Refine search
Results (34 matches)
Download displayed columns for resultsElements of the group are displayed as equivalence classes (represented by square brackets) of matrices in $\SOMinus(6,3)$.
Group | Label | Order | Size | Centralizer | Powers | Representative | |||
---|---|---|---|---|---|---|---|---|---|
2P | 3P | 5P | 7P | ||||||
$\PSOMinus(6,3)$ | 1A | $1$ | $1$ | $\PSOMinus(6,3)$ | 1A | 1A | 1A | 1A | $ \left[ \left(\begin{array}{rrrrrr} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{array}\right) \right] $ |
$\PSOMinus(6,3)$ | 2A | $2$ | $540$ | $C_2\times \SU(3,3)$ | 1A | 2A | 2A | 2A | $ \left[ \left(\begin{array}{rrrrrr} 1 & 2 & 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 2 & 0 & 2 \\ 2 & 2 & 2 & 2 & 2 & 1 \\ 1 & 1 & 2 & 1 & 2 & 1 \\ 1 & 0 & 1 & 0 & 0 & 1 \\ 0 & 2 & 1 & 0 & 2 & 2 \end{array}\right) \right] $ |
$\PSOMinus(6,3)$ | 2B | $2$ | $2835$ | $C_2^3:A_4.D_6.C_2$ | 1A | 2B | 2B | 2B | $ \left[ \left(\begin{array}{rrrrrr} 0 & 2 & 0 & 2 & 1 & 1 \\ 1 & 0 & 1 & 0 & 2 & 1 \\ 2 & 2 & 1 & 2 & 1 & 1 \\ 1 & 2 & 1 & 1 & 2 & 1 \\ 1 & 1 & 0 & 1 & 0 & 2 \\ 2 & 1 & 2 & 0 & 1 & 0 \end{array}\right) \right] $ |
$\PSOMinus(6,3)$ | 2C | $2$ | $4536$ | $C_2\times S_6$ | 1A | 2C | 2C | 2C | $ \left[ \left(\begin{array}{rrrrrr} 0 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 0 & 1 \\ 0 & 0 & 2 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 0 \end{array}\right) \right] $ |
$\PSOMinus(6,3)$ | 3A | $3$ | $560$ | $C_3^3:C_3^2.Q_8.C_6$ | 3A | 1A | 3A | 3A | $ \left[ \left(\begin{array}{rrrrrr} 0 & 1 & 2 & 2 & 1 & 0 \\ 1 & 2 & 0 & 2 & 0 & 2 \\ 2 & 2 & 0 & 1 & 2 & 0 \\ 1 & 2 & 1 & 1 & 2 & 1 \\ 1 & 0 & 0 & 2 & 2 & 2 \\ 0 & 2 & 1 & 0 & 2 & 1 \end{array}\right) \right] $ |
$\PSOMinus(6,3)$ | 3B | $3$ | $3360$ | $C_3^4:S_4$ | 3B | 1A | 3B | 3B | $ \left[ \left(\begin{array}{rrrrrr} 0 & 2 & 0 & 1 & 1 & 0 \\ 2 & 0 & 2 & 2 & 2 & 2 \\ 0 & 0 & 2 & 2 & 2 & 1 \\ 2 & 2 & 1 & 1 & 0 & 1 \\ 2 & 2 & 1 & 0 & 1 & 1 \\ 2 & 2 & 1 & 0 & 0 & 2 \end{array}\right) \right] $ |
