-
gps_subgroup_search • Show schema
Hide schema
{'Agroup': True, 'Zgroup': False, 'abelian': False, 'ambient': '115248.bg', 'ambient_counter': 33, 'ambient_order': 115248, 'ambient_tex': 'D_7\\times C_7^3:S_4', 'central': False, 'central_factor': False, 'centralizer_order': 1, 'characteristic': False, 'core_order': 1, 'counter': 111, 'cyclic': False, 'direct': None, 'hall': 0, 'label': '115248.bg.84.bh1.b1', 'maximal': False, 'maximal_normal': False, 'metabelian': True, 'metacyclic': False, 'minimal': False, 'minimal_normal': False, 'nilpotent': False, 'normal': False, 'old_label': '84.bh1.b1', 'outer_equivalence': False, 'perfect': False, 'proper': True, 'quotient': None, 'quotient_Agroup': None, 'quotient_abelian': None, 'quotient_cyclic': None, 'quotient_hash': None, 'quotient_metabelian': None, 'quotient_nilpotent': None, 'quotient_order': 84, 'quotient_simple': None, 'quotient_solvable': None, 'quotient_supersolvable': None, 'quotient_tex': None, 'simple': False, 'solvable': True, 'special_labels': [], 'split': None, 'standard_generators': False, 'stem': False, 'subgroup': '1372.31', 'subgroup_hash': 31, 'subgroup_order': 1372, 'subgroup_tex': 'C_7^3:C_4', 'supersolvable': False, 'sylow': 0}
-
gps_subgroup_data • Show schema
Hide schema
{'ambient': '115248.bg', 'aut_centralizer_order': None, 'aut_label': '84.bh1', 'aut_quo_index': None, 'aut_stab_index': None, 'aut_weyl_group': None, 'aut_weyl_index': None, 'centralizer': '115248.a1.a1', 'complements': None, 'conjugacy_class_count': 1, 'contained_in': ['12.i1.a1', '42.j1.b1'], 'contains': ['168.z1.b1', '588.bu1.a1', '4116.be1.c1'], 'core': '115248.a1.a1', 'coset_action_label': None, 'count': 42, 'diagramx': [9898, -1, 9228, -1, 188, -1, 9409, -1], 'generators': [33769, 16488, 14448, 756, 2352], 'label': '115248.bg.84.bh1.b1', 'mobius_quo': None, 'mobius_sub': 0, 'normal_closure': '2.c1.a1', 'normal_contained_in': None, 'normal_contains': None, 'normalizer': '42.j1.b1', 'old_label': '84.bh1.b1', 'projective_image': '115248.bg', 'quotient_action_image': None, 'quotient_action_kernel': None, 'quotient_action_kernel_order': None, 'quotient_fusion': None, 'short_label': '84.bh1.b1', 'subgroup_fusion': None, 'weyl_group': '2744.z'}
-
gps_groups • Show schema
Hide schema
{'Agroup': True, 'Zgroup': False, 'abelian': False, 'abelian_quotient': '4.1', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 3, 'aut_exponent': 336, 'aut_gen_orders': [48, 42, 48, 12], 'aut_gens': [[1, 4, 28, 196], [861, 20, 196, 224], [1283, 12, 644, 1148], [405, 20, 420, 644], [1363, 12, 1260, 896]], 'aut_group': None, 'aut_hash': 5704297344339064290, 'aut_nilpotency_class': -1, 'aut_nilpotent': False, 'aut_order': 197568, 'aut_permdeg': 686, 'aut_perms': [12476343102362780645468395565842663596589342657777510096950213260428826131558817764194696035472823048076609021604686640253295821897707944654811669148488773491891778149077858098837868097169983031291422441716902321726362720138107211324426136935505453546510671580966932340469760398861850541468222537901978346888416421769656676462746581586554424093119645119878023913559042366636429987025784999674356656492797292937851452259087542486889817785007811338158070354790366516549024972565246552812823712177034679919804480108367190626910487466639177705276781888939332798054976281165834495650562895407827491459362714865897399025847803905774938230965627455215014982631499483904924725991953090880487038408800119138322032594493111944631307064177087335830706847020058530897063951871296356318145789042774626457