer_order': None, 'aut_label': '33.a1', 'aut_quo_index': None, 'aut_stab_index': None, 'aut_weyl_group': None, 'aut_weyl_index': None, 'centralizer': '39402.a1.a1', 'complements': [], 'conjugacy_class_count': 1, 'contained_in': ['3.a1.a1', '11.a1.a1'], 'contains': ['66.a1.a1', '99.a1.a1', '99.b1.a1', '99.b1.b1', '99.c1.a1', '6567.a1.a1'], 'core': '33.a1.a1', 'coset_action_label': None, 'count': 1, 'diagramx': [4040, 4912, 6023, 4355, 3560, 5367, 6299, 4325], 'generators': [99, 132, 594, 39402], 'label': '118206.b.33.a1.a1', 'mobius_quo': 0, 'mobius_sub': 1, 'normal_closure': '33.a1.a1', 'normal_contained_in': ['3.a1.a1', '11.a1.a1'], 'normal_contains': ['66.a1.a1', '99.a1.a1', '99.c1.a1', '99.b1.a1', '99.b1.b1'], 'normalizer': '1.a1.a1', 'old_label': '33.a1.a1', 'projective_image': '39402.d', 'quotient_action_image': None, 'quotient_action_kernel': None, 'quotient_action_kernel_order': None, 'quotient_fusion': None, 'short_label': '33.a1.a1', 'subgroup_fusion': None, 'weyl_group': '39402.d'}
-
gps_groups • Show schema
Hide schema
{'Agroup': True, 'Zgroup': False, 'abelian': False, 'abelian_quotient': '18.5', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 2, 'aut_exponent': 39402, 'aut_gen_orders': [18, 198, 198], 'aut_gens': [[1, 6], [1309, 2130], [2587, 1740], [2725, 732]], 'aut_group': None, 'aut_hash': 2208373850004692075, 'aut_nilpotency_class': -1, 'aut_nilpotent': False, 'aut_order': 236412, 'aut_permdeg': 597, 'aut_perms': [30415116965482964313108251219629537799976620023373746305336811090146589087742338514233601260521505933976915164342760682800389187462152633307995822476232724966047963016118821146453525965615418018812331081551370133808356195823118684602775057287529620683586605769874152543135569492667690314576327820212438467066972553372189653428826166118492884716362354065417116300516991988164900714046557475848528209540709050760756308788679132627716318600550793880068339272728974024034536063080131543251978155685543177953354171150232288679011336466212365151789131508583072037629214145468925099505101105138696372925910654146463946243410050781596608520380993011681883491378039102536786702628757725774949172519700274419000832201643231313813326236708892406636133724281769307109547098322680899250156291022213211798616824572789904733931894588633324559234543532433577206141487216244457276165281641431210810186068137198199545827682645835951314508389557875980724477383420655686457919297648058304887634784466042962988962691694226734795688284935806629895812249067259956835445512163652988623594671066089588470942194237556216576923597874315178693421353843866243930349455818140231573465277339331521610038519993807033560664771124373141500834395703675611600852605969754225653145008971119635957074812027593386375137288554157492510459952833728103422776181585634086735526113613799987702991855034201080453242244065212660815529421780782836, 48792976444269257568657116732751580987337418179063511036529961760004672363588225370007624977786732048912203105999990319424685121402218100181364663340684525504014174661632863430140198345827438348362138474446328657480065040857728190672036468961423461655944353040806517054534228077618452224299710130988121169903557947823735993999178364301085627179430762567875634854322290960569737700868401196666572369347027855142158265922291290700817060665922009408783815075982392039235829647213609266652682396968620768532004852694690190773232295891873111816106354012112318775911237426752527008863712893435356736591566313624568826302477582577650177083606583870324832168999144692005976648776947267672048881197359634960467477120353041685566006409300832000881838198663820155327723484950165235523179739294188935089326265707503641850894863424443838377170003886865299900035517749447301293951061665462465862499519545534676540760987861608093799349494146296722169500874589587279630313032976143834280676658021093667656235239002317937112269124600505968624919282045617088344626349791427396646938654522944440123661820337967193985519367523205865299985741704424025612264020854585974890186864669272342967212265701514148928512112214623214780212304701346268066020376955416277500391066330599244001716398050687194044080410038670176610552862739201583595517747516362640885323818356514950061660387571573174546481894259312587665151685469384169, 