$\PSOMinus(6,3)$ | 3C | $3$ | $3360$ | $C_3^4:S_4$ | 3C | 1A | 3C | 3C | $ \left[ \left(\begin{array}{rrrrrr} 1 & 0 & 0 & 0 & 0 & 0 \\ 2 & 2 & 1 & 2 & 1 & 0 \\ 2 & 1 & 0 & 2 & 1 & 0 \\ 2 & 1 & 0 & 0 & 1 & 0 \\ 2 & 1 & 1 & 2 & 2 & 0 \\ 1 & 2 & 2 & 1 & 2 & 1 \end{array}\right) \right] $ |
$\PSOMinus(6,3)$ | 3D | $3$ | $40320$ | $C_3^3:S_3$ | 3D | 1A | 3D | 3D | $ \left[ \left(\begin{array}{rrrrrr} 0 & 0 & 0 & 0 & 0 & 2 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 2 & 1 & 1 & 0 & 2 \\ 0 & 0 & 0 & 2 & 0 & 2 \\ 0 & 2 & 2 & 1 & 1 & 0 \\ 2 & 0 & 0 & 2 & 0 & 1 \end{array}\right) \right] $ |
$\PSOMinus(6,3)$ | 4A | $4$ | $5670$ | $Q_8.A_4.D_6$ | 2B | 4A | 4A | 4A | $ \left[ \left(\begin{array}{rrrrrr} 0 & 1 & 0 & 2 & 2 & 2 \\ 1 & 1 & 1 & 0 & 1 & 0 \\ 2 & 0 & 0 & 2 & 0 & 2 \\ 2 & 1 & 2 & 2 & 2 & 0 \\ 2 & 1 & 2 & 0 & 1 & 0 \\ 2 & 0 & 1 & 2 & 0 & 1 \end{array}\right) \right] $ |
$\PSOMinus(6,3)$ | 4B | $4$ | $34020$ | $C_2\times \Unitary(2,3)$ | 2B | 4B | 4B | 4B | $ \left[ \left(\begin{array}{rrrrrr} 1 & 2 & 1 & 0 & 1 & 2 \\ 1 & 0 & 0 & 2 & 2 & 2 \\ 0 & 2 & 0 & 1 & 2 & 1 \\ 0 & 2 & 1 & 0 & 1 & 1 \\ 1 & 1 & 2 & 2 & 2 & 2 \\ 2 & 1 & 2 & 2 & 0 & 2 \end{array}\right) \right] $ |
$\PSOMinus(6,3)$ | 4C | $4$ | $51030$ | $(C_2\times C_4^2):C_4$ | 2B | 4C | 4C | 4C | $ \left[ \left(\begin{array}{rrrrrr} 0 & 2 & 2 & 1 & 1 & 1 \\ 2 & 1 & 0 & 1 & 0 & 1 \\ 2 & 1 & 2 & 1 & 2 & 1 \\ 0 & 0 & 0 & 2 & 0 & 1 \\ 1 & 0 & 0 & 2 & 1 & 2 \\ 2 & 1 & 0 & 1 & 2 & 0 \end{array}\right) \right] $ |
$\PSOMinus(6,3)$ | 4D | $4$ | $204120$ | $C_4^2:C_2$ | 2B | 4D | 4D | 4D | $ \left[ \left(\begin{array}{rrrrrr} 2 & 0 & 0 & 2 & 0 & 1 \\ 0 & 1 & 0 & 1 & 2 & 1 \\ 2 & 1 & 1 & 1 & 1 & 1 \\ 2 & 1 & 1 & 2 & 2 & 2 \\ 2 & 2 & 1 & 0 & 2 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 \end{array}\right) \right] $ |
$\PSOMinus(6,3)$ | 5A | $5$ | $653184$ | $C_{10}$ | 5A | 5A | 1A | 5A | $ \left[ \left(\begin{array}{rrrrrr} 1 & 2 & 0 & 1 & 0 & 2 \\ 1 & 1 & 0 & 1 & 0 & 2 \\ 0 & 1 & 1 & 1 & 0 & 2 \\ 0 & 1 & 1 & 2 & 0 & 0 \\ 2 & 2 & 2 & 0 & 2 & 0 \\ 1 & 0 & 1 & 0 & 1 & 1 \end{array}\right) \right] $ |
