Properties

Label 6531840.b.40320.b1.a1
Order $ 2 \cdot 3^{4} $
Index $ 2^{7} \cdot 3^{2} \cdot 5 \cdot 7 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^3:S_3$
Order: \(162\)\(\medspace = 2 \cdot 3^{4} \)
Index: \(40320\)\(\medspace = 2^{7} \cdot 3^{2} \cdot 5 \cdot 7 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $\left[ \left(\begin{array}{rrrrrr} 1 & 2 & 1 & 2 & 0 & 2 \\ 0 & 2 & 1 & 1 & 2 & 0 \\ 2 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 2 \\ 1 & 1 & 1 & 2 & 0 & 2 \\ 1 & 2 & 2 & 0 & 1 & 2 \end{array}\right) \right], \left[ \left(\begin{array}{rrrrrr} 1 & 0 & 0 & 1 & 2 & 2 \\ 1 & 2 & 0 & 1 & 2 & 1 \\ 2 & 1 & 1 & 2 & 1 & 0 \\ 1 & 0 & 0 & 2 & 2 & 0 \\ 0 & 1 & 2 & 1 & 2 & 1 \\ 1 & 0 & 2 & 0 & 0 & 1 \end{array}\right) \right], \left[ \left(\begin{array}{rrrrrr} 0 & 0 & 0 & 0 & 1 & 2 \\ 1 & 1 & 0 & 2 & 0 & 2 \\ 1 & 1 & 2 & 1 & 2 & 2 \\ 1 & 1 & 0 & 0 & 2 & 2 \\ 2 & 2 & 0 & 2 & 0 & 1 \\ 2 & 0 & 0 & 0 & 2 & 0 \end{array}\right) \right], \left[ \left(\begin{array}{rrrrrr} 0 & 1 & 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 2 & 0 & 2 \\ 2 & 2 & 1 & 2 & 2 & 0 \\ 0 & 1 & 2 & 0 & 2 & 2 \\ 2 & 0 & 1 & 0 & 0 & 2 \\ 0 & 1 & 2 & 1 & 2 & 1 \end{array}\right) \right], \left[ \left(\begin{array}{rrrrrr} 2 & 1 & 2 & 0 & 0 & 2 \\ 0 & 0 & 0 & 0 & 2 & 2 \\ 1 & 2 & 0 & 0 & 1 & 0 \\ 2 & 1 & 1 & 1 & 2 & 0 \\ 2 & 0 & 1 & 0 & 2 & 2 \\ 2 & 1 & 1 & 0 & 2 & 1 \end{array}\right) \right]$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian and supersolvable (hence solvable and monomial).

Ambient group ($G$) information

Description: $\PSOMinus(6,3)$
Order: \(6531840\)\(\medspace = 2^{8} \cdot 3^{6} \cdot 5 \cdot 7 \)
Exponent: \(2520\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5 \cdot 7 \)
Derived length:$1$

The ambient group is nonabelian, almost simple, and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$\PGammaU(4,3)$, of order \(26127360\)\(\medspace = 2^{10} \cdot 3^{6} \cdot 5 \cdot 7 \)
$\operatorname{Aut}(H)$ $S_3\times C_3^2:\GL(2,3)$, of order \(2592\)\(\medspace = 2^{5} \cdot 3^{4} \)
$W$$C_3:S_3^2$, of order \(108\)\(\medspace = 2^{2} \cdot 3^{3} \)

Related subgroups

Centralizer:$C_3^2$
Normalizer:$C_3^3:S_3^2$
Normal closure:$\PSOMinus(6,3)$
Core:$C_1$
Minimal over-subgroups:$C_3^3:(C_3\times S_3)$$C_3^2:S_3^2$
Maximal under-subgroups:$C_3\times \He_3$$S_3\times C_3^2$$S_3\times C_3^2$$S_3\times C_3^2$$S_3\times C_3^2$$C_3^2:S_3$

Other information

Number of subgroups in this conjugacy class$6720$
Möbius function not computed
Projective image$\PSOMinus(6,3)$