-
gps_subgroup_search • Show schema
Hide schema
{'Agroup': True, 'Zgroup': False, 'abelian': False, 'ambient': '118206.b', 'ambient_counter': 2, 'ambient_order': 118206, 'ambient_tex': 'C_3\\times F_{199}', 'central': False, 'central_factor': False, 'centralizer_order': 3, 'characteristic': True, 'core_order': 39402, 'counter': 3, 'cyclic': False, 'direct': False, 'hall': 0, 'label': '118206.b.3.a1.a1', 'maximal': True, 'maximal_normal': True, 'metabelian': True, 'metacyclic': None, 'minimal': False, 'minimal_normal': False, 'nilpotent': False, 'normal': True, 'old_label': '3.a1.a1', 'outer_equivalence': False, 'perfect': False, 'proper': True, 'quotient': '3.1', 'quotient_Agroup': True, 'quotient_abelian': True, 'quotient_cyclic': True, 'quotient_hash': 1, 'quotient_metabelian': True, 'quotient_nilpotent': True, 'quotient_order': 3, 'quotient_simple': True, 'quotient_solvable': True, 'quotient_supersolvable': True, 'quotient_tex': 'C_3', 'simple': False, 'solvable': True, 'special_labels': [], 'split': False, 'standard_generators': False, 'stem': False, 'subgroup': '39402.b', 'subgroup_hash': 521106686622776765, 'subgroup_order': 39402, 'subgroup_tex': 'C_{597}:C_{66}', 'supersolvable': True, 'sylow': 0}
-
gps_subgroup_data • Show schema
Hide schema
{'ambient': '118206.b', 'aut_centralizer_order': None, 'aut_label': '3.a1', 'aut_quo_index': None, 'aut_stab_index': None, 'aut_weyl_group': None, 'aut_weyl_index': None, 'centralizer': '39402.a1.a1', 'complements': [], 'conjugacy_class_count': 1, 'contained_in': ['1.a1.a1'], 'contains': ['6.a1.a1', '9.a1.a1', '9.b1.a1', '9.b1.b1', '9.c1.a1', '33.a1.a1', '597.a1.a1'], 'core': '3.a1.a1', 'coset_action_label': None, 'count': 1, 'diagramx': [5673, 4227, 5755, 4061, 4442, 4423, 6614, 3437], 'generators': [18, 594, 39402, 132, 99], 'label': '118206.b.3.a1.a1', 'mobius_quo': 0, 'mobius_sub': -1, 'normal_closure': '3.a1.a1', 'normal_contained_in': ['1.a1.a1'], 'normal_contains': ['6.a1.a1', '9.a1.a1', '9.c1.a1', '9.b1.a1', '9.b1.b1', '33.a1.a1'], 'normalizer': '1.a1.a1', 'old_label': '3.a1.a1', 'projective_image': '39402.d', 'quotient_action_image': None, 'quotient_action_kernel': None, 'quotient_action_kernel_order': None, 'quotient_fusion': None, 'short_label': '3.a1.a1', 'subgroup_fusion': None, 'weyl_group': '39402.d'}
-
gps_groups • Show schema
Hide schema
{'Agroup': True, 'Zgroup': False, 'abelian': False, 'abelian_quotient': '198.10', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 2, 'aut_exponent': 39402, 'aut_gen_orders': [33, 66, 198], 'aut_gens': [[1, 66], [17029, 32736], [29041, 39072], [36565, 2904]], 'aut_group': None, 'aut_hash': 2208373850004692075, 'aut_nilpotency_class': -1, 'aut_nilpotent': False, 'aut_order': 236412, 'aut_permdeg': 796, 'aut_perms': [1737690399468492476069396614657973022953223346847641138365540426685489038299451403699187179853242904027387264931404238078484126143407373507906263061175435085038992566123715503586051274866432054458368948253773263939121262091135668512888359140996904130964662659468022349694360160570952268469916985873780378816081946551876128834081750916274239360689316991438396353259042325940220200330250848037860232976034419790456133663230014172576241746661784128880268526337216960312291802734043506585980789130239627593339693366842238731137376945366582374482795259061544949946908924242083596462544146816139839804702901499218065588270940952649383987304975368739624497692842935135867969338707855557922991703066421950119035769510463253552498797077295305899078170621181173954174409540286832671745443935596054573042386638015129734317188052497702832782327257734517880757120473733817096071670846769627883073570036544181695894817412