Subgroup ($H$) information
Description: | $C_3^3:S_3$ |
Order: | \(162\)\(\medspace = 2 \cdot 3^{4} \) |
Index: | \(40320\)\(\medspace = 2^{7} \cdot 3^{2} \cdot 5 \cdot 7 \) |
Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
Generators: |
$\left[ \left(\begin{array}{rrrrrr}
1 & 2 & 1 & 2 & 0 & 2 \\
0 & 2 & 1 & 1 & 2 & 0 \\
2 & 0 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 2 \\
1 & 1 & 1 & 2 & 0 & 2 \\
1 & 2 & 2 & 0 & 1 & 2
\end{array}\right) \right], \left[ \left(\begin{array}{rrrrrr}
1 & 0 & 0 & 1 & 2 & 2 \\
1 & 2 & 0 & 1 & 2 & 1 \\
2 & 1 & 1 & 2 & 1 & 0 \\
1 & 0 & 0 & 2 & 2 & 0 \\
0 & 1 & 2 & 1 & 2 & 1 \\
1 & 0 & 2 & 0 & 0 & 1
\end{array}\right) \right], \left[ \left(\begin{array}{rrrrrr}
0 & 0 & 0 & 0 & 1 & 2 \\
1 & 1 & 0 & 2 & 0 & 2 \\
1 & 1 & 2 & 1 & 2 & 2 \\
1 & 1 & 0 & 0 & 2 & 2 \\
2 & 2 & 0 & 2 & 0 & 1 \\
2 & 0 & 0 & 0 & 2 & 0
\end{array}\right) \right], \left[ \left(\begin{array}{rrrrrr}
0 & 1 & 1 & 1 & 1 & 0 \\
1 & 1 & 0 & 2 & 0 & 2 \\
2 & 2 & 1 & 2 & 2 & 0 \\
0 & 1 & 2 & 0 & 2 & 2 \\
2 & 0 & 1 & 0 & 0 & 2 \\
0 & 1 & 2 & 1 & 2 & 1
\end{array}\right) \right], \left[ \left(\begin{array}{rrrrrr}
2 & 1 & 2 & 0 & 0 & 2 \\
0 & 0 & 0 & 0 & 2 & 2 \\
1 & 2 & 0 & 0 & 1 & 0 \\
2 & 1 & 1 & 1 & 2 & 0 \\
2 & 0 & 1 & 0 & 2 & 2 \\
2 & 1 & 1 & 0 & 2 & 1
\end{array}\right) \right]$
|
Derived length: | $3$ |
The subgroup is nonabelian and supersolvable (hence solvable and monomial).
Ambient group ($G$) information
Description: | $\PSOMinus(6,3)$ |
Order: | \(6531840\)\(\medspace = 2^{8} \cdot 3^{6} \cdot 5 \cdot 7 \) |
Exponent: | \(2520\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5 \cdot 7 \) |
Derived length: | $1$ |
The ambient group is nonabelian, almost simple, and nonsolvable.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $\PGammaU(4,3)$, of order \(26127360\)\(\medspace = 2^{10} \cdot 3^{6} \cdot 5 \cdot 7 \) |
$\operatorname{Aut}(H)$ | $S_3\times C_3^2:\GL(2,3)$, of order \(2592\)\(\medspace = 2^{5} \cdot 3^{4} \) |
$W$ | $C_3:S_3^2$, of order \(108\)\(\medspace = 2^{2} \cdot 3^{3} \) |
Related subgroups
Other information
Number of subgroups in this conjugacy class | $6720$ |
Möbius function | not computed |
Projective image | $\PSOMinus(6,3)$ |