300394258430499397349679528900590137900105142270639216450508744840676659129954244239315073089680479642902945935770880637259394800753425028852821249807836932677570026026807304427267825051075148418522469276019397486340933307518298423011455431343901194303210595897492492749798827584952892931273735184916043918010537716611169784878618400284491921854467824230091028050126437682957676525892194035046327866578109621953608094180095537320335690073974983955821626774920117740650331345418676663779654730340122478489693926072933550413718242364471954841214360238864202131618083054105930320990616397913504172501992815419678492899474734517814361281681515924548496479846060097756117426287215265320064329055131545587396451064352697345468798414597940604730411162661411828132386197728388251498731468716921242890208721931318235572939244364137649757682041782975559594122727589513, 259573438733973145804754556084306012992490155588388267325251719692769619126148212887126093786081875876984554848373121005934515700723963032611927143525441768206158792193984124453240432880182452813731717569028508355338450713149180138192011347035667288243345023287763768331821590767571191936230921981511135531786059666649329138772898798895981884379520323442986550716084689801070005567691106496864132094402133458005683957359002128128948578469131953474190210401780380956733008296521514989949787942193662651524224005673751683836036439818653745422098928974562372909814573571681386607475712207243421333382051284760700333099993729494702650868429725260694806780575506192905980177708221746746252774871128998330204444568434748599081277010463579960734857493009791724273759415316847385137819150185233782466016739837661398933615395637388740062290017253646120482322858198278572951702496310578984455158883960583145278630613608168699827580012531972458899831604644946900127276480153350030700477551514180657754575006692238965874959387972020925524612809347397881041805909614950764984146730097541690487453717054012045914736027896238659051037316476493831963375385942820920261461656961770746319434686706225364021409304174370189490404281075840214123784398647156511499808359981006628009847414314739440895881612795320604599789705244871082494285212285456886937458005228376476350187165677149665191703757336343681783487614302476940690133224480530969351648095122221640429846439292809103611673099699556444627854036384994632055883463300215321383473046538395891662388913573977475775665368039266650418201732171011280348785307394022254570056270459835988818929675893572795746437650858894, 179124404291145955073127748226685711791497260501476068939861404029151044774137395356142195564420438138333713145838672994871809171801320308944908395826253020129919990105085711616196181431529571385336805140618339368023423912424321829901189792056729957968155621937823058605352253103276899819523689129001243852980211320021873414791067634024263362793091525759292401837003126183268150244078429286163337016271662888576086427482246782782072898208946345857133646128751222466511061504583595917662470243074778129742436152036957078121343056622651263321036003002048356461354425968564548783894313254231286757907639733998079993246025027431177961835472297423122315843294854225530990745442071098787584758443129280781055642428153926108091643792974165431414292845548912002151573068314161649111095085363090934643959655242400072386590405623567664181860995846153127336080097176833983665691945889691222467767806939160034011968641259829690649313038754522190341475550073049689405719439509415191277501505073019081515902906220512339612