Learn more

Refine search


Results (1-50 of 56 matches)

Next   displayed columns for results

Elements of the group are displayed as matrices in $\GL_{4}(\F_{4})$.

Group Label Order Size Centralizer Powers Representative
2P 3P
$C_2^3:\GL(2,\mathbb{Z}/4)$ 1A $1$ $1$ $C_2^3:\GL(2,\mathbb{Z}/4)$ 1A 1A $\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ \end{array}\right)$
$C_2^3:\GL(2,\mathbb{Z}/4)$ 2A $2$ $1$ $C_2^3:\GL(2,\mathbb{Z}/4)$ 1A 2A $\left(\begin{array}{llll}1 & 0 & 0 & 1 \\ 1 & \alpha^{2} & \alpha^{2} & 0 \\ \alpha^{2} & 1 & \alpha^{2} & \alpha \\ 0 & 0 & 0 & 1 \\ \end{array}\right)$
$C_2^3:\GL(2,\mathbb{Z}/4)$ 2B $2$ $1$ $C_2^3:\GL(2,\mathbb{Z}/4)$ 1A 2B $\left(\begin{array}{llll}1 & 0 & 0 & \alpha \\ \alpha & \alpha & 1 & 0 \\ 1 & \alpha & \alpha & \alpha^{2} \\ 0 & 0 & 0 & 1 \\ \end{array}\right)$
$C_2^3:\GL(2,\mathbb{Z}/4)$ 2C $2$ $1$ $C_2^3:\GL(2,\mathbb{Z}/4)$ 1A 2C $\left(\begin{array}{llll}1 & 0 & 0 & \alpha^{2} \\ \alpha^{2} & 0 & \alpha & 0 \\ \alpha & \alpha^{2} & 0 & 1 \\ 0 & 0 & 0 & 1 \\ \end{array}\right)$
$C_2^3:\GL(2,\mathbb{Z}/4)$ 2D $2$ $2$ $C_2^5:A_4$ 1A 2D $\left(\begin{array}{llll}1 & 0 & 0 & \alpha^{2} \\ \alpha & \alpha & 1 & 0 \\ 1 & \alpha & \alpha & 1 \\ 0 & 0 & 0 & 1 \\ \end{array}\right)$
$C_2^3:\GL(2,\mathbb{Z}/4)$ 2E $2$ $2$ $C_2^5:A_4$ 1A 2E $\left(\begin{array}{llll}1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & \alpha \\ 0 & 0 & 0 & 1 \\ \end{array}\right)$
$C_2^3:\GL(2,\mathbb{Z}/4)$ 2F $2$ $3$ $C_2^5:D_4$ 1A 2F $\left(\begin{array}{llll}0 & \alpha & \alpha^{2} & \alpha^{2} \\ \alpha^{2} & 0 & \alpha & \alpha \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ \end{array}\right)$
$C_2^3:\GL(2,\mathbb{Z}/4)$ 2G $2$ $3$ $C_2^5:D_4$ 1A 2G $\left(\begin{array}{llll}0 & \alpha & \alpha^{2} & \alpha^{2} \\ \alpha^{2} & 0 & \alpha & 1 \\ 0 & 0 & 1 & \alpha \\ 0 & 0 & 0 & 1 \\ \end{array}\right)$
$C_2^3:\GL(2,\mathbb{Z}/4)$ 2H $2$ $3$ $C_2^5:D_4$ 1A 2H $\left(\begin{array}{llll}0 & \alpha & \alpha^{2} & \alpha^{2} \\ \alpha^{2} & 0 & \alpha & \alpha^{2} \\ 0 & 0 & 1 & \alpha^{2} \\ 0 & 0 & 0 & 1 \\ \end{array}\right)$
