Refine search
Elements of the group are displayed as permutations of degree 12.
Group | Label | Order | Size | Centralizer | Powers | Representative | |
---|---|---|---|---|---|---|---|
2P | 3P | ||||||
$D_6^2:C_2^2$ | 1A | $1$ | $1$ | $D_6^2:C_2^2$ | 1A | 1A | $()$ |
$D_6^2:C_2^2$ | 2A | $2$ | $1$ | $D_6^2:C_2^2$ | 1A | 2A | $(11,12)$ |
$D_6^2:C_2^2$ | 2B | $2$ | $1$ | $D_6^2:C_2^2$ | 1A | 2B | $(7,8)(9,10)$ |
$D_6^2:C_2^2$ | 2C | $2$ | $1$ | $D_6^2:C_2^2$ | 1A | 2C | $(7,8)(9,10)(11,12)$ |
$D_6^2:C_2^2$ | 2D | $2$ | $2$ | $C_2\times D_6^2$ | 1A | 2D | $(9,10)$ |
$D_6^2:C_2^2$ | 2E | $2$ | $2$ | $C_2\times D_6^2$ | 1A | 2E | $(9,10)(11,12)$ |
$D_6^2:C_2^2$ | 2F | $2$ | $6$ | $C_2^3\times D_6$ | 1A | 2F | $(3,5)$ |
$D_6^2:C_2^2$ | 2G | $2$ | $6$ | $C_2^3\times D_6$ | 1A | 2G | $(3,5)(11,12)$ |
$D_6^2:C_2^2$ | 2H | $2$ | $6$ | $C_2^3\times D_6$ | 1A | 2H | $(3,5)(9,10)$ |
$D_6^2:C_2^2$ | 2I | $2$ | $6$ | $C_2^3\times D_6$ | 1A | 2I | $(3,5)(9,10)(11,12)$ |
$D_6^2:C_2^2$ | 2J | $2$ | $6$ | $C_2^3\times D_6$ | 1A | 2J | $(3,5)(7,8)$ |
$D_6^2:C_2^2$ | 2K | $2$ | $6$ | $C_2^3\times D_6$ | 1A | 2K | $(3,5)(7,8)(11,12)$ |
$D_6^2:C_2^2$ | 2L | $2$ | $6$ | $C_2^3\times D_6$ | 1A | 2L | $(3,5)(7,8)(9,10)$ |
$D_6^2:C_2^2$ | 2M | $2$ | $6$ | $C_2^3\times D_6$ | 1A | 2M | $(3,5)(7,8)(9,10)(11,12)$ |
$D_6^2:C_2^2$ | 2N | $2$ | $9$ | $C_2^3:D_4$ | 1A | 2N | $(3,5)(4,6)(11,12)$ |
$D_6^2:C_2^2$ | 2O | $2$ | $9$ | $C_2^3:D_4$ | 1A | 2O | $(3,5)(4,6)(7,8)(9,10)(11,12)$ |
$D_6^2:C_2^2$ | 2P | $2$ | $9$ | $C_2^3:D_4$ | 1A | 2P | $(3,5)(4,6)$ |
$D_6^2:C_2^2$ | 2Q | $2$ | $9$ | $C_2^3:D_4$ | 1A | 2Q | $(3,5)(4,6)(7,8)(9,10)$ |
$D_6^2:C_2^2$ | 2R | $2$ | $12$ | $C_2^2\times D_6$ | 1A | 2R | $(1,4)(2,5)(3,6)(7,9)(8,10)$ |
$D_6^2:C_2^2$ | 2S | $2$ | $12$ | $C_2^2\times D_6$ | 1A | 2S | $(1,4)(2,5)(3,6)(7,9)(8,10)(11,12)$ |
$D_6^2:C_2^2$ | 2T | $2$ | $18$ | $C_2^5$ | 1A | 2T | $(3,5)(4,6)(9,10)$ |
$D_6^2:C_2^2$ | 2U | $2$ | $18$ | $C_2^5$ | 1A | 2U | $(3,5)(4,6)(9,10)(11,12)$ |
$D_6^2:C_2^2$ | 3A | $3$ | $4$ | $C_6^2:C_2^2$ | 3A | 1A | $(2,6,4)$ |
$D_6^2:C_2^2$ | 3B | $3$ | $4$ | $C_6^2:C_2^2$ | 3B | 1A | $(1,5,3)(2,6,4)$ |