307698675822035074732130914444511374018460769817540021377369189128580124524254472770073875888388531003414260140498108040160731073001813617373866146366780420475800554988273680130857765610498820688535218366323609489377126331474771984873503785371524359273918252397159165310573756951243372537308429370845324946972159201009593000054741126633751875146375787001036207225313390715716366275890225130818164294891986132913753516288775163754384847420443458553740268564939024749655361832867271525672931794215611817019035893154951314825375112733744842059752713846991485050888365928753945602629191462097925623308407969493831488951748816145748676142194306555, 176244383598012247773808659812761509189744673275089113949454777894526114450163252907918712225753628325763283658450733188068512818102287171823158231312580355434880826535729856417396345314270623651425984657025710213794607647092236742091647680916127857067306993878121604070865796510014812485589015482328430469634726318767096760522787409273237962677177459497507762157111167597101118574156417549051636521711659582160122103490862229192098499609448309643339326498340813334840770662304274072055583463554486029302658657788416823175149102780931692587778298070013927456823111814709596069187508467213219028167313789917461324049018339766323595605086657852104930868038065470312229767790572456759388649492335553522013911247976406254156734544930037603554700346085428348738772595711335408111491063176215902827154428632885762628308429711322800301351268807347201971012488130942829908772917119988513498927603243769733011809965381766447963194744561309155844999264640364122590213803972176716203726854676675524519390973685319480914093414553659723909333727547393014352540867960333709344303349806141968443651304723544682536142555870368898984716888917451482227747582491409483563524416853384604370597093998000268404399939461168183576297068828457746706657640154814065165335795646073154963362142997949130126535625810184279935590147042839772749661651981959363477800561415118096495475821005595344175886545023964033829466390264606246451929850521797588990756804496626524236363623191624792706588683839497357292969398489427120688556470320802134021272324697450421399545577615547843404283903187611827004773370239020923755201396799285704862917228542444987665351604504577367594184015371601], 'aut_phi_ratio': 336.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 49, 1, 1], [4, 343, 2, 1], [7, 2, 3, 1], [7, 4, 12, 1], [7, 4, 72, 1], [14, 98, 3, 1]], 'aut_supersolvable': False, 'aut_tex': 'C_7^3.C_8.C_6^2.C_2', 'autcent_abelian': True, 'autcent_cyclic': True, 'autcent_exponent': 1, 'autcent_group': '1.1', 'autcent_hash': 1, 'autcent_nilpotent': True, 'autcent_order': 1, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': True, 'autcent_tex': 'C_1', 'autcentquo_abelian': False, 'autcentquo_cyclic': False, 'autcentquo_exponent': 336, 'autcentquo_group': None, 'autcentquo_hash': 5704297344339064290, 'autcentquo_nilpotent': False, 'autcentquo_order': 197568, 'autcentquo_solvable': True, 'autcentquo_supersolvable': False, 'autcentquo_tex': 'C_7^3.C_8.C_6^2.C_2', 'cc_stats': [[1, 1, 1], [2, 49, 1], [4, 343, 2], [7, 2, 3], [7, 4, 84], [14, 98, 3]], 'center_label': '1.1', 'center_order': 1, 'central_product': False, 'central_quotient': '1372.31', 'commutator_count': 1, 'commutator_label': '343.5', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1', '2.1', '7.1', '7.1', '7.1'], 'composition_length': 5, 'conjugacy_classes_known': True, 'counter': 31, 'cyclic': False, 'derived_length': 2, 