$C_2^3:\GL(2,\mathbb{Z}/4)$ 2I $2$ $3$ $C_2^5:D_4$ 1A 2I $\left(\begin{array}{llll}\alpha & 1 & \alpha & \alpha \\ \alpha & \alpha & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ \end{array}\right)$
$C_2^3:\GL(2,\mathbb{Z}/4)$ 2J $2$ $3$ $C_2^5:D_4$ 1A 2J $\left(\begin{array}{llll}0 & \alpha & \alpha^{2} & \alpha \\ \alpha & \alpha & 1 & 1 \\ \alpha^{2} & 1 & \alpha^{2} & 0 \\ 0 & 0 & 0 & 1 \\ \end{array}\right)$
$C_2^3:\GL(2,\mathbb{Z}/4)$ 2K $2$ $3$ $C_2^5:D_4$ 1A 2K $\left(\begin{array}{llll}\alpha & 1 & \alpha & \alpha \\ \alpha & \alpha & 1 & \alpha^{2} \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ \end{array}\right)$
$C_2^3:\GL(2,\mathbb{Z}/4)$ 2L $2$ $3$ $C_2^5:D_4$ 1A 2L $\left(\begin{array}{llll}0 & \alpha & \alpha^{2} & 0 \\ 0 & 1 & 0 & 1 \\ \alpha & \alpha^{2} & 0 & \alpha^{2} \\ 0 & 0 & 0 & 1 \\ \end{array}\right)$
$C_2^3:\GL(2,\mathbb{Z}/4)$ 2M $2$ $3$ $C_2^5:D_4$ 1A 2M $\left(\begin{array}{llll}0 & \alpha & \alpha^{2} & 0 \\ 0 & 1 & 0 & \alpha \\ \alpha & \alpha^{2} & 0 & 1 \\ 0 & 0 & 0 & 1 \\ \end{array}\right)$
$C_2^3:\GL(2,\mathbb{Z}/4)$ 2N $2$ $3$ $C_2^5:D_4$ 1A 2N $\left(\begin{array}{llll}0 & \alpha & \alpha^{2} & 0 \\ 0 & 1 & 0 & \alpha^{2} \\ \alpha & \alpha^{2} & 0 & \alpha \\ 0 & 0 & 0 & 1 \\ \end{array}\right)$
$C_2^3:\GL(2,\mathbb{Z}/4)$ 2O $2$ $3$ $C_2^5:D_4$ 1A 2O $\left(\begin{array}{llll}\alpha & 1 & \alpha & 1 \\ 1 & \alpha^{2} & \alpha^{2} & \alpha^{2} \\ \alpha & \alpha^{2} & 0 & 0 \\ 0 & 0 & 0 & 1 \\ \end{array}\right)$
$C_2^3:\GL(2,\mathbb{Z}/4)$ 2P $2$ $3$ $C_2^5:D_4$ 1A 2P $\left(\begin{array}{llll}\alpha^{2} & \alpha^{2} & 1 & 1 \\ 1 & \alpha^{2} & \alpha^{2} & \alpha^{2} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ \end{array}\right)$
$C_2^3:\GL(2,\mathbb{Z}/4)$ 2Q $2$ $3$ $C_2^5:D_4$ 1A 2Q $\left(\begin{array}{llll}\alpha & 1 & \alpha & 1 \\ 1 & \alpha^{2} & \alpha^{2} & 1 \\ \alpha & \alpha^{2} & 0 & 1 \\ 0 & 0 & 0 & 1 \\ \end{array}\right)$
$C_2^3:\GL(2,\mathbb{Z}/4)$ 2R $2$ $6$ $C_2^7$ 1A 2R $\left(\begin{array}{llll}0 & \alpha & \alpha^{2} & 0 \\ 0 & 1 & 0 & 0 \\ \alpha & \alpha^{2} & 0 & 0 \\ 0 & 0 & 0 & 1 \\ \end{array}\right)$
$C_2^3:\GL(2,\mathbb{Z}/4)$ 2S $2$ $6$ $C_2^7$ 1A 2S $\left(\begin{array}{llll}1 & 0 & 0 & 1 \\ 0 & 1 & 0 & \alpha^{2} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ \end{array}\right)$