47836351446206026106310203483315973308113504790970789319345077441900013756155983279710729993010243564465898302792119401904493344422333378379394075985353982110848716064747005206837292323489807594695550428275459461527531590285915106350506829593210293805285165273827628816917522009452606540474418808482888049560006225067288750144412599614191010315117102422417269960982791070568495891010915660115446334554308401695767417628252782091085432252123294193917027096915136569505124955900796522188947762872563361057261323308919321366808602690019023944167765010298296273984160846366143305797319584671980940955522534743870260555456864505671030426615043455735785271540331040938750008127940561856529806124685228400769934068485226844623375139678117821975921856366168270766423653845961695903463485148591866367066749047307066803114954129415180870316869097534597807373699147135260896008529466048325956291545821793883074557603171629430365687006321041534126460856840993561995388316127419605826307800274168101939318566372012699752125351921612770258073190900284374985249152914224367992743740123695708909138620958799212387509190324767015934763250432010967231391832328129577052764996286089642871091619371486323234519426587660282206085201060380832133813249830069336165490646104624368982013969608577932300952178037761111793814343198283192564161002233487509552558659888846602972627062541929874436270846329306205734446147000006843], 'aut_phi_ratio': 199.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 199, 1, 1], [3, 1, 2, 1], [3, 199, 3, 2], [6, 199, 2, 1], [6, 199, 3, 2], [199, 6, 33, 1], [597, 6, 66, 1]], 'aut_supersolvable': True, 'aut_tex': 'C_{199}:(C_{11}:(C_{18}\\times S_3))', 'autcent_abelian': False, 'autcent_cyclic': False, 'autcent_exponent': 6, 'autcent_group': '6.1', 'autcent_hash': 1, 'autcent_nilpotent': False, 'autcent_order': 6, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': True, 'autcent_tex': 'S_3', 'autcentquo_abelian': False, 'autcentquo_cyclic': False, 'autcentquo_exponent': 39402, 'autcentquo_group': '39402.d', 'autcentquo_hash': 6821401462869295210, 'autcentquo_nilpotent': False, 'autcentquo_order': 39402, 'autcentquo_solvable': True, 'autcentquo_supersolvable': True, 'autcentquo_tex': 'F_{199}', 'cc_stats': [[1, 1, 1], [2, 199, 1], [3, 1, 2], [3, 199, 6], [6, 199, 8], [199, 6, 33], [597, 6, 66]], 'center_label': '3.1', 'center_order': 3, 'central_product': True, 'central_quotient': '1194.1', 'commutator_count': 1, 'commutator_label': '199.1', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1', '3.1', '3.1', '199.1'], 'composition_length': 4, 'conjugacy_classes_known': True, 'counter': 5, 'cyclic': False, 'derived_length': 2, 'dihedral': False, 'direct_factorization': [['1194.1', 1], ['3.1', 1]], 'direct_product': True, 'div_stats': [[1, 1, 1, 1], [2, 199, 1, 1], [3, 1, 2, 1], [3, 199, 2, 3], [6, 199, 2, 4], [199, 6, 33, 1], [597, 6, 66, 1]], 'element_repr_type': 'PC', 'elementary': 1, 'eulerian_function': 24, 'exponent': 1194, 'exponents_of_order': [2, 1, 1], 'factors_of_aut_order': [2, 3, 11, 199], 'factors_of_order': [2, 3, 199], 'faithful_reps': [[6, 0, 66]], 'familial': False, 'frattini_label': '1.1', 'frattini_quotient': '3582.e', 'hash': 13, 'hyperelementary': 1, 