$D_6^2:C_2^2$ | 4A | $4$ | $12$ | $C_4\times D_6$ | 2B | 4A | $(1,4)(2,5)(3,6)(7,10,8,9)$ |
$D_6^2:C_2^2$ | 4B | $4$ | $12$ | $C_4\times D_6$ | 2B | 4B | $(1,4)(2,5)(3,6)(7,10,8,9)(11,12)$ |
$D_6^2:C_2^2$ | 4C | $4$ | $36$ | $C_2^2\times C_4$ | 2P | 4C | $(1,2)(3,4,5,6)(7,9)(8,10)(11,12)$ |
$D_6^2:C_2^2$ | 4D | $4$ | $36$ | $C_2^2\times C_4$ | 2P | 4D | $(1,2)(3,6,5,4)(7,9)(8,10)$ |
$D_6^2:C_2^2$ | 4E | $4$ | $36$ | $C_2^2\times C_4$ | 2Q | 4E | $(1,2)(3,6,5,4)(7,9,8,10)$ |
$D_6^2:C_2^2$ | 4F | $4$ | $36$ | $C_2^2\times C_4$ | 2Q | 4F | $(1,6,3,2)(4,5)(7,9,8,10)(11,12)$ |
$D_6^2:C_2^2$ | 6A | $6$ | $4$ | $C_6^2:C_2^2$ | 3A | 2A | $(2,4,6)(11,12)$ |
$D_6^2:C_2^2$ | 6B | $6$ | $4$ | $C_6^2:C_2^2$ | 3A | 2D | $(2,4,6)(9,10)$ |
$D_6^2:C_2^2$ | 6C | $6$ | $4$ | $C_6^2:C_2^2$ | 3A | 2E | $(2,4,6)(9,10)(11,12)$ |
$D_6^2:C_2^2$ | 6D | $6$ | $4$ | $C_6^2:C_2^2$ | 3A | 2D | $(2,4,6)(7,8)$ |
$D_6^2:C_2^2$ | 6E | $6$ | $4$ | $C_6^2:C_2^2$ | 3A | 2E | $(2,4,6)(7,8)(11,12)$ |
$D_6^2:C_2^2$ | 6F | $6$ | $4$ | $C_6^2:C_2^2$ | 3A | 2B | $(2,4,6)(7,8)(9,10)$ |
$D_6^2:C_2^2$ | 6G | $6$ | $4$ | $C_6^2:C_2^2$ | 3A | 2C | $(2,4,6)(7,8)(9,10)(11,12)$ |
$D_6^2:C_2^2$ | 6H | $6$ | $4$ | $C_6^2:C_2^2$ | 3B | 2A | $(1,3,5)(2,4,6)(11,12)$ |
$D_6^2:C_2^2$ | 6I | $6$ | $4$ | $C_6^2:C_2^2$ | 3B | 2C | $(1,3,5)(2,4,6)(7,8)(9,10)(11,12)$ |
$D_6^2:C_2^2$ | 6J | $6$ | $4$ | $C_6^2:C_2^2$ | 3B | 2B | $(1,3,5)(2,4,6)(7,8)(9,10)$ |
$D_6^2:C_2^2$ | 6K | $6$ | $8$ | $C_2\times C_6^2$ | 3B | 2D | $(1,3,5)(2,4,6)(9,10)$ |
$D_6^2:C_2^2$ | 6L | $6$ | $8$ | $C_2\times C_6^2$ | 3B | 2E | $(1,3,5)(2,4,6)(9,10)(11,12)$ |
$D_6^2:C_2^2$ | 6M | $6$ | $12$ | $C_2^3\times C_6$ | 3A | 2F | $(2,4,6)(3,5)$ |
$D_6^2:C_2^2$ | 6N | $6$ | $12$ | $C_2^3\times C_6$ | 3A | 2G | $(2,4,6)(3,5)(11,12)$ |
$D_6^2:C_2^2$ | 6O | $6$ | $12$ | $C_2^3\times C_6$ | 3A | 2H | $(2,4,6)(3,5)(9,10)$ |
$D_6^2:C_2^2$ | 6P | $6$ | $12$ | $C_2^3\times C_6$ | 3A | 2I | $(2,4,6)(3,5)(9,10)(11,12)$ |
$D_6^2:C_2^2$ | 6Q | $6$ | $12$ | $C_2^3\times C_6$ | 3A | 2J | $(2,4,6)(3,5)(7,8)$ |
$D_6^2:C_2^2$ | 6R | $6$ | $12$ | $C_2^3\times C_6