$C_2^3:\GL(2,\mathbb{Z}/4)$ 2T $2$ $6$ $C_2^7$ 1A 2T $\left(\begin{array}{llll}0 & \alpha & \alpha^{2} & 1 \\ 0 & 1 & 0 & 0 \\ \alpha & \alpha^{2} & 0 & \alpha \\ 0 & 0 & 0 & 1 \\ \end{array}\right)$
$C_2^3:\GL(2,\mathbb{Z}/4)$ 2U $2$ $6$ $C_2^7$ 1A 2U $\left(\begin{array}{llll}0 & \alpha & \alpha^{2} & 1 \\ 0 & 1 & 0 & \alpha^{2} \\ \alpha & \alpha^{2} & 0 & 0 \\ 0 & 0 & 0 & 1 \\ \end{array}\right)$
$C_2^3:\GL(2,\mathbb{Z}/4)$ 2V $2$ $6$ $C_2^7$ 1A 2V $\left(\begin{array}{llll}0 & \alpha & \alpha^{2} & \alpha \\ \alpha^{2} & 0 & \alpha & 0 \\ 0 & 0 & 1 & \alpha^{2} \\ 0 & 0 & 0 & 1 \\ \end{array}\right)$
$C_2^3:\GL(2,\mathbb{Z}/4)$ 2W $2$ $6$ $C_2^7$ 1A 2W $\left(\begin{array}{llll}0 & \alpha & \alpha^{2} & \alpha \\ \alpha^{2} & 0 & \alpha & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ \end{array}\right)$
$C_2^3:\GL(2,\mathbb{Z}/4)$ 2X $2$ $6$ $C_2^7$ 1A 2X $\left(\begin{array}{llll}0 & \alpha & \alpha^{2} & \alpha^{2} \\ \alpha^{2} & 0 & \alpha & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ \end{array}\right)$
$C_2^3:\GL(2,\mathbb{Z}/4)$ 2Y $2$ $6$ $C_2^7$ 1A 2Y $\left(\begin{array}{llll}1 & 0 & 0 & \alpha \\ \alpha^{2} & 0 & \alpha & 1 \\ \alpha & \alpha^{2} & 0 & 0 \\ 0 & 0 & 0 & 1 \\ \end{array}\right)$
$C_2^3:\GL(2,\mathbb{Z}/4)$ 2Z $2$ $6$ $C_2^7$ 1A 2Z $\left(\begin{array}{llll}0 & \alpha & \alpha^{2} & 1 \\ 0 & 1 & 0 & 1 \\ \alpha & \alpha^{2} & 0 & 1 \\ 0 & 0 & 0 & 1 \\ \end{array}\right)$
$C_2^3:\GL(2,\mathbb{Z}/4)$ 2AA $2$ $6$ $C_2^7$ 1A 2AA $\left(\begin{array}{llll}0 & \alpha & \alpha^{2} & 1 \\ 0 & 1 & 0 & \alpha \\ \alpha & \alpha^{2} & 0 & \alpha^{2} \\ 0 & 0 & 0 & 1 \\ \end{array}\right)$
$C_2^3:\GL(2,\mathbb{Z}/4)$ 2AB $2$ $6$ $C_2^7$ 1A 2AB $\left(\begin{array}{llll}0 & \alpha & \alpha^{2} & \alpha \\ \alpha^{2} & 0 & \alpha & \alpha \\ 0 & 0 & 1 & \alpha \\ 0 & 0 & 0 & 1 \\ \end{array}\right)$
$C_2^3:\GL(2,\mathbb{Z}/4)$ 2AC $2$ $6$ $C_2^7$ 1A 2AC $\left(\begin{array}{llll}0 & \alpha & \alpha^{2} & \alpha \\ \alpha^{2} & 0 & \alpha & \alpha^{2} \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ \end{array}\right)$