393129677709254719704462111896741477417696240943833862428970658758838744084102388445657052623273173609370383651887754857349334284537892697283236703202604749455209895132696108702224924234033106954985015737222656231096868209455967109597763601625013926816519260653813430482554983949965939194678626584742044509920566928396289117251790951149517656828779418156911298315283355159470925070352059169832557117165273626051930507636793111120701708143124846753841446353934034235340930638172936295945607945511133753012421111009056824976339572736970480087224521383144122990575432087115192014291975271063282839576404190868794106702216778727192308858516932093065307740987764661112877612864756288249800630211977798496238581539173457653853366876676946750880046628925338049910315054088741595857141035139641402292749081611933655499413730098786030410055517121424286311016664993441754514009922572885446462131677466833147082807918880392869801884796515026071295384198473511710827793832994701226471508591065835868890297265659538383750412622201229580804436913212832599590015986235067127, 367835720445324166425607933906868094025863054896426641101463448096203737659695517502745178121228633886869915103747774179158921102335344443537646990896021731555765967648617556073942602149883190590714321235950138274761924244791428034958004076108867675499025313237273799665368802405004742144125547907973104540556628293731680003290273691400816094972319080621860416095603431578272362352360132936455119730353786700129600441543412302204305511523384833167176235842087706313381148723622170016359653316155858014157326294851080025935403889111518311866735787196334511505396945116981249427118972292847577466221916246458814477729437588989509114868077077589786909004999081459783276879462301417082882777644530643970804797602107184050985743988757333567453223300183554679072077445573112131727154525367370051148686091361041245943523201089909429913500594995638495670970174845169355716648526344404822547185023053596675052422827099458638076816929139195407183848879456828705752016389682189913740094232110361038514824286146977540813350554911119629954604560112004703786432023893800590777804117307386389548955789290410141337468219984864938268584682873371505283093332118190800259554772504265097166337060900383567056875946437528613670770029310516164299986817694035068839371369040463120858532982612378767482686759095472661322878172600723594665793877967265778113090438352740482124452701856507514556773574943024724245320444860365864999255205467224373607381683439857280787332672048363743417440651912076356276066497037685403944720136003600557574856975259050500224410536272318851166439246309643710147230983433053889855468296414127465578993710674392796788536350046798009422387247403812649186763260578984254830892316600461377886722610243159175961516910817442731331984848083883874363710854308862131205118437186629841741871040761779625976384906391697014282924850006019105881966782411586790486345532836334747882958954918510198168703269996868348236538743506179820042901584282973196438794748731320817788509, 359304913488478551253761904153478598588634438202351793942265751209740960727172323700609814143815357024647776122978143001856570404549573079587226593715357183468093724731085174099578485113996209703011770293824071652318817559623006796894103647942487317401648312308577495638392981423025781945343924678369763881283459233112352750911115126415666517473891409143452155692462353022027616010941150890333916143358934763908117885266072248365398331608274952144641686171249244645342941671595284236224897977883162821976585370218045517605555764205632423816711739843912750503302425021598994980511429307641610265559949355131162122173795477397506020795595044500