Refine search
Results (32 matches)
Download displayed columns for resultsElements of the group are displayed as permutations of degree 12.
| Group | Label | Order | Size | Centralizer | Powers | Representative | ||
|---|---|---|---|---|---|---|---|---|
| 2P | 3P | 7P | ||||||
| $F_8:C_{12}$ | 1A | $1$ | $1$ | $F_8:C_{12}$ | 1A | 1A | 1A | $()$ |
| $F_8:C_{12}$ | 2A | $2$ | $1$ | $F_8:C_{12}$ | 1A | 2A | 2A | $(9,11)(10,12)$ |
| $F_8:C_{12}$ | 2B | $2$ | $7$ | $C_2^3:C_{12}$ | 1A | 2B | 2B | $(1,5)(2,3)(4,7)(6,8)(9,11)(10,12)$ |
| $F_8:C_{12}$ | 2C | $2$ | $7$ | $C_2^3:C_{12}$ | 1A | 2C | 2C | $(1,6)(2,4)(3,7)(5,8)$ |
| $F_8:C_{12}$ | 3A1 | $3$ | $28$ | $C_2\times C_{12}$ | 3A-1 | 1A | 3A1 | $(1,2,6)(3,8,5)$ |
| $F_8:C_{12}$ | 3A-1 | $3$ | $28$ | $C_2\times C_{12}$ | 3A1 | 1A | 3A-1 | $(1,6,2)(3,5,8)$ |
| $F_8:C_{12}$ | 4A1 | $4$ | $1$ | $F_8:C_{12}$ | 2A | 4A-1 | 4A-1 | $(9,12,11,10)$ |
| $F_8:C_{12}$ | 4A-1 | $4$ | $1$ | $F_8:C_{12}$ | 2A | 4A1 | 4A1 | $(9,10,11,12)$ |
| $F_8:C_{12}$ | 4B1 | $4$ | $7$ | $C_2^3:C_{12}$ | 2A | 4B-1 | 4B-1 | $(1,5)(2,3)(4,7)(6,8)(9,12,11,10)$ |
| $F_8:C_{12}$ | 4B-1 | $4$ | $7$ | $C_2^3:C_{12}$ | 2A | 4B1 | 4B1 | $(1,5)(2,3)(4,7)(6,8)(9,10,11,12)$ |
| $F_8:C_{12}$ | 6A1 | $6$ | $28$ | $C_2\times C_{12}$ | 3A1 | 2B | 6A1 | $(1,8,2,5,6,3)(4,7)(9,11)(10,12)$ |
| $F_8:C_{12}$ | 6A-1 | $6$ | $28$ | $C_2\times C_{12}$ | 3A-1 | 2B | 6A-1 | $(1,3,6,5,2,8)(4,7)(9,11)(10,12)$ |
| $F_8:C_{12}$ | 6B1 | $6$ | $28$ | $C_2\times C_{12}$ | 3A1 | 2A | 6B1 | $(1,4,6)(5,7,8)(9,11)(10,12)$ |
| $F_8:C_{12}$ | 6B-1 | $6$ | $28$ | $C_2\times C_{12}$ | 3A-1 | 2A | 6B-1 | $(1,6,4)(5,8,7)(9,11)(10,12)$ |
| $F_8:C_{12}$ | 6C1 | $6$ | $28$ | $C_2\times C_{12}$ | 3A1 | 2C | 6C1 | $(1,5,7,6,8,3)(2,4)$ |
| $F_8:C_{12}$ | 6C-1 | $6$ | $28$ | $C_2\times C_{12}$ | 3A-1 | 2C | 6C-1 | $(1,3,8,6,7,5)(2,4)$ |
| $F_8:C_{12}$ | 7A1 | $7$ | $24$ | $C_{28}$ | 7A1 | 7A-1 | 1A | $(2,4,3,6,8,7,5)$ |
| $F_8:C_{12}$ | 7A-1 | $7$ | $24$ | $C_{28}$ | 7A-1 | 7A1 | 1A | $(2,5,7,8,6,3,4)$ |
| $F_8:C_{12}$ | 12A1 | $12$ | $28$ | $C_2\times C_{12}$ | 6B1 | 4B1 | 12A-5 | $(1,8,4,5,6,7)(2,3)(9,10,11,12)$ |
| $F_8:C_{12}$ | 12A-1 | $12$ | $28$ | $C_2\times C_{12}$ | 6B-1 | 4B-1 | 12A5 | $(1,7,6,5,4,8)(2,3)(9,12,11,10)$ |
| $F_8:C_{12}$ | 12A5 | $12$ | $28$ | $C_2\times C_{12}$ | 6B-1 | 4B1 | 12A-1 | $(1,7,6,5,4,8)(2,3)(9,10,11,12)$ |
| $F_8:C_{12}$ | 12A-5 | $12$ | $28$ | $C_2\times C_{12}$ | 6B1 | 4B-1 | 12A1 | $(1,8,4,5,6,7)(2,3)(9,12,11,10)$ |
| $F_8:C_{12}$ | 12B1 | $12$ | $28$ | $C_2\times C_{12}$ | 6B1 | 4A1 | 12B-5 | $(1,7,4)(2,3,8)(9,10,11,12)$ |
| $F_8:C_{12}$ | 12B-1 | $12$ | $28$ | $C_2\times C_{12}$ | 6B-1 | 4A-1 | 12B5 | $(1,4,7)(2,8,3)(9,12,11,10)$ |
| $F_8:C_{12}$ | 12B5 | $12$ | $28$ | $C_2\times C_{12}$ | 6B-1 | 4A1 | 12B-1 | $(1,4,7)(2,8,3)(9,10,11,12)$ |
| $F_8:C_{12}$ | 12B-5 | $12$ | $28$ | $C_2\times C_{12}$ | 6B1 | 4A-1 | 12B1 | $(1,7,4)(2,3,8)(9,12,11,10)$ |
| $F_8:C_{12}$ | 14A1 | $14$ | $24$ | $C_{28}$ | 7A1 | 14A-1 | 2A | $(2,8,4,7,3,5,6)(9,11)(10,12)$ |
| $F_8:C_{12}$ | 14A-1 | $14$ | $24$ | $C_{28}$ | 7A-1 | 14A1 | 2A | $(2,6,5,3,7,4,8)(9,11)(10,12)$ |
| $F_8:C_{12}$ | 28A1 | $28$ | $24$ | $C_{28}$ | 14A1 | 28A-1 | 4A1 | $(2,3,8,5,4,6,7)(9,10,11,12)$ |
| $F_8:C_{12}$ | 28A-1 | $28$ | $24$ | $C_{28}$ | 14A-1 | 28A1 | 4A-1 | $(2,5,7,8,6,3,4)(9,12,11,10)$ |
| $F_8:C_{12}$ | 28A5 | $28$ | $24$ | $C_{28}$ | 14A-1 | 28A-5 | 4A1 | $(2,5,7,8,6,3,4)(9,10,11,12)$ |
| $F_8:C_{12}$ | 28A-5 | $28$ | $24$ | $C_{28}$ | 14A1 | 28A5 | 4A-1 | $(2,3,8,5,4,6,7)(9,12,11,10)$ |