'inner_abelian': False, 'inner_cyclic': False, 'inner_exponent': 1194, 'inner_gen_orders': [6, 199], 'inner_gens': [[1, 1752], [1837, 6]], 'inner_hash': 1, 'inner_nilpotent': False, 'inner_order': 1194, 'inner_split': False, 'inner_tex': 'C_{199}:C_6', 'inner_used': [1, 2], 'irrC_degree': 6, 'irrQ_degree': 396, 'irrQ_dim': 396, 'irrR_degree': 12, 'irrep_stats': [[1, 18], [6, 99]], 'label': '3582.e', 'linC_count': 66, 'linC_degree': 6, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': 200, 'linQ_degree_count': 6, 'linQ_dim': 200, 'linQ_dim_count': 6, 'linR_count': 198, 'linR_degree': 8, 'maximal_subgroups_known': True, 'metabelian': True, 'metacyclic': True, 'monomial': True, 'name': 'C597:C6', 'ngens': 4, 'nilpotency_class': -1, 'nilpotent': False, 'normal_counts': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 10, 'number_characteristic_subgroups': 8, 'number_conjugacy_classes': 117, 'number_divisions': 12, 'number_normal_subgroups': 14, 'number_subgroup_autclasses': 16, 'number_subgroup_classes': 24, 'number_subgroups': 2004, 'old_label': None, 'order': 3582, 'order_factorization_type': 222, 'order_stats': [[1, 1], [2, 199], [3, 1196], [6, 1592], [199, 198], [597, 396]], 'outer_abelian': False, 'outer_cyclic': False, 'outer_equivalence': False, 'outer_exponent': 66, 'outer_gen_orders': [6, 33], 'outer_gen_pows': [1504, 2751], 'outer_gens': [[1129, 1416], [2023, 2454]], 'outer_group': '198.6', 'outer_hash': 6, 'outer_nilpotent': False, 'outer_order': 198, 'outer_permdeg': 17, 'outer_perms': [87620888678400, 109931861128320], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'S_3\\times C_{33}', 'pc_rank': 2, 'perfect': False, 'permutation_degree': 202, 'pgroup': 0, 'primary_abelian_invariants': [2, 3, 3], 'quasisimple': False, 'rank': 2, 'rational': False, 'rational_characters_known': True, 'ratrep_stats': [[1, 2], [2, 8], [198, 1], [396, 1]], 'representations': {'PC': {'code': '42249072026667581636955611855615', 'gens': [1, 3], 'pres': [4, -2, -3, -3, -199, 8, 21026, 17646, 46, 26787, 13255]}, 'GLFp': {'d': 2, 'p': 199, 'gens': [7880799, 7880706, 725015214]}, 'Perm': {'d': 202, 'gens': [788717715775379710719642275728783304112100687473078085955338507021876280061490208217482767902592174274109947973958502015522981290113024930775468420211709922266647982510844945187949638742442567829969534876821215293604299841408805691597246158582026769947293544322970016962697045001434221811121258597532096055188164752076656984595186875908120582647792910309179561921342601131704, 1593148939125411615413348269365335200837588894565061641340291891586109695646229509716475306165301480009153330671388150049476415376176890440653910162898502398741584126178777999403558889296518826879827684842481509097419026959426759192899665281946107714928415781476753877533952440789695145130317712748218030434197746471419507542650596338702386579340902388343923980241944517020483, 4, 160886284906608202565147515473477221251696135844521879879386891290046527861299580158222066001320458170666538462099922702414380507891848030563563040601379367906145103115126785171383578325790700022257621734411607669197612489505559486618107920204142770001069283144788207743838054586299675763678681300270019105085768518172558018435663743041058092544126656487700815577585150107746424]}}, 'schur_multiplier': [3], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [3, 6], 'solvability_type': 6, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': True, 'sylow_subgroups_known': True, 'tex_name': 'C_{597}:C_6', 'transitive_degree': 597, 'wreath_data': None, 'wreath_product': False}
-
gps_groups • Show schema
Hide schema