$\PSOMinus(6,3)$ | 6A | $6$ | $30240$ | $C_2\times \He_3:C_4$ | 3A | 2A | 6A | 6A | $ \left[ \left(\begin{array}{rrrrrr} 1 & 1 & 1 & 1 & 2 & 2 \\ 1 & 2 & 0 & 2 & 1 & 0 \\ 0 & 2 & 2 & 0 & 0 & 2 \\ 0 & 0 & 1 & 2 & 2 & 2 \\ 1 & 0 & 2 & 1 & 1 & 2 \\ 2 & 2 & 2 & 1 & 0 & 1 \end{array}\right) \right] $ |
$\PSOMinus(6,3)$ | 6B | $6$ | $45360$ | $\SL(2,3):C_6$ | 3A | 2B | 6B | 6B | $ \left[ \left(\begin{array}{rrrrrr} 1 & 0 & 2 & 2 & 1 & 1 \\ 0 & 0 & 0 & 0 & 2 & 0 \\ 2 & 0 & 2 & 2 & 2 & 0 \\ 1 & 0 & 2 & 1 & 2 & 0 \\ 1 & 2 & 0 & 2 & 0 & 2 \\ 1 & 0 & 0 & 0 & 2 & 0 \end{array}\right) \right] $ |
$\PSOMinus(6,3)$ | 6C | $6$ | $90720$ | $C_3\times D_{12}$ | 3B | 2B | 6C | 6C | $ \left[ \left(\begin{array}{rrrrrr} 1 & 2 & 0 & 1 & 1 & 0 \\ 1 & 2 & 0 & 1 & 0 & 2 \\ 2 & 1 & 1 & 0 & 1 & 1 \\ 1 & 2 & 0 & 0 & 0 & 1 \\ 2 & 0 & 0 & 1 & 0 & 1 \\ 2 & 2 & 1 & 1 & 2 & 0 \end{array}\right) \right] $ |
$\PSOMinus(6,3)$ | 6D | $6$ | $90720$ | $C_3\times D_{12}$ | 3C | 2B | 6D | 6D | $ \left[ \left(\begin{array}{rrrrrr} 2 & 2 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 2 \\ 2 & 2 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 2 & 1 & 2 \\ 1 & 2 & 2 & 0 & 1 & 2 \\ 1 & 1 & 1 & 2 & 0 & 2 \end{array}\right) \right] $ |
$\PSOMinus(6,3)$ | 6E | $6$ | $181440$ | $C_6\times S_3$ | 3C | 2C | 6E | 6E | $ \left[ \left(\begin{array}{rrrrrr} 0 & 1 & 1 & 1 & 1 & 1 \\ 2 & 0 & 1 & 2 & 2 & 1 \\ 2 & 1 & 1 & 2 & 1 & 0 \\ 1 & 1 & 2 & 0 & 1 & 1 \\ 2 & 2 & 1 & 2 & 0 & 1 \\ 0 & 2 & 1 & 0 & 2 & 0 \end{array}\right) \right] $ |
$\PSOMinus(6,3)$ | 6F | $6$ | $181440$ | $C_6\times S_3$ | 3B | 2C | 6F | 6F | $ \left[ \left(\begin{array}{rrrrrr} 1 & 2 & 2 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 & 2 & 2 \\ 0 & 1 & 0 & 0 & 2 & 2 \\ 0 & 2 & 2 & 2 & 1 & 1 \\ 1 & 1 & 0 & 0 & 2 & 1 \\ 2 & 0 & 1 & 0 & 2 & 2 \end{array}\right) \right] $ |
$\PSOMinus(6,3)$ | 6G | $6$ | $362880$ | $C_3\times C_6$ | 3D | 2A | 6G | 6G | $ \left[ \left(\begin{array}{rrrrrr} 2 & 1 & 1 & 2 & 1 & 2 \\ 1 & 0 & 0 & 2 & 0 & 2 \\ 2 & 2 & 1 & 0 & 2 & 1 \\ 0 & 1 & 1 & 0 & 2 & 2 \\ 1 & 1 & 1 & 2 & 0 & 2 \\ 2 & 1 & 0 & 2 & 2 & 0 \end{array}\right) \right] $ |