763571520632217206933381160964638055636759731759280194458458733990673954395781961168250542815851465007688996929975609786724386351984672704376076711869663751827226051273067841189466247192808056970391615828415482031729716331445694999071799218168867906726495241596384196683762896998484351942889490415549400006897806153410576126245888897573164408485949609947205810204809016938875424089727435215361479925602822951498314716795542989373077534239153040805229366842722934414699808051111123176780127224338646226039527312695517262825489514433043352979203606428504161305887795491052527190641449985023514700676811441041557943952556293048073175889938477551766236795491519194184881422209803505631758464522900972415460366161954027374332899690590671498205910663152562087192963187881556825384219124934781164318558586651375988705943215587050049685536340493323430367576496178772629144541304119295281943952450151146916400784474141871787169381590393409180133400494016439820828387029180502792182752608389792723899482047687899251200201233351622546390440313736018791589837203841496655892239127180489003864525329371097539026732440512700858642968011094687281862025339454553124556644417894740384623550737616367299253726380605529051531763479195991190877051376461057075335046376793433875037408836601674717971793499094165034804902352287462545502331760524], 'aut_phi_ratio': 19.9, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 199, 1, 1], [3, 1, 2, 1], [3, 199, 3, 2], [6, 199, 2, 1], [6, 199, 3, 2], [11, 199, 1, 10], [22, 199, 1, 10], [33, 199, 2, 10], [33, 199, 3, 20], [66, 199, 2, 10], [66, 199, 3, 20], [199, 66, 3, 1], [597, 66, 6, 1]], 'aut_supersolvable': True, 'aut_tex': 'C_{199}:(C_{11}:(C_{18}\\times S_3))', 'autcent_abelian': False, 'autcent_cyclic': False, 'autcent_exponent': 6, 'autcent_group': '6.1', 'autcent_hash': 1, 'autcent_nilpotent': False, 'autcent_order': 6, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': True, 'autcent_tex': 'S_3', 'autcentquo_abelian': False, 'autcentquo_cyclic': False, 'autcentquo_exponent': 39402, 'autcentquo_group': '39402.d', 'autcentquo_hash': 6821401462869295210, 'autcentquo_nilpotent': False, 'autcentquo_order': 39402, 'autcentquo_solvable': True, 'autcentquo_supersolvable': True, 'autcentquo_tex': 'F_{199}', 'cc_stats': [[1, 1, 1], [2, 199, 1], [3, 1, 2], [3, 199, 6], [6, 199, 8], [11, 199, 10], [22, 199, 10], [33, 199, 80], [66, 199, 80], [199, 66, 3], [597, 66, 6]], 'center_label': '3.1', 'center_order': 3, 'central_product': True, 'central_quotient': '13134.h', 'commutator_count': 1, 'commutator_label': '199.1', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1', '3.1', '3.1', '11.1', '199.1'], 'composition_length': 5, 'conjugacy_classes_known': True, 'counter': 2, 'cyclic': False, 'derived_length': 2, 'dihedral': False, 'direct_factorization': [['13134.h', 1], ['3.1', 1]], 'direct_product': True, 'div_stats': [[1, 1, 1, 1], [2, 199, 1, 1], [3, 1, 2, 1], [3, 199, 2, 3], [6, 199, 2, 4], [11, 199, 10, 1], [22, 199, 10, 1], [33, 199, 20, 4], [66, 199, 20, 4], [199, 66, 3, 1], [597, 66, 6, 1]], 'element_repr_type': 'PC', 'elementary': 1, 'eulerian_function': 2880, 'exponent': 13134, 'exponents_of_order': [2, 1, 1, 1], 'factors_of_aut_order': [2, 3, 11, 199], 'factors_of_order': [2, 3, 11, 199], 'faithful_reps': [[66, 0, 6]], 'familial': False, 'frattini_label': '1.1', 'frattini_quotient': '39402.b', 'hash': 521106686622776765, 'hyperelementary': 1, 'inner_abelian': False, 'inner_cyclic': False, 'inner_exponent': 13134, 'inner_gen_orders': [66, 199], 'inner_gens': [[1, 30162], [9307, 66]], 'inner_hash': 18, 'inner_nilpotent': False, 'inner_order': 13134, 'inner_split': False, 'inner_tex': 