{'Agroup': True, 'Zgroup': False, 'abelian': False, 'abelian_quotient': '594.20', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 2, 'aut_exponent': 39402, 'aut_gen_orders': [198, 22, 198], 'aut_gens': [[1, 198], [25543, 13464], [33463, 24750], [52471, 54252]], 'aut_group': None, 'aut_hash': 2208373850004692075, 'aut_nilpotency_class': -1, 'aut_nilpotent': False, 'aut_order': 236412, 'aut_permdeg': 597, 'aut_perms': [45905969717789313423542045323874484700830724530266657392202381513338847248582402287155053166923729934198186163426939951839811077441920428168300753294379162435438786576169123234632249955388656200333171148632774696983728413529023822914096037248544001985162167975389382504154269338338006585757689215588354783755833436069306996702726078160751933001888080753449829675068050491174494545824772050114354303545450242100792508348684736007390295073289199365023237993606933306950467921877816544710398940800650844770509854231238582947399261065826082411886757751891682458605071910929667756083380586451089900967357514869950968503959893783289805029690261574948879983433113093195840970093284544315714093080574522872579265803279986405533681271566553590495761688374136904622491567128760570531267593078790693570658984428291016332676669381351011712229473206635044228101719313216000458092969336452736722403161169457663886918294700242180724372700353748536968999972198432915943185104880223370636593212447493082145985617620749597170388035711329999371552801180857894130934639221097952271003805840009918180487891328931165559883248717672153919417127242915874796969226336149328618088500488797483211682581369174840764657818619064321905186729639072994234027740554556957943798014621211873128774529716541087790434950032113713113051504174835244714741248101133168127376897586141814585943693868829162038698479823988575692761153931727080, 13285205691541514669759029574092199538247856464911462142275536389477756093198124268616440918786383101492530951069494740440207253671901983192272454689727263093284178233929233578889144749212779067709157908522797013553475364266141574355089331745881542845879341037189302013374385674543795332709080396601513808416482306446375284470538997833040647835744790530884574684230829457143013755839933830800161782923197759382570347258694512357371668453981774804412611960018080372936697158454948099543616234759088591958955890534860614184510133637924949983550927105035600664116094706430884019399796434075500221165972820166740333877402237505472289323907902808670674815004335337767648473892301672540014770106795253863336534564033564977598089717150462535477056626138048096974701015607247529979099797523184209840388668673762071592591092845714900219723245370684961110881809476550568836396618492222816016086757679500731060352087256644288198795402152681480041961741280760615875912726184934244375942364314687199658072811173135757256424278101234221688509305893364949065448553435563744257645685517876268162649358688065392026025783756850587228435557666288757599969052348975052687737238255085131936352662147457342342702520158980088904391895600886406070566865407964175716911940417212387086497799345539548967446011723738097590981637038789369032157246530463536043462955450918790892093702811188434565074511745868277117278619166033330, 44860379721712607805887808320895791982405838697581922534221652228645456029232406765673999235662889349171825676714582625848771022717626255594934283104857908329119437599787068929577576340671836951374207189362807951041773135188981262681185386189925572264852637415771287306391054277173309456332530669791620373087556989251578322752532732535986211155922682024200200594187054752866372666726712057967968502958020234411245453565876002537600661470823097848426166026308555579668741572900866829851142806601937950725795550192681621128742241687709015512153837732020453178660056387146868751783058156342824882296510138687199993395569176931324710854