$C_2^3:\GL(2,\mathbb{Z}/4)$ 2AD $2$ $6$ $C_2^7$ 1A 2AD $\left(\begin{array}{llll}1 & 0 & 0 & 1 \\ 1 & \alpha^{2} & \alpha^{2} & \alpha^{2} \\ \alpha^{2} & 1 & \alpha^{2} & 0 \\ 0 & 0 & 0 & 1 \\ \end{array}\right)$
$C_2^3:\GL(2,\mathbb{Z}/4)$ 2AE $2$ $6$ $C_2^7$ 1A 2AE $\left(\begin{array}{llll}1 & 0 & 0 & \alpha \\ \alpha & \alpha & 1 & 1 \\ 1 & \alpha & \alpha & 0 \\ 0 & 0 & 0 & 1 \\ \end{array}\right)$
$C_2^3:\GL(2,\mathbb{Z}/4)$ 2AF $2$ $24$ $C_2^5$ 1A 2AF $\left(\begin{array}{llll}0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ \alpha^{2} & \alpha & 0 & \alpha \\ 1 & \alpha & \alpha^{2} & 0 \\ \end{array}\right)$
$C_2^3:\GL(2,\mathbb{Z}/4)$ 2AG $2$ $24$ $C_2^5$ 1A 2AG $\left(\begin{array}{llll}1 & 0 & \alpha^{2} & 0 \\ \alpha^{2} & 0 & 0 & \alpha \\ 0 & 0 & 1 & 0 \\ \alpha & \alpha^{2} & 1 & 0 \\ \end{array}\right)$
$C_2^3:\GL(2,\mathbb{Z}/4)$ 3A $3$ $32$ $C_2^2\times C_6$ 3A 1A $\left(\begin{array}{llll}0 & \alpha^{2} & 1 & 0 \\ 0 & \alpha^{2} & 0 & \alpha^{2} \\ 1 & 1 & 1 & \alpha \\ 0 & 0 & 0 & \alpha \\ \end{array}\right)$
$C_2^3:\GL(2,\mathbb{Z}/4)$ 4A $4$ $24$ $C_2^3\times C_4$ 2L 4A $\left(\begin{array}{llll}0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ \alpha^{2} & \alpha & 0 & 0 \\ 1 & \alpha & \alpha^{2} & 0 \\ \end{array}\right)$
$C_2^3:\GL(2,\mathbb{Z}/4)$ 4B $4$ $24$ $C_2^3\times C_4$ 2M 4B $\left(\begin{array}{llll}0 & \alpha & 0 & 0 \\ 0 & 1 & \alpha & 0 \\ 0 & 0 & 1 & 1 \\ \alpha & \alpha^{2} & 1 & 0 \\ \end{array}\right)$
$C_2^3:\GL(2,\mathbb{Z}/4)$ 4C $4$ $24$ $C_2^3\times C_4$ 2N 4C $\left(\begin{array}{llll}0 & \alpha^{2} & 0 & \alpha \\ \alpha & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ \alpha^{2} & 1 & \alpha & 0 \\ \end{array}\right)$
$C_2^3:\GL(2,\mathbb{Z}/4)$ 4D $4$ $24$ $C_2^3\times C_4$ 2A 4D $\left(\begin{array}{llll}0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 \\ \alpha^{2} & \alpha & 0 & 1 \\ 1 & \alpha & \alpha^{2} & 0 \\ \end{array}\right)$
$C_2^3:\GL(2,\mathbb{Z}/4)$ 4E $4$ $24$ $C_2^3\times C_4$ 2O 4E $\left(\begin{array}{llll}0 & 1 & 0 & \alpha^{2} \\ 1 & 0 & 0 & 1 \\ \alpha^{2} & \alpha & 0 & 0 \\ 1 & \alpha & \alpha^{2} & 0 \\ \end{array}\right)$
$C_2^3:\GL(2,\mathbb{Z}/4)$ 4F $4$ $24$ $C_2^3\times C_4$ 2P 4F $\left(\begin{array}{llll}0 & \alpha & 0 & \alpha \\ 0 & 1 & \alpha & \alpha^{2} \\ 0 & 0 & 1 & 0 \\ \alpha & \alpha^{2} & 1 & 0 \\ \end{array}\right)$
