Learn more

Refine search


Results (15 matches)

  displayed columns for results

Elements of the group are displayed as permutations of degree 12.

Group Label Order Size Centralizer Powers Representative
2P 3P 5P 11P
$M_{12}$ 1A $1$ $1$ $M_{12}$ 1A 1A 1A 1A $()$
$M_{12}$ 2A $2$ $396$ $C_2\times S_5$ 1A 2A 2A 2A $(1,6)(2,12)(3,11)(4,8)(5,10)(7,9)$
$M_{12}$ 2B $2$ $495$ $Q_8:S_4$ 1A 2B 2B 2B $(1,10)(3,7)(6,11)(8,12)$
$M_{12}$ 3A $3$ $1760$ $C_3^2:S_3$ 3A 1A 3A 3A $(1,10,11)(3,4,5)(6,12,8)$
$M_{12}$ 3B $3$ $2640$ $C_3\times A_4$ 3B 1A 3B 3B $(1,11,5)(2,3,9)(4,10,12)(6,8,7)$
$M_{12}$ 4A $4$ $2970$ $C_4\wr C_2$ 2B 4A 4A 4A $(1,11,10,6)(2,5)(3,8,7,12)(4,9)$
$M_{12}$ 4B $4$ $2970$ $C_4\wr C_2$ 2B 4B 4B 4B $(1,5,11,8)(2,7,9,10)$
$M_{12}$ 5A $5$ $9504$ $C_{10}$ 5A 5A 1A 5A $(2,8,9,11,5)(3,10,12,4,7)$
$M_{12}$ 6A $6$ $7920$ $C_2\times C_6$ 3B 2A 6A 6A $(1,4,11,10,5,12)(2,7,3,6,9,8)$
$M_{12}$ 6B $6$ $15840$ $C_6$ 3A 2B 6B 6B $(1,11,10)(3,6,4,12,5,8)(7,9)$
$M_{12}$ 8A $8$ $11880$ $C_8$ 4A 8A 8A 8A $(1,8,11,7,10,12,6,3)(2,4,5,9)$
$M_{12}$ 8B $8$ $11880$ $C_8$ 4B 8B 8B 8B $(1,9,5,10,11,2,8,7)(3,12)$
$M_{12}$ 10A $10$ $9504$ $C_{10}$ 5A 10A 2A 10A $(1,6)(2,3,8,10,9,12,11,4,5,7)$
$M_{12}$ 11A1 $11$ $8640$ $C_{11}$ 11A-1 11A1 11A1 1A $(1,6,11,8,5,9,2,3,10,4,12)$
$M_{12}$ 11A-1 $11$ $8640$ $C_{11}$ 11A1 11A-1 11A-1 1A $(1,12,4,10,3,2,9,5,8,11,6)$
  displayed columns for results