# Group 16.2 downloaded from the LMFDB on 12 September 2025. ## Various presentations of this group are stored in this file: # GPC is polycyclic presentation GPerm is permutation group # GLZ, GLFp, GLZA, GLZq, GLFq if they exist are matrix groups # Many characteristics of the group are stored as booleans in a record: # Agroup, Zgroup, abelian, almost_simple,cyclic, metabelian, # metacyclic, monomial, nilpotent, perfect, quasisimple, rational, # solvable, supersolvable # The character table is stored as a record chartbl_n_i where n is the order # of the group and i is which group of that order it is. The record is # converted to a character table using ConvertToLibraryCharacterTableNC # Constructions GPC := PcGroupCode(10245,16); a := GPC.1; b := GPC.3; GPerm := Group( (1,4,2,3), (5,8,6,7), (1,2)(3,4), (5,6)(7,8) ); GLZ := Group([[[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 0, 1], [0, 0, -1, 0]], [[0, 1, 0, 0], [-1, 0, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]]]); GLFp := Group([[[ Z(5)^0, 0*Z(5) ], [ 0*Z(5), Z(5) ]], [[ Z(5), 0*Z(5) ], [ 0*Z(5), Z(5)^3 ]]]); # Booleans booleans_16_2 := rec( Agroup := true, Zgroup := false, abelian := true, almost_simple := false, cyclic := false, metabelian := true, metacyclic := true, monomial := true, nilpotent := true, perfect := false, quasisimple := false, rational := false, solvable := true, supersolvable := true); # Character Table chartbl_16_2:=rec(); chartbl_16_2.IsFinite:= true; chartbl_16_2.UnderlyingCharacteristic:= 0; chartbl_16_2.UnderlyingGroup:= GPC; chartbl_16_2.Size:= 16; chartbl_16_2.InfoText:= "Character table for group 16.2 downloaded from the LMFDB."; chartbl_16_2.Identifier:= " C4^2 "; chartbl_16_2.NrConjugacyClasses:= 16; chartbl_16_2.ConjugacyClasses:= [ of ..., f4, f2, f2*f4, f3, f3*f4, f1, f1*f2, f2*f3, f2*f3*f4, f1*f4, f1*f2*f4, f1*f3, f1*f2*f3*f4, f1*f3*f4, f1*f2*f3]; chartbl_16_2.IdentificationOfConjugacyClasses:= [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]; chartbl_16_2.ComputedPowerMaps:= [ , [1, 1, 1, 1, 2, 2, 3, 3, 2, 2, 3, 3, 4, 4, 4, 4]]; chartbl_16_2.SizesCentralizers:= [16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16]; chartbl_16_2.ClassNames:= ["1A", "2A", "2B", "2C", "4A1", "4A-1", "4B1", "4B-1", "4C1", "4C-1", "4D1", "4D-1", "4E1", "4E-1", "4F1", "4F-1"]; chartbl_16_2.OrderClassRepresentatives:= [1, 2, 2, 2, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4]; chartbl_16_2.Irr:= [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, -1, -1, -1, -1, 1, 1, -1, 1, -1, -1, 1, -1], [1, 1, 1, 1, -1, -1, 1, 1, -1, -1, 1, -1, 1, -1, -1, -1], [1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, 1, -1, 1], [1, -1, -1, 1, -1, 1, -1*E(4), -1*E(4), -1*E(4), E(4), E(4), -1*E(4), E(4), -1, E(4), 1], [1, -1, -1, 1, -1, 1, E(4), E(4), E(4), -1*E(4), -1*E(4), E(4), -1*E(4), -1, -1*E(4), 1], [1, -1, -1, 1, 1, -1, -1*E(4), -1*E(4), E(4), -1*E(4), E(4), E(4), E(4), 1, -1*E(4), -1], [1, -1, -1, 1, 1, -1, E(4), E(4), -1*E(4), E(4), -1*E(4), -1*E(4), -1*E(4), 1, E(4), -1], [1, -1, 1, -1, -1*E(4), E(4), -1, 1, E(4), -1*E(4), -1, -1*E(4), 1, E(4), E(4), -1*E(4)], [1, -1, 1, -1, E(4), -1*E(4), -1, 1, -1*E(4), E(4), -1, E(4), 1, -1*E(4), -1*E(4), E(4)], [1, -1, 1, -1, -1*E(4), E(4), 1, -1, -1*E(4), E(4), 1, E(4), -1, E(4), -1*E(4), -1*E(4)], [1, -1, 1, -1, E(4), -1*E(4), 1, -1, E(4), -1*E(4), 1, -1*E(4), -1, -1*E(4), E(4), E(4)], [1, 1, -1, -1, -1*E(4), -1*E(4), E(4), -1*E(4), -1, -1, -1*E(4), 1, E(4), E(4), 1, E(4)], [1, 1, -1, -1, E(4), E(4), -1*E(4), E(4), -1, -1, E(4), 1, -1*E(4), -1*E(4), 1, -1*E(4)], [1, 1, -1, -1, -1*E(4), -1*E(4), -1*E(4), E(4), 1, 1, E(4), -1, -1*E(4), E(4), -1, E(4)], [1, 1, -1, -1, E(4), E(4), E(4), -1*E(4), 1, 1, -1*E(4), -1, E(4), -1*E(4), -1, -1*E(4)]]; ConvertToLibraryCharacterTableNC(chartbl_16_2);