'dihedral': False, 'direct_factorization': [], 'direct_product': False, 'div_stats': [[1, 1, 1, 1], [2, 49, 1, 1], [4, 343, 2, 1], [7, 2, 3, 1], [7, 4, 3, 4], [7, 4, 6, 12], [14, 98, 3, 1]], 'element_repr_type': 'PC', 'elementary': 1, 'eulerian_function': 6, 'exponent': 28, 'exponents_of_order': [3, 2], 'factors_of_aut_order': [2, 3, 7], 'factors_of_order': [2, 7], 'faithful_reps': [[4, 0, 72]], 'familial': False, 'frattini_label': '1.1', 'frattini_quotient': '1372.31', 'hash': 31, 'hyperelementary': 1, 'inner_abelian': False, 'inner_cyclic': False, 'inner_exponent': 28, 'inner_gen_orders': [4, 7, 7, 7], 'inner_gens': [[1, 24, 644, 1064], [9, 4, 28, 196], [953, 4, 28, 196], [701, 4, 28, 196]], 'inner_hash': 31, 'inner_nilpotent': False, 'inner_order': 1372, 'inner_split': False, 'inner_tex': 'C_7^3:C_4', 'inner_used': [1, 2, 3], 'irrC_degree': 4, 'irrQ_degree': 24, 'irrQ_dim': 24, 'irrR_degree': 8, 'irrep_stats': [[1, 4], [2, 6], [4, 84]], 'label': '1372.31', 'linC_count': 72, 'linC_degree': 4, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': 18, 'linQ_degree_count': 8, 'linQ_dim': 18, 'linQ_dim_count': 4, 'linR_count': 36, 'linR_degree': 6, 'maximal_subgroups_known': True, 'metabelian': True, 'metacyclic': False, 'monomial': True, 'name': 'C7^3:C4', 'ngens': 5, 'nilpotency_class': -1, 'nilpotent': False, 'normal_counts': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 7, 'number_characteristic_subgroups': 7, 'number_conjugacy_classes': 94, 'number_divisions': 21, 'number_normal_subgroups': 7, 'number_subgroup_autclasses': 18, 'number_subgroup_classes': 52, 'number_subgroups': 728, 'old_label': None, 'order': 1372, 'order_factorization_type': 32, 'order_stats': [[1, 1], [2, 49], [4, 686], [7, 342], [14, 294]], 'outer_abelian': False, 'outer_cyclic': False, 'outer_equivalence': False, 'outer_exponent': 24, 'outer_gen_orders': [6, 24], 'outer_gen_pows': [2, 2], 'outer_gens': [[3, 12, 588, 112], [1, 8, 504, 1232]], 'outer_group': '144.106', 'outer_hash': 106, 'outer_nilpotent': True, 'outer_order': 144, 'outer_permdeg': 14, 'outer_perms': [1078847284, 46118500080], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'C_3^2\\times D_8', 'pc_rank': 4, 'perfect': False, 'permutation_degree': 21, 'pgroup': 0, 'primary_abelian_invariants': [4], 'quasisimple': False, 'rank': 2, 'rational': False, 'rational_characters_known': True, 'ratrep_stats': [[1, 2], [2, 1], [6, 2], [12, 4], [24, 12]], 'representations': {'PC': {'code': 3112633987312405066609463, 'gens': [1, 3, 4, 5], 'pres': [5, -2, -2, -7, -7, 7, 10, 362, 12883, 1688, 26604, 14709]}, 'Perm': {'d': 21, 'gens': [2447552358978854527, 27900573853057920, 5245059686973966720, 7819959613217834880, 973]}}, 'schur_multiplier': [7], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [4], 'solvability_type': 8, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': False, 'sylow_subgroups_known': True, 'tex_name': 'C_7^3:C_4', 'transitive_degree': 28, 'wreath_data': None, 'wreath_product': False}
-
gps_groups • Show schema
Hide schema
