Group information
Description: | $C_4^2$ | |
Order: | \(16\)\(\medspace = 2^{4} \) |
|
Exponent: | \(4\)\(\medspace = 2^{2} \) |
|
Automorphism group: | $\GL(2,\mathbb{Z}/4)$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \) |
|
Composition factors: | $C_2$ x 4 |
|
Nilpotency class: | $1$ |
|
Derived length: | $1$ |
|
This group is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and metacyclic.
Group statistics
Order | 1 | 2 | 4 | |
---|---|---|---|---|
Elements | 1 | 3 | 12 | 16 |
Conjugacy classes | 1 | 3 | 12 | 16 |
Divisions | 1 | 3 | 6 | 10 |
Autjugacy classes | 1 | 1 | 1 | 3 |
Dimension | 1 | 2 | |
---|---|---|---|
Irr. complex chars. | 16 | 0 | 16 |
Irr. rational chars. | 4 | 6 | 10 |
Minimal presentations
Permutation degree: | $8$ |
Transitive degree: | $16$ |
Rank: | $2$ |
Inequivalent generating pairs: | $1$ |
Minimal degrees of faithful linear representations
Over $\mathbb{C}$ | Over $\mathbb{R}$ | Over $\mathbb{Q}$ | |
---|---|---|---|
Irreducible | none | none | none |
Arbitrary | 2 | 4 | 4 |
Constructions
Presentation: | Abelian group
$\langle a, b \mid a^{4}=b^{4}=1 \rangle$
| |||||||||
| ||||||||||
Permutation group: |
$\langle(1,4,2,3), (5,8,6,7), (1,2)(3,4), (5,6)(7,8)\rangle$
| |||||||||
| ||||||||||
Matrix group: | $\left\langle \left(\begin{array}{rrrr} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \end{array}\right), \left(\begin{array}{rrrr} 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right) \right\rangle \subseteq \GL_{4}(\Z)$ | |||||||||
| ||||||||||
$\left\langle \left(\begin{array}{rr} 1 & 0 \\ 0 & 2 \end{array}\right), \left(\begin{array}{rr} 2 & 0 \\ 0 & 3 \end{array}\right) \right\rangle \subseteq \GL_{2}(\F_{5})$ | ||||||||||
| ||||||||||
Transitive group: | 16T4 | more information | ||||||||
Direct product: | $C_4$ ${}^2$ | |||||||||
Semidirect product: | not isomorphic to a non-trivial semidirect product | |||||||||
Trans. wreath product: | not isomorphic to a non-trivial transitive wreath product | |||||||||
Non-split product: | $C_2^2$ . $C_2^2$ | $(C_2\times C_4)$ . $C_2$ (3) | $C_2$ . $(C_2\times C_4)$ (3) | more information |
Elements of the group are displayed as words in the presentation generators from the presentation above.
Homology
Primary decomposition: | $C_{4}^{2}$ |
|
Schur multiplier: | $C_{4}$ |
|
Commutator length: | $0$ |
|
Subgroups
There are 15 subgroups, all normal (3 characteristic).
Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.
Special subgroups
Center: | $Z \simeq$ $C_4^2$ | $G/Z \simeq$ $C_1$ |
|
Commutator: | $G' \simeq$ $C_1$ | $G/G' \simeq$ $C_4^2$ |
|
Frattini: | $\Phi \simeq$ $C_2^2$ | $G/\Phi \simeq$ $C_2^2$ |
|
Fitting: | $\operatorname{Fit} \simeq$ $C_4^2$ | $G/\operatorname{Fit} \simeq$ $C_1$ |
|
Radical: | $R \simeq$ $C_4^2$ | $G/R \simeq$ $C_1$ |
|
Socle: | $\operatorname{soc} \simeq$ $C_2^2$ | $G/\operatorname{soc} \simeq$ $C_2^2$ |
|
2-Sylow subgroup: | $P_{ 2 } \simeq$ $C_4^2$ |
Subgroup diagram and profile
For the default diagram, subgroups are sorted vertically by the number of prime divisors (counted with multiplicity) in their orders.
To see subgroups sorted vertically by order instead, check this box.
To see subgroups sorted vertically by order instead, check this box.
Subgroup information
Click on a subgroup in the diagram to see information about it.
|
Series
Derived series | $C_4^2$ | $\rhd$ | $C_1$ |
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Chief series | $C_4^2$ | $\rhd$ | $C_2\times C_4$ | $\rhd$ | $C_2^2$ | $\rhd$ | $C_2$ | $\rhd$ | $C_1$ |
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lower central series | $C_4^2$ | $\rhd$ | $C_1$ |
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Upper central series | $C_1$ | $\lhd$ | $C_4^2$ |
|
Supergroups
This group is a maximal subgroup of 120 larger groups in the database.
This group is a maximal quotient of 121 larger groups in the database.
Character theory
Complex character table
1A | 2A | 2B | 2C | 4A1 | 4A-1 | 4B1 | 4B-1 | 4C1 | 4C-1 | 4D1 | 4D-1 | 4E1 | 4E-1 | 4F1 | 4F-1 | ||
Size | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | |
2 P | 1A | 1A | 1A | 1A | 2A | 2A | 2B | 2B | 2A | 2A | 2B | 2B | 2C | 2C | 2C | 2C | |
Type | |||||||||||||||||
16.2.1a | R | ||||||||||||||||
16.2.1b | R | ||||||||||||||||
16.2.1c | R | ||||||||||||||||
16.2.1d | R | ||||||||||||||||
16.2.1e1 | C | ||||||||||||||||
16.2.1e2 | C | ||||||||||||||||
16.2.1f1 | C | ||||||||||||||||
16.2.1f2 | C | ||||||||||||||||
16.2.1g1 | C | ||||||||||||||||
16.2.1g2 | C | ||||||||||||||||
16.2.1h1 | C | ||||||||||||||||
16.2.1h2 | C | ||||||||||||||||
16.2.1i1 | C | ||||||||||||||||
16.2.1i2 | C | ||||||||||||||||
16.2.1j1 | C | ||||||||||||||||
16.2.1j2 | C |
Rational character table
1A | 2A | 2B | 2C | 4A | 4B | 4C | 4D | 4E | 4F | ||
Size | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | |
2 P | 1A | 1A | 1A | 1A | 2A | 2B | 2A | 2B | 2C | 2C | |
16.2.1a | |||||||||||
16.2.1b | |||||||||||
16.2.1c | |||||||||||
16.2.1d | |||||||||||
16.2.1e | |||||||||||
16.2.1f | |||||||||||
16.2.1g | |||||||||||
16.2.1h | |||||||||||
16.2.1i | |||||||||||
16.2.1j |