567423027760671686115458436413417608015609725704713353696091291841152446100116957368753803556218919857430610476336459113885093259356856711760378489961279750633207864317984200897638800841092408559797856425317442487644184534833368418354551941644335398409282002046609493037022627223007044776904838996454386608934907994323874267711446171050113910172047227434755817015622866669959287940859038477663098497004917609697039192572934407278689766216685945093349595385194716072182592472470484331359464958933605889704227910654557588036250801436035334729945362264363476781765599126068011180018022267410345628492450276221874329233015958004150743133946072361005114592899213855555263975903362128869230942594263324691987751992427950560985324434319242510431798707378050376653447059860538], 'aut_phi_ratio': 6.633333333333334, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 199, 1, 1], [3, 1, 2, 1], [3, 199, 1, 2], [3, 199, 2, 2], [6, 199, 1, 2], [6, 199, 2, 3], [9, 199, 3, 6], [11, 199, 1, 10], [18, 199, 3, 6], [22, 199, 1, 10], [33, 199, 1, 20], [33, 199, 2, 30], [66, 199, 1, 20], [66, 199, 2, 30], [99, 199, 3, 60], [198, 199, 3, 60], [199, 198, 1, 1], [597, 198, 2, 1]], 'aut_supersolvable': True, 'aut_tex': 'C_{199}:(C_{11}:(C_{18}\\times S_3))', 'autcent_abelian': False, 'autcent_cyclic': False, 'autcent_exponent': 6, 'autcent_group': '6.1', 'autcent_hash': 1, 'autcent_nilpotent': False, 'autcent_order': 6, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': True, 'autcent_tex': 'S_3', 'autcentquo_abelian': False, 'autcentquo_cyclic': False, 'autcentquo_exponent': 39402, 'autcentquo_group': '39402.d', 'autcentquo_hash': 6821401462869295210, 'autcentquo_nilpotent': False, 'autcentquo_order': 39402, 'autcentquo_solvable': True, 'autcentquo_supersolvable': True, 'autcentquo_tex': 'F_{199}', 'cc_stats': [[1, 1, 1], [2, 199, 1], [3, 1, 2], [3, 199, 6], [6, 199, 8], [9, 199, 18], [11, 199, 10], [18, 199, 18], [22, 199, 10], [33, 199, 80], [66, 199, 80], [99, 199, 180], [198, 199, 180], [199, 198, 1], [597, 198, 2]], 'center_label': '3.1', 'center_order': 3, 'central_product': True, 'central_quotient': '39402.d', 'commutator_count': 1, 'commutator_label': '199.1', 'complements_known': True, 'complete': False, 'complex_characters_known': False, 'composition_factors': ['2.1', '3.1', '3.1', '3.1', '11.1', '199.1'], 'composition_length': 6, 'conjugacy_classes_known': True, 'counter': 2, 'cyclic': False, 'derived_length': 2, 'dihedral': False, 'direct_factorization': [['3.1', 1], ['39402.d', 1]], 'direct_product': True, 'div_stats': [[1, 1, 1, 1], [2, 199, 1, 1], [3, 1, 2, 1], [3, 199, 2, 3], [6, 199, 2, 4], [9, 199, 6, 3], [11, 199, 10, 1], [18, 199, 6, 3], [22, 199, 10, 1], [33, 199, 20, 4], [66, 199, 20, 4], [99, 199, 60, 3], [198, 199, 60, 3], [199, 198, 1, 1], [597, 198, 2, 1]], 'element_repr_type': 'PC', 'elementary': 1, 'eulerian_function': 25920, 'exponent': 39402, 'exponents_of_order': [3, 1, 1, 1], 'factors_of_aut_order': [2, 3, 11, 199], 'factors_of_order': [2, 3, 11, 199], 'faithful_reps': [[198, 0, 2]], 'familial': False, 'frattini_label': '1.1', 'frattini_quotient': '118206.b', 'hash': 993549773098811332, 'hyperelementary': 1, 'inner_abelian': False, 'inner_cyclic': False, 'inner_exponent': 39402, 'inner_gen_orders': [198, 199], 'inner_gens': [[1, 86328], [32077, 198]], 'inner_hash': 6821401462869295210, 'inner_nilpotent': False, 'inner_order': 39402, 'inner_split': True, 'inner_tex': 'F_{199}', 'inner_used': [1, 2], 'irrC_degree': 198, 'irrQ_degree': 396, 'irrQ_dim': 396, 'irrR_degree': None, 'irrep_stats': [[1, 594], [198, 3]], 'label': '118206.b', 'linC_count': None, 'linC_degree': None, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': None, 'linQ_degree_count': None, 'linQ_dim': None, 