{'Agroup': False, 'Zgroup': False, 'abelian': False, 'abelian_quotient': '4.2', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 4, 'aut_exponent': 84, 'aut_gen_orders': [42, 4, 12, 6], 'aut_gens': [[1, 2, 12, 168, 2352, 16464], [75641, 86426, 8688, 25452, 16464, 672], [79741, 32422, 8556, 12348, 2016, 98784], [95985, 75562, 109092, 57288, 65856, 14112], [44065, 58114, 74388, 39564, 672, 82320]], 'aut_group': None, 'aut_hash': 5409013870120294433, 'aut_nilpotency_class': -1, 'aut_nilpotent': False, 'aut_order': 2074464, 'aut_permdeg': 49, 'aut_perms': [376762426489910281438409422993128720816034257781019552250536147, 496917807121179171468003852382289237688155082067063963823853195, 73737223738794316053009751302970448599108295316881618416497150, 323232204136004497116876748466108666815919630240014240454638263], 'aut_phi_ratio': 63.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 7, 1, 1], [2, 42, 1, 1], [2, 147, 1, 1], [2, 294, 1, 1], [2, 1029, 1, 1], [3, 392, 1, 1], [4, 2058, 1, 1], [4, 14406, 1, 1], [6, 2744, 1, 1], [7, 2, 3, 1], [7, 4, 6, 1], [7, 6, 3, 1], [7, 8, 18, 1], [7, 12, 3, 1], [7, 12, 6, 2], [7, 12, 9, 1], [7, 24, 2, 1], [7, 24, 3, 1], [7, 24, 9, 1], [7, 24, 18, 2], [7, 48, 6, 1], [7, 48, 9, 1], [14, 28, 6, 1], [14, 42, 3, 1], [14, 42, 6, 1], [14, 84, 3, 3], [14, 84, 6, 5], [14, 84, 18, 1], [14, 168, 2, 1], [14, 168, 3, 1], [14, 168, 9, 1], [14, 168, 18, 3], [14, 294, 3, 2], [14, 294, 6, 1], [14, 588, 3, 1], [14, 588, 6, 3], [14, 588, 9, 1], [14, 2058, 3, 1], [21, 392, 6, 1], [21, 784, 3, 1], [21, 784, 18, 1], [28, 4116, 3, 1], [42, 2744, 6, 1]], 'aut_supersolvable': False, 'aut_tex': 'C_7^3.(C_7\\times A_4).C_6^2.C_2', 'autcent_abelian': True, 'autcent_cyclic': True, 'autcent_exponent': 1, 'autcent_group': '1.1', 'autcent_hash': 1, 'autcent_nilpotent': True, 'autcent_order': 1, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': True, 'autcent_tex': 'C_1', 'autcentquo_abelian': False, 'autcentquo_cyclic': False, 'autcentquo_exponent': 84, 'autcentquo_group': None, 'autcentquo_hash': 5409013870120294433, 'autcentquo_nilpotent': False, 'autcentquo_order': 2074464, 'autcentquo_solvable': True, 'autcentquo_supersolvable': False, 'autcentquo_tex': 'C_7^3.(C_7\\times A_4).C_6^2.C_2', 'cc_stats': [[1, 1, 1], [2, 7, 1], [2, 42, 1], [2, 147, 1], [2, 294, 1], [2, 1029, 1], [3, 392, 1], [4, 2058, 1], [4, 14406, 1], [6, 2744, 1], [7, 2, 3], [7, 4, 6], [7, 6, 3], [7, 8, 18], [7, 12, 24], [7, 24, 50], [7, 48, 15], [14, 28, 6], [14, 42, 9], [14, 84, 57], [14, 168, 68], [14, 294, 12], [14, 588, 30], [14, 2058, 3], [21, 392, 6], [21, 784, 21], [28, 4116, 3], [42, 2744, 6]], 'center_label': '1.1', 'center_order': 1, 'central_product': True, 'central_quotient': '115248.bg', 'commutator_count': 1, 'commutator_label': '28812.bd', 'complements_known': True, 'complete': False, 'complex_characters_known': False, 'composition_factors': ['2.1', '2.1', '2.1', '2.1', '3.1', '7.1', '7.1', '7.1', '7.1'], 'composition_length': 9, 'conjugacy_classes_known': False, 'counter': 33, 'cyclic': False, 'derived_length': 4, 'dihedral': False, 'direct_factorization': [['14.1', 1], ['8232.bt', 1]], 'direct_product': True, 'div_stats': [[1, 1, 1, 1], [2, 7, 1, 1], [2, 42, 1, 1], [2, 147, 1, 1], [2, 294, 1, 1], [2, 1029, 1, 1], [3, 392, 1, 1], [4, 2058, 1, 1], [4, 14406, 1, 1], [6, 2744, 1, 1], [7, 2, 3, 1], [7, 4, 6, 1], [7, 6, 3, 1], [7, 8, 6, 3], [7, 12, 3, 4], [7, 12, 6, 2], [7, 24, 2, 1], [7, 24, 3, 4], [7, 24, 6, 6], [7, 48, 3, 3], [7, 48, 6, 1], [14, 28, 6, 1], [14, 42, 3, 1], [14, 42, 6, 1], [14, 84, 3, 3], [14, 84, 6, 8], [14, 168, 2, 1], [14, 168, 3, 4], [14, 168, 6, 9], [14, 294, 3, 2], [14, 294, 6, 1], [14, 588, 3, 4], [14, 588, 6, 3], [14, 2058, 3, 1], [21, 392, 6, 1], [21, 784, 3, 1], [21, 784, 6, 3], [28, 4116, 3, 1], [42, 2744, 6, 1]], 'element_repr_type': 'PC', 'elementary': 1, 'eulerian_function': 1026, 'exponent': 84, 'exponents_of_order': [4, 4, 1], 'factors_of_aut_order': [2, 3, 7], 'factors_of_order': [2, 3, 7], 'faithful_reps': [[8, 0, 36], [12, 0, 18], [12, 1, 18], [16, 0, 18], [24, 0, 72], [24, 1, 18], [48, 0, 6], [48, 1, 9]], 'familial': False, 'frattini_label': '1.1', 'frattini_quotient': '115248.bg', 'hash': 3341210359253535008, 'hyperelementary': 1, 'inner_abelian': False, 'inner_cyclic': False, 'inner_exponent': 84, 'inner_gen_orders': [14, 42, 14, 14, 7, 7], 'inner_gens': [[1, 102370, 17964, 42924, 2016, 16464], [88073, 2, 63072, 94668, 32928, 1344], [99817, 93686, 12, 23352, 14112, 16464], [87781, 40742, 110892, 168, 14112, 98784], [2689, 84674, 4716, 4872, 2352, 16464], [1, 17474, 12, 33096, 2352, 16464]], 'inner_hash': 3341210359253535008, 'inner_nilpotent': False, 'inner_order': 115248, 'inner_split': True, 'inner_tex': 'D_7\\times C_7^3:S_4', 'inner_used': [1, 2], 'irrC_degree': 8, 'irrQ_degree': 36, 'irrQ_dim': 36, 'irrR_degree': 12, 'irrep_stats': [[1, 4], [2, 8], [3, 4], [4, 27], [6, 30], [8, 48], [12, 96], [16, 18], [24, 100], [48, 15]], 'label': '115248.bg', 'linC_count': 144, 'linC_degree': 6, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': 24, 'linQ_degree_count': 8, 'linQ_dim': 24, 'linQ_dim_count': 8, 'linR_count': 72, 'linR_degree': 8, 'maximal_subgroups_known': True, 'metabelian': False, 'metacyclic': False, 'monomial': None, 'name': 'D7*C7^3:S4', 'ngens': 9, 'nilpotency_class': -1, 'nilpotent': False, 'normal_counts': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 57, 'number_characteristic_subgroups': 16, 'number_conjugacy_classes': 350, 'number_divisions': 83, 'number_normal_subgroups': 16, 'number_subgroup_autclasses': 527, 'number_subgroup_classes': 733, 'number_subgroups': 193232, 'old_label': None, 'order': 115248, 'order_factorization_type': 321, 'order_stats': [[1, 1], [2, 1519], [3, 392], [4, 16464], [6, 2744], [7, 2400], [14, 44100], [21, 18816], [28, 12348], [42, 16464]], 'outer_abelian': True, 'outer_cyclic': False, 'outer_equivalence': False, 'outer_exponent': 6, 'outer_gen_orders': [3, 6], 'outer_gen_pows': [98454, 0], 'outer_gens': [[49489, 2, 82380, 168, 2352, 16464], [56533, 48218, 82668, 79464, 7056, 65856]], 'outer_group': '18.5', 'outer_hash': 5, 'outer_nilpotent': True, 'outer_order': 18, 'outer_permdeg': 8, 'outer_perms': [144, 5043], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'C_3\\times C_6', 'pc_rank': 6, 'perfect': False, 'permutation_degree': 28, 'pgroup': 0, 'primary_abelian_invariants': [2, 2], 'quasisimple': False, 'rank': 2, 'rational': False, 'rational_characters_known': False, 'ratrep_stats': [[1, 4], [2, 2], [3, 4], [6, 2], [12, 1], [18, 6], [24, 4], [36, 12], [48, 10], [72, 19], [96, 3], [144, 15], [288, 1]], 'representations': {'PC': {'code': '543307837735532771015067858902241724184967121635012158936478206041229689504465066671722161147982859538840734000690150032666543202031101126549003587800563291507962292839', 'gens': [1, 2, 4, 6, 8, 9], 'pres': [9, 2, 2, 3, 2, 7, 2, 7, 7, 7, 408240, 1842661, 46, 270110, 480836, 646707, 1135308, 809049, 102, 1488244, 403933, 1217452, 2317901, 2556050, 305069, 105116, 74507, 158, 889062, 74103, 518640, 10617, 145159, 1185424, 6073, 84706, 6100, 54449, 190538, 47681]}, 'Perm': {'d': 28, 'gens': [23052920286645070446581108885, 11744603803563313972885385100]}}, 'schur_multiplier': [2, 2], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [2, 2], 'solvability_type': 17, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': False, 'sylow_subgroups_known': True, 'tex_name': 'D_7\\times C_7^3:S_4', 'transitive_degree': 42, 'wreath_data': None, 'wreath_product': False}