'C_{199}:C_{66}', 'inner_used': [1, 2], 'irrC_degree': 66, 'irrQ_degree': 396, 'irrQ_dim': 396, 'irrR_degree': 132, 'irrep_stats': [[1, 198], [66, 9]], 'label': '39402.b', 'linC_count': 6, 'linC_degree': 66, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': 200, 'linQ_degree_count': 6, 'linQ_dim': 200, 'linQ_dim_count': 6, 'linR_count': 198, 'linR_degree': 68, 'maximal_subgroups_known': True, 'metabelian': True, 'metacyclic': True, 'monomial': True, 'name': 'C597:C66', 'ngens': 5, 'nilpotency_class': -1, 'nilpotent': False, 'normal_counts': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 90, 'number_characteristic_subgroups': 14, 'number_conjugacy_classes': 207, 'number_divisions': 22, 'number_normal_subgroups': 26, 'number_subgroup_autclasses': 32, 'number_subgroup_classes': 48, 'number_subgroups': 4404, 'old_label': None, 'order': 39402, 'order_factorization_type': 222, 'order_stats': [[1, 1], [2, 199], [3, 1196], [6, 1592], [11, 1990], [22, 1990], [33, 15920], [66, 15920], [199, 198], [597, 396]], 'outer_abelian': False, 'outer_cyclic': False, 'outer_equivalence': False, 'outer_exponent': 6, 'outer_gen_orders': [6, 3], 'outer_gen_pows': [16, 0], 'outer_gens': [[26269, 20724], [13135, 66]], 'outer_group': '18.3', 'outer_hash': 3, 'outer_nilpotent': False, 'outer_order': 18, 'outer_permdeg': 6, 'outer_perms': [305, 466], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'C_3\\times S_3', 'pc_rank': 2, 'perfect': False, 'permutation_degree': 202, 'pgroup': 0, 'primary_abelian_invariants': [2, 3, 3, 11], 'quasisimple': False, 'rank': 2, 'rational': False, 'rational_characters_known': True, 'ratrep_stats': [[1, 2], [2, 8], [10, 2], [20, 8], [198, 1], [396, 1]], 'representations': {'PC': {'code': '3475977401404892342291067075012383118162558241527431111', 'gens': [1, 4], 'pres': [5, -2, -3, -11, -3, -199, 10, 36, 603243, 327368, 26633, 78, 292054, 242559, 99839]}, 'GLFp': {'d': 2, 'p': 199, 'gens': [7880799, 1063880905, 725015214]}, 'Perm': {'d': 202, 'gens': [1616928876444447162438635540036043177124476851653520177554972866365538881519883333078681662298242310281474797644482184485568759633593663189259689001201583311090694930075041876923681792959248017588431325039288862599811577487795039208319930994871110730701988909189694996657273845985388552735452775305493431200631284854733446280673670260118814833533590895314986943054739589917443, 160886484368010642272711189113341538788386987931067174991589366342830091860725880303785478354893680371354058357008100155292800469424939969460402114901945147076771157422900163761940737081192533999132503544978561430060476419871877145852317442408366368427677837694448248362544466658398720105178459823042313520384333746493039194943845829262662713834364225791679632784887639594983880, 3198306990296544438806175042875300199676787475767218361719148147685940341087389467402505896676123942277996410247141107404497915919486563791525375345879380924821293381454678841865239002467927236151140160992259786007846494289415424818758517247879900545389794072100827986157534717055645654886253053228521975035893286337386717623062191922956514144318981229814137988897541608563944]}}, 'schur_multiplier': [3], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [3, 66], 'solvability_type': 6, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': True, 'sylow_subgroups_known': True, 'tex_name': 'C_{597}:C_{66}', 'transitive_degree': 597, 'wreath_data': None, 'wreath_product': False}
-
gps_groups • Show schema
Hide schema