$\PSOMinus(6,3)$ | 7A1 | $7$ | $466560$ | $C_{14}$ | 7A1 | 7A-1 | 7A-1 | 1A | $ \left[ \left(\begin{array}{rrrrrr} 2 & 0 & 0 & 0 & 1 & 0 \\ 2 & 2 & 2 & 2 & 0 & 2 \\ 1 & 0 & 1 & 0 & 2 & 0 \\ 2 & 2 & 2 & 0 & 2 & 2 \\ 1 & 2 & 1 & 1 & 1 & 2 \\ 1 & 0 & 2 & 1 & 2 & 2 \end{array}\right) \right] $ |
$\PSOMinus(6,3)$ | 7A-1 | $7$ | $466560$ | $C_{14}$ | 7A-1 | 7A1 | 7A1 | 1A | $ \left[ \left(\begin{array}{rrrrrr} 1 & 1 & 1 & 1 & 1 & 0 \\ 1 & 2 & 0 & 2 & 0 & 2 \\ 2 & 0 & 2 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 1 & 0 \\ 2 & 2 & 2 & 0 & 1 & 1 \end{array}\right) \right] $ |
$\PSOMinus(6,3)$ | 8A | $8$ | $408240$ | $C_2\times C_8$ | 4B | 8A | 8A | 8A | $ \left[ \left(\begin{array}{rrrrrr} 1 & 1 & 1 & 0 & 1 & 0 \\ 2 & 1 & 2 & 2 & 0 & 2 \\ 2 & 2 & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 & 2 \\ 2 & 1 & 1 & 1 & 0 & 2 \\ 0 & 1 & 0 & 0 & 0 & 0 \end{array}\right) \right] $ |
$\PSOMinus(6,3)$ | 8B | $8$ | $408240$ | $C_2\times C_8$ | 4B | 8B | 8B | 8B | $ \left[ \left(\begin{array}{rrrrrr} 1 & 1 & 1 & 1 & 0 & 1 \\ 1 & 2 & 1 & 0 & 2 & 0 \\ 1 & 1 & 0 & 1 & 1 & 0 \\ 2 & 2 & 2 & 1 & 1 & 2 \\ 1 & 1 & 1 & 1 & 1 & 0 \\ 0 & 2 & 1 & 1 & 2 & 1 \end{array}\right) \right] $ |
$\PSOMinus(6,3)$ | 9A | $9$ | $241920$ | $C_3\times C_9$ | 9A | 3A | 9A | 9A | $ \left[ \left(\begin{array}{rrrrrr} 0 & 1 & 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 1 & 2 & 0 \\ 2 & 0 & 2 & 1 & 1 & 2 \\ 2 & 2 & 2 & 0 & 1 & 0 \\ 2 & 1 & 1 & 1 & 1 & 0 \\ 1 & 0 & 0 & 2 & 0 & 2 \end{array}\right) \right] $ |
$\PSOMinus(6,3)$ | 9B | $9$ | $241920$ | $C_3\times C_9$ | 9B | 3A | 9B | 9B | $ \left[ \left(\begin{array}{rrrrrr} 2 & 2 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 1 & 1 & 1 & 0 \\ 1 & 1 & 2 & 1 & 0 & 0 \\ 2 & 0 & 1 & 0 & 0 & 2 \\ 2 & 2 & 2 & 1 & 2 & 2 \end{array}\right) \right] $ |
$\PSOMinus(6,3)$ | 10A | $10$ | $653184$ | $C_{10}$ | 5A | 10A | 2C | 10A | $ \left[ \left(\begin{array}{rrrrrr} 2 & 0 & 1 & 1 & 0 & 2 \\ 1 & 1 & 0 & 0 & 1 & 2 \\ 1 & 0 & 1 & 2 & 0 & 1 \\ 1 & 1 & 0 & 2 & 2 & 1 \\ 0 & 1 & 2 & 2 & 1 & 2 \\ 1 & 0 & 0 & 1 & 2 & 2 \end{array}\right) \right] $ |