'linQ_dim_count': None, 'linR_count': None, 'linR_degree': None, 'maximal_subgroups_known': True, 'metabelian': True, 'metacyclic': True, 'monomial': True, 'name': 'C3*F199', 'ngens': 6, 'nilpotency_class': -1, 'nilpotent': False, 'normal_counts': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 266, 'number_characteristic_subgroups': 22, 'number_conjugacy_classes': 597, 'number_divisions': 34, 'number_normal_subgroups': 42, 'number_subgroup_autclasses': 56, 'number_subgroup_classes': 80, 'number_subgroups': 7604, 'old_label': None, 'order': 118206, 'order_factorization_type': 311, 'order_stats': [[1, 1], [2, 199], [3, 1196], [6, 1592], [9, 3582], [11, 1990], [18, 3582], [22, 1990], [33, 15920], [66, 15920], [99, 35820], [198, 35820], [199, 198], [597, 396]], 'outer_abelian': False, 'outer_cyclic': False, 'outer_equivalence': False, 'outer_exponent': 6, 'outer_gen_orders': [2, 3], 'outer_gen_pows': [0, 0], 'outer_gens': [[78805, 118008], [39403, 198]], 'outer_group': '6.1', 'outer_hash': 1, 'outer_nilpotent': False, 'outer_order': 6, 'outer_permdeg': 3, 'outer_perms': [1, 4], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'S_3', 'pc_rank': 2, 'perfect': False, 'permutation_degree': 202, 'pgroup': 0, 'primary_abelian_invariants': [2, 3, 9, 11], 'quasisimple': False, 'rank': 2, 'rational': False, 'rational_characters_known': True, 'ratrep_stats': [[1, 2], [2, 8], [6, 6], [10, 2], [20, 8], [60, 6], [198, 1], [396, 1]], 'representations': {'PC': {'code': '238659246580686050565389015627360277025947720797371306756695821870781064794743', 'gens': [1, 5], 'pres': [6, -2, -3, -3, -11, -3, -199, 12, 43, 68, 2589844, 742510, 312856, 20152, 118, 812597, 545303, 417005, 72491]}, 'GLFp': {'d': 2, 'p': 199, 'gens': [7880799, 1008716714, 725015214]}, 'Perm': {'d': 202, 'gens': [1617107125760524307766100365424199373010971604634639225606828417689585168323053353330077072011087644895861673386127722921844440215533147109943204670751965379014642136739140539745050865979379043606840365902069089296329276807637706001055845521129334678412362574408342890869574767270015764787465041502313767900651858237629569988745092874895192355775818958102217826757319360452563, 2409728899142544665694002617428431763699342373216762171439217176948816013893203935440411500988577433714435727611511524343568068758731540559311672140615088929784766255489056102979438836153563905451468293439068281052874898659916019410835019087556304920392130840485924635808963716032116321772421457756199845089703003598915957423708435679300320777307445046041544288858899497114083, 161675261840272413713656168254934723851818547888749537980209141527158143994532142410874015243118211155969703800450240243502807430740906227550703011269515180637950537540327182201746637127738428301787436940258064877062536671335551525418763876116108829399777583208675654656903869536546942154959627862239344794391430764502618263004589118004893647062516949149047611325598654549344480]}}, 'schur_multiplier': [3], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [3, 198], 'solvability_type': 6, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': True, 'sylow_subgroups_known': True, 'tex_name': 'C_3\\times F_{199}', 'transitive_degree': 597, 'wreath_data': None, 'wreath_product': False}
-
gps_groups • Show schema
Hide schema