$C_2^3:\GL(2,\mathbb{Z}/4)$ 4G $4$ $24$ $C_2^3\times C_4$ 2Q 4G $\left(\begin{array}{llll}0 & \alpha & 0 & \alpha \\ \alpha^{2} & 0 & 0 & \alpha^{2} \\ \alpha & \alpha^{2} & 0 & 0 \\ \alpha & \alpha^{2} & 1 & 0 \\ \end{array}\right)$
$C_2^3:\GL(2,\mathbb{Z}/4)$ 4H $4$ $24$ $C_2^3\times C_4$ 2A 4H $\left(\begin{array}{llll}1 & 0 & \alpha^{2} & 0 \\ \alpha^{2} & 0 & 0 & 1 \\ 0 & 0 & 1 & \alpha \\ \alpha & \alpha^{2} & 1 & 0 \\ \end{array}\right)$
$C_2^3:\GL(2,\mathbb{Z}/4)$ 4I $4$ $24$ $C_2^3\times C_4$ 2P 4I $\left(\begin{array}{llll}1 & 0 & \alpha^{2} & 1 \\ \alpha^{2} & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ \alpha & \alpha^{2} & 1 & 0 \\ \end{array}\right)$
$C_2^3:\GL(2,\mathbb{Z}/4)$ 4J $4$ $24$ $C_2^3\times C_4$ 2M 4J $\left(\begin{array}{llll}1 & 0 & \alpha^{2} & 0 \\ 0 & 1 & \alpha & \alpha \\ \alpha & \alpha^{2} & 0 & 0 \\ \alpha & \alpha^{2} & 1 & 0 \\ \end{array}\right)$
$C_2^3:\GL(2,\mathbb{Z}/4)$ 4K $4$ $24$ $C_2^3\times C_4$ 2L 4K $\left(\begin{array}{llll}1 & 0 & \alpha^{2} & 1 \\ \alpha^{2} & 0 & 0 & \alpha \\ 0 & 0 & 1 & \alpha \\ \alpha & \alpha^{2} & 1 & 0 \\ \end{array}\right)$
$C_2^3:\GL(2,\mathbb{Z}/4)$ 4L $4$ $24$ $C_2^3\times C_4$ 2Q 4L $\left(\begin{array}{llll}1 & 0 & \alpha^{2} & \alpha \\ \alpha^{2} & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ \alpha & \alpha^{2} & 1 & 0 \\ \end{array}\right)$
$C_2^3:\GL(2,\mathbb{Z}/4)$ 4M $4$ $24$ $C_2^3\times C_4$ 2N 4M $\left(\begin{array}{llll}1 & 0 & \alpha^{2} & \alpha \\ \alpha^{2} & 0 & 0 & \alpha \\ 0 & 0 & 1 & \alpha^{2} \\ \alpha & \alpha^{2} & 1 & 0 \\ \end{array}\right)$
$C_2^3:\GL(2,\mathbb{Z}/4)$ 4N $4$ $24$ $C_2^3\times C_4$ 2O 4N $\left(\begin{array}{llll}1 & 0 & \alpha^{2} & \alpha^{2} \\ \alpha^{2} & 0 & 0 & 1 \\ 0 & 0 & 1 & \alpha^{2} \\ \alpha & \alpha^{2} & 1 & 0 \\ \end{array}\right)$
$C_2^3:\GL(2,\mathbb{Z}/4)$ 6A $6$ $32$ $C_2^2\times C_6$ 3A 2B $\left(\begin{array}{llll}\alpha^{2} & 0 & 0 & 1 \\ \alpha^{2} & \alpha^{2} & \alpha & 0 \\ 0 & \alpha^{2} & \alpha^{2} & \alpha \\ 0 & 0 & 0 & \alpha^{2} \\ \end{array}\right)$
Next   displayed columns for results