$\PSOMinus(6,3)$ | 12A1 | $12$ | $45360$ | $\SL(2,3):C_6$ | 6B | 4A | 12A1 | 12A-1 | $ \left[ \left(\begin{array}{rrrrrr} 1 & 2 & 0 & 2 & 2 & 1 \\ 2 & 2 & 1 & 2 & 2 & 2 \\ 2 & 2 & 0 & 1 & 0 & 2 \\ 2 & 0 & 1 & 1 & 2 & 1 \\ 2 & 2 & 2 & 0 & 2 & 0 \\ 1 & 2 & 2 & 2 & 0 & 1 \end{array}\right) \right] $ |
$\PSOMinus(6,3)$ | 12A-1 | $12$ | $45360$ | $\SL(2,3):C_6$ | 6B | 4A | 12A-1 | 12A1 | $ \left[ \left(\begin{array}{rrrrrr} 2 & 0 & 1 & 0 & 1 & 2 \\ 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 1 & 1 & 2 \\ 1 & 2 & 1 & 0 & 0 & 2 \\ 1 & 1 & 2 & 1 & 1 & 1 \\ 2 & 1 & 0 & 2 & 1 & 2 \end{array}\right) \right] $ |
$\PSOMinus(6,3)$ | 12B | $12$ | $181440$ | $C_3\times C_{12}$ | 6C | 4A | 12B | 12B | $ \left[ \left(\begin{array}{rrrrrr} 0 & 1 & 0 & 2 & 2 & 0 \\ 1 & 2 & 2 & 1 & 2 & 1 \\ 1 & 2 & 0 & 1 & 1 & 2 \\ 0 & 2 & 0 & 2 & 0 & 2 \\ 2 & 2 & 2 & 0 & 0 & 2 \\ 0 & 1 & 1 & 0 & 1 & 1 \end{array}\right) \right] $ |
$\PSOMinus(6,3)$ | 12C | $12$ | $181440$ | $C_3\times C_{12}$ | 6D | 4A | 12C | 12C | $ \left[ \left(\begin{array}{rrrrrr} 1 & 1 & 2 & 1 & 1 & 1 \\ 0 & 2 & 2 & 2 & 2 & 0 \\ 0 & 0 & 1 & 0 & 0 & 2 \\ 2 & 1 & 0 & 2 & 0 & 0 \\ 1 & 0 & 0 & 2 & 0 & 2 \\ 1 & 1 & 0 & 2 & 0 & 2 \end{array}\right) \right] $ |
$\PSOMinus(6,3)$ | 12D | $12$ | $272160$ | $C_2\times C_{12}$ | 6B | 4B | 12D | 12D | $ \left[ \left(\begin{array}{rrrrrr} 2 & 0 & 0 & 0 & 2 & 0 \\ 0 & 1 & 0 & 2 & 2 & 2 \\ 2 & 0 & 1 & 1 & 0 & 0 \\ 1 & 2 & 1 & 0 & 2 & 1 \\ 2 & 1 & 2 & 2 & 0 & 2 \\ 2 & 2 & 2 & 0 & 2 & 0 \end{array}\right) \right] $ |
$\PSOMinus(6,3)$ | 14A1 | $14$ | $466560$ | $C_{14}$ | 7A1 | 14A-1 | 14A-1 | 2A | $ \left[ \left(\begin{array}{rrrrrr} 1 & 0 & 1 & 2 & 2 & 2 \\ 0 & 2 & 2 & 2 & 2 & 1 \\ 2 & 0 & 0 & 1 & 1 & 2 \\ 1 & 1 & 2 & 1 & 2 & 1 \\ 0 & 2 & 0 & 0 & 0 & 2 \\ 1 & 0 & 2 & 2 & 2 & 1 \end{array}\right) \right] $ |
$\PSOMinus(6,3)$ | 14A-1 | $14$ | $466560$ | $C_{14}$ | 7A-1 | 14A1 | 14A1 | 2A | $ \left[ \left(\begin{array}{rrrrrr} 1 & 2 & 2 & 0 & 1 & 2 \\ 2 & 0 & 1 & 0 & 2 & 2 \\ 0 & 0 & 2 & 0 & 0 & 2 \\ 2 & 0 & 1 & 2 & 2 & 0 \\ 0 & 2 & 1 & 1 & 2 & 0 \\ 1 & 0 & 2 & 0 & 0 & 1 \end{array}\right) \right] $ |