{'Agroup': True, 'Zgroup': True, 'abelian': True, 'abelian_quotient': '33.1', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': True, 'aut_cyclic': False, 'aut_derived_length': 1, 'aut_exponent': 10, 'aut_gen_orders': [2, 10], 'aut_gens': [[1], [10], [20]], 'aut_group': '20.5', 'aut_hash': 5, 'aut_nilpotency_class': 1, 'aut_nilpotent': True, 'aut_order': 20, 'aut_permdeg': 9, 'aut_perms': [720, 40353], 'aut_phi_ratio': 1.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [3, 1, 2, 1], [11, 1, 10, 1], [33, 1, 20, 1]], 'aut_supersolvable': True, 'aut_tex': 'C_2\\times C_{10}', 'autcent_abelian': True, 'autcent_cyclic': False, 'autcent_exponent': 10, 'autcent_group': '20.5', 'autcent_hash': 5, 'autcent_nilpotent': True, 'autcent_order': 20, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': True, 'autcent_tex': 'C_2\\times C_{10}', 'autcentquo_abelian': True, 'autcentquo_cyclic': True, 'autcentquo_exponent': 1, 'autcentquo_group': '1.1', 'autcentquo_hash': 1, 'autcentquo_nilpotent': True, 'autcentquo_order': 1, 'autcentquo_solvable': True, 'autcentquo_supersolvable': True, 'autcentquo_tex': 'C_1', 'cc_stats': [[1, 1, 1], [3, 1, 2], [11, 1, 10], [33, 1, 20]], 'center_label': '33.1', 'center_order': 33, 'central_product': True, 'central_quotient': '1.1', 'commutator_count': 0, 'commutator_label': '1.1', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['3.1', '11.1'], 'composition_length': 2, 'conjugacy_classes_known': True, 'counter': 1, 'cyclic': True, 'derived_length': 1, 'dihedral': False, 'direct_factorization': [['11.1', 1], ['3.1', 1]], 'direct_product': True, 'div_stats': [[1, 1, 1, 1], [3, 1, 2, 1], [11, 1, 10, 1], [33, 1, 20, 1]], 'element_repr_type': 'PC', 'elementary': 33, 'eulerian_function': 1, 'exponent': 33, 'exponents_of_order': [1, 1], 'factors_of_aut_order': [2, 5], 'factors_of_order': [3, 11], 'faithful_reps': [[1, 0, 20]], 'familial': True, 'frattini_label': '1.1', 'frattini_quotient': '33.1', 'hash': 1, 'hyperelementary': 33, 'inner_abelian': True, 'inner_cyclic': True, 'inner_exponent': 1, 'inner_gen_orders': [1], 'inner_gens': [[1]], 'inner_hash': 1, 'inner_nilpotent': True, 'inner_order': 1, 'inner_split': True, 'inner_tex': 'C_1', 'inner_used': [], 'irrC_degree': 1, 'irrQ_degree': 20, 'irrQ_dim': 20, 'irrR_degree': 2, 'irrep_stats': [[1, 33]], 'label': '33.1', 'linC_count': 20, 'linC_degree': 1, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': 12, 'linQ_degree_count': 1, 'linQ_dim': 12, 'linQ_dim_count': 1, 'linR_count': 10, 'linR_degree': 2, 'maximal_subgroups_known': True, 'metabelian': True, 'metacyclic': True, 'monomial': True, 'name': 'C33', 'ngens': 2, 'nilpotency_class': 1, 'nilpotent': True, 'normal_counts': [0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 4, 'number_characteristic_subgroups': 4, 'number_conjugacy_classes': 33, 'number_divisions': 4, 'number_normal_subgroups': 4, 'number_subgroup_autclasses': 4, 'number_subgroup_classes': 4, 'number_subgroups': 4, 'old_label': None, 'order': 33, 'order_factorization_type': 11, 'order_stats': [[1, 1], [3, 2], [11, 10], [33, 20]], 'outer_abelian': True, 'outer_cyclic': False, 'outer_equivalence': False, 'outer_exponent': 10, 'outer_gen_orders': [2, 10], 'outer_gen_pows': [0, 0], 'outer_gens': [[10], [20]], 'outer_group': '20.5', 'outer_hash': 5, 'outer_nilpotent': True, 'outer_order': 20, 'outer_permdeg': 9, 'outer_perms': [720, 40353], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'C_2\\times C_{10}', 'pc_rank': 1, 'perfect': False, 'permutation_degree': 14, 'pgroup': 0, 'primary_abelian_invariants': [3, 11], 'quasisimple': False, 'rank': 1, 'rational': False, 'rational_characters_known': True, 'ratrep_stats': [[1, 1], [2, 1], [10, 1], [20, 1]], 'representations': {'PC': {'code': 519, 'gens': [1], 'pres': [2, -3, -11, 6]}, 'GLFp': {'d': 2, 'p': 23, 'gens': [90443]}, 'Perm': {'d': 14, 'gens': [12454041600, 36288000]}}, 'schur_multiplier': [], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [33], 'solvability_type': 0, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': True, 'sylow_subgroups_known': True, 'tex_name': 'C_{33}', 'transitive_degree': 33, 'wreath_data': None, 'wreath_product': False}