{'Agroup': True, 'Zgroup': False, 'abelian': False, 'abelian_quotient': '594.20', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 2, 'aut_exponent': 39402, 'aut_gen_orders': [198, 22, 198], 'aut_gens': [[1, 198], [25543, 13464], [33463, 24750], [52471, 54252]], 'aut_group': None, 'aut_hash': 2208373850004692075, 'aut_nilpotency_class': -1, 'aut_nilpotent': False, 'aut_order': 236412, 'aut_permdeg': 597, 'aut_perms': [45905969717789313423542045323874484700830724530266657392202381513338847248582402287155053166923729934198186163426939951839811077441920428168300753294379162435438786576169123234632249955388656200333171148632774696983728413529023822914096037248544001985162167975389382504154269338338006585757689215588354783755833436069306996702726078160751933001888080753449829675068050491174494545824772050114354303545450242100792508348684736007390295073289199365023237993606933306950467921877816544710398940800650844770509854231238582947399261065826082411886757751891682458605071910929667756083380586451089900967357514869950968503959893783289805029690261574948879983433113093195840970093284544315714093080574522872579265803279986405533681271566553590495761688374136904622491567128760570531267593078790693570658984428291016332676669381351011712229473206635044228101719313216000458092969336452736722403161169457663886918294700242180724372700353748536968999972198432915943185104880223370636593212447493082145985617620749597170388035711329999371552801180857894130934639221097952271003805840009918180487891328931165559883248717672153919417127242915874796969226336149328618088500488797483211682581369174840764657818619064321905186729639072994234027740554556957943798014621211873128774529716541087790434950032113713113051504174835244714741248101133168127376897586141814585943693868829162038698479823988575692761153931727080, 13285205691541514669759029574092199538247856464911462142275536389477756093198124268616440918786383101492530951069494740440207253671901983192272454689727263093284178233929233578889144749212779067709157908522797013553475364266141574355089331745881542845879341037189302013374385674543795332709080396601513808416482306446375284470538997833040647835744790530884574684230829457143013755839933830800161782923197759382570347258694512357371668453981774804412611960018080372936697158454948099543616234759088591958955890534860614184510133637924949983550927105035600664116094706430884019399796434075500221165972820166740333877402237505472289323907902808670674815004335337767648473892301672540014770106795253863336534564033564977598089717150462535477056626138048096974701015607247529979099797523184209840388668673762071592591092845714900219723245370684961110881809476550568836396618492222816016086757679500731060352087256644288198795402152681480041961741280760615875912726184934244375942364314687199658072811173135757256424278101234221688509305893364949065448553435563744257645685517876268162649358688065392026025783756850587228435557666288757599969052348975052687737238255085131936352662147457342342702520158980088904391895600886406070566865407964175716911940417212387086497799345539548967446011723738097590981637038789369032157246530463536043462955450918790892093702811188434565074511745868277117278619166033330, 44860379721712607805887808320895791982405838697581922534221652228645456029232406765673999235662889349171825676714582625848771022717626255594934283104857908329119437599787068929577576340671836951374207189362807951041773135188981262681185386189925572264852637415771287306391054277173309456332530669791620373087556989251578322752532732535986211155922682024200200594187054752866372666726712057967968502958020234411245453565876002537600661470823097848426166026308555579668741572900866829851142806601937950725795550192681621128742241687709015512153837732020453178660056387146868751783058156342824882296510138687199993395569176931324710854567423027760671686115458436413417608015609725704713353696091291841152446100116957368753803556218919857430610476336459113885093259356856711760378489961279750633207864317984200897638800841092408559797856425317442487644184534833368418354551941644335398409282002046609493037022627223007044776904838996454386608934907994323874267711446171050113910172047227434755817015622866669959287940859038477663098497004917609697039192572934407278689766216685945093349595385194716072182592472470484331359464958933605889704227910654557588036250801436035334729945362264363476781765599126068011180018022267410345628492450276221874329233015958004150743133946072361005114592899213855555263975903362128869230942594263324691987751992427950560985324434319242510431798707378050376653447059860538], 'aut_phi_ratio': 6.633333333333334, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 199, 1, 1], [3, 1, 2, 1], [3, 199, 1, 2], [3, 199, 2, 2], [6, 199, 1, 2], [6, 199, 2, 3], [9, 199, 3, 6], [11, 199, 1, 10], [18, 199, 3, 6], [22, 199, 1, 10], [33, 199, 1, 20], [33, 199, 2, 30], [66, 199, 1, 20], [66, 199, 2, 30], [99, 199, 3, 60], [198, 199, 3, 60], [199, 198, 1, 1], [597, 198, 2, 1]], 'aut_supersolvable': True, 'aut_tex': 'C_{199}:(C_{11}:(C_{18}\\times S_3))', 'autcent_abelian': False, 'autcent_cyclic': False, 'autcent_exponent': 6, 'autcent_group': '6.1', 'autcent_hash': 1, 'autcent_nilpotent': False, 'autcent_order': 6, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': True, 'autcent_tex': 'S_3', 'autcentquo_abelian': False, 'autcentquo_cyclic': False, 'autcentquo_exponent': 39402, 'autcentquo_group': '39402.d', 'autcentquo_hash': 6821401462869295210, 'autcentquo_nilpotent': False, 'autcentquo_order': 39402, 'autcentquo_solvable': True, 'autcentquo_supersolvable': True, 'autcentquo_tex': 'F_{199}', 'cc_stats': [[1, 1, 1], [2, 199, 1], [3, 1, 2], [3, 199, 6], [6, 199, 8], [9, 199, 18], [11, 199, 10], [18, 199, 18], [22, 199, 10], [33, 199, 80], [66, 199, 80], [99, 199, 180], [198, 199, 180], [199, 198, 1], [597, 198, 2]], 'center_label': '3.1', 'center_order': 3, 'central_product': True, 'central_quotient': '39402.d', 'commutator_count': 1, 'commutator_label': '199.1', 'complements_known': True, 'complete': False, 'complex_characters_known': False, 'composition_factors': ['2.1', '3.1', '3.1', '3.1', '11.1', '199.1'], 'composition_length': 6, 'conjugacy_classes_known': True, 'counter': 2, 'cyclic': False, 'derived_length': 2, 'dihedral': False, 'direct_factorization': [['3.1', 1], ['39402.d', 1]], 'direct_product': True, 'div_stats': [[1, 1, 1, 1], [2, 199, 1, 1], [3, 1, 2, 1], [3, 199, 2, 3], [6, 199, 2, 4], [9, 199, 6, 3], [11, 199, 10, 1], [18, 199, 6, 3], [22, 199, 10, 1], [33, 199, 20, 4], [66, 199, 20, 4], [99, 199, 60, 3], [198, 199, 60, 3], [199, 198, 1, 1], [597, 198, 2, 1]], 'element_repr_type': 'PC', 'elementary': 1, 'eulerian_function': 25920, 'exponent': 39402, 'exponents_of_order': [3, 1, 1, 1], 'factors_of_aut_order': [2, 3, 11, 199], 'factors_of_order': [2, 3, 11, 199], 'faithful_reps': [[198, 0, 2]], 'familial': False, 'frattini_label': '1.1', 'frattini_quotient': '118206.b', 'hash': 993549773098811332, 'hyperelementary': 1, 'inner_abelian': False, 'inner_cyclic': False, 'inner_exponent': 39402, 'inner_gen_orders': [198, 199], 'inner_gens': [[1, 86328], [32077, 198]], 'inner_hash': 6821401462869295210, 'inner_nilpotent': False, 'inner_order': 39402, 'inner_split': True, 'inner_tex': 'F_{199}', 'inner_used': [1, 2], 'irrC_degree': 198, 'irrQ_degree': 396, 'irrQ_dim': 396, 'irrR_degree': None, 'irrep_stats': [[1, 594], [198, 3]], 'label': '118206.b', 'linC_count': None, 'linC_degree': None, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': None, 'linQ_degree_count': None, 'linQ_dim': None, 'linQ_dim_count': None, 'linR_count': None, 'linR_degree': None, 'maximal_subgroups_known': True, 'metabelian': True, 'metacyclic': True, 'monomial': True, 'name': 'C3*F199', 'ngens': 6, 'nilpotency_class': -1, 'nilpotent': False, 'normal_counts': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 266, 'number_characteristic_subgroups': 22, 'number_conjugacy_classes': 597, 'number_divisions': 34, 'number_normal_subgroups': 42, 'number_subgroup_autclasses': 56, 'number_subgroup_classes': 80, 'number_subgroups': 7604, 'old_label': None, 'order': 118206, 'order_factorization_type': 311, 'order_stats': [[1, 1], [2, 199], [3, 1196], [6, 1592], [9, 3582], [11, 1990], [18, 3582], [22, 1990], [33, 15920], [66, 15920], [99, 35820], [198, 35820], [199, 198], [597, 396]], 'outer_abelian': False, 'outer_cyclic': False, 'outer_equivalence': False, 'outer_exponent': 6, 'outer_gen_orders': [2, 3], 'outer_gen_pows': [0, 0], 'outer_gens': [[78805, 118008], [39403, 198]], 'outer_group': '6.1', 'outer_hash': 1, 'outer_nilpotent': False, 'outer_order': 6, 'outer_permdeg': 3, 'outer_perms': [1, 4], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'S_3', 'pc_rank': 2, 'perfect': False, 'permutation_degree': 202, 'pgroup': 0, 'primary_abelian_invariants': [2, 3, 9, 11], 'quasisimple': False, 'rank': 2, 'rational': False, 'rational_characters_known': True, 'ratrep_stats': [[1, 2], [2, 8], [6, 6], [10, 2], [20, 8], [60, 6], [198, 1], [396, 1]], 'representations': {'PC': {'code': '238659246580686050565389015627360277025947720797371306756695821870781064794743', 'gens': [1, 5], 'pres': [6, -2, -3, -3, -11, -3, -199, 12, 43, 68, 2589844, 742510, 312856, 20152, 118, 812597, 545303, 417005, 72491]}, 'GLFp': {'d': 2, 'p': 199, 'gens': [7880799, 1008716714, 725015214]}, 'Perm': {'d': 202, 'gens': [1617107125760524307766100365424199373010971604634639225606828417689585168323053353330077072011087644895861673386127722921844440215533147109943204670751965379014642136739140539745050865979379043606840365902069089296329276807637706001055845521129334678412362574408342890869574767270015764787465041502313767900651858237629569988745092874895192355775818958102217826757319360452563, 2409728899142544665694002617428431763699342373216762171439217176948816013893203935440411500988577433714435727611511524343568068758731540559311672140615088929784766255489056102979438836153563905451468293439068281052874898659916019410835019087556304920392130840485924635808963716032116321772421457756199845089703003598915957423708435679300320777307445046041544288858899497114083, 161675261840272413713656168254934723851818547888749537980209141527158143994532142410874015243118211155969703800450240243502807430740906227550703011269515180637950537540327182201746637127738428301787436940258064877062536671335551525418763876116108829399777583208675654656903869536546942154959627862239344794391430764502618263004589118004893647062516949149047611325598654549344480]}}, 'schur_multiplier': [3], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [3, 198], 'solvability_type': 6, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': True, 'sylow_subgroups_known': True, 'tex_name': 'C_3\\times F_{199}', 'transitive_degree': 597, 'wreath_data': None, 'wreath_product': False}
-
gps_groups • Show schema
Hide schema
{'Agroup': True, 'Zgroup': True, 'abelian': True, 'abelian_quotient': '3.1', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': True, 'aut_cyclic': True, 'aut_derived_length': 1, 'aut_exponent': 2, 'aut_gen_orders': [2], 'aut_gens': [[1], [2]], 'aut_group': '2.1', 'aut_hash': 1, 'aut_nilpotency_class': 1, 'aut_nilpotent': True, 'aut_order': 2, 'aut_permdeg': 2, 'aut_perms': [1], 'aut_phi_ratio': 1.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [3, 1, 2, 1]], 'aut_supersolvable': True, 'aut_tex': 'C_2', 'autcent_abelian': True, 'autcent_cyclic': True, 'autcent_exponent': 2, 'autcent_group': '2.1', 'autcent_hash': 1, 'autcent_nilpotent': True, 'autcent_order': 2, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': True, 'autcent_tex': 'C_2', 'autcentquo_abelian': True, 'autcentquo_cyclic': True, 'autcentquo_exponent': 1, 'autcentquo_group': '1.1', 'autcentquo_hash': 1, 'autcentquo_nilpotent': True, 'autcentquo_order': 1, 'autcentquo_solvable': True, 'autcentquo_supersolvable': True, 'autcentquo_tex': 'C_1', 'cc_stats': [[1, 1, 1], [3, 1, 2]], 'center_label': '3.1', 'center_order': 3, 'central_product': False, 'central_quotient': '1.1', 'commutator_count': 0, 'commutator_label': '1.1', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['3.1'], 'composition_length': 1, 'conjugacy_classes_known': True, 'counter': 1, 'cyclic': True, 'derived_length': 1, 'dihedral': False, 'direct_factorization': [], 'direct_product': False, 'div_stats': [[1, 1, 1, 1], [3, 1, 2, 1]], 'element_repr_type': 'PC', 'elementary': 3, 'eulerian_function': 1, 'exponent': 3, 'exponents_of_order': [1], 'factors_of_aut_order': [2], 'factors_of_order': [3], 'faithful_reps': [[1, 0, 2]], 'familial': True, 'frattini_label': '1.1', 'frattini_quotient': '3.1', 'hash': 1, 'hyperelementary': 3, 'inner_abelian': True, 'inner_cyclic': True, 'inner_exponent': 1, 'inner_gen_orders': [1], 'inner_gens': [[1]], 'inner_hash': 1, 'inner_nilpotent': True, 'inner_order': 1, 'inner_split': True, 'inner_tex': 'C_1', 'inner_used': [], 'irrC_degree': 1, 'irrQ_degree': 2, 'irrQ_dim': 2, 'irrR_degree': 2, 'irrep_stats': [[1, 3]], 'label': '3.1', 'linC_count': 2, 'linC_degree': 1, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': 2, 'linQ_degree_count': 1, 'linQ_dim': 2, 'linQ_dim_count': 1, 'linR_count': 1, 'linR_degree': 2, 'maximal_subgroups_known': True, 'metabelian': True, 'metacyclic': True, 'monomial': True, 'name': 'C3', 'ngens': 1, 'nilpotency_class': 1, 'nilpotent': True, 'normal_counts': [0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 2, 'number_characteristic_subgroups': 2, 'number_conjugacy_classes': 3, 'number_divisions': 2, 'number_normal_subgroups': 2, 'number_subgroup_autclasses': 2, 'number_subgroup_classes': 2, 'number_subgroups': 2, 'old_label': None, 'order': 3, 'order_factorization_type': 1, 'order_stats': [[1, 1], [3, 2]], 'outer_abelian': True, 'outer_cyclic': True, 'outer_equivalence': False, 'outer_exponent': 2, 'outer_gen_orders': [2], 'outer_gen_pows': [0], 'outer_gens': [[2]], 'outer_group': '2.1', 'outer_hash': 1, 'outer_nilpotent': True, 'outer_order': 2, 'outer_permdeg': 2, 'outer_perms': [1], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'C_2', 'pc_rank': 1, 'perfect': False, 'permutation_degree': 3, 'pgroup': 3, 'primary_abelian_invariants': [3], 'quasisimple': False, 'rank': 1, 'rational': False, 'rational_characters_known': True, 'ratrep_stats': [[1, 1], [2, 1]], 'representations': {'PC': {'code': 0, 'gens': [1], 'pres': [1, -3]}, 'GLZ': {'b': 3, 'd': 2, 'gens': [7]}, 'Lie': [{'d': 1, 'q': 3, 'gens': [3], 'family': 'ASigmaL'}], 'GLFp': {'d': 2, 'p': 2, 'gens': [7]}, 'Perm': {'d': 3, 'gens': [4]}}, 'schur_multiplier': [], 'semidirect_product': False, 'simple': True, 'smith_abelian_invariants': [3], 'solvability_type': 0, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': True, 'sylow_subgroups_known': True, 'tex_name': 'C_3', 'transitive_degree': 3, 'wreath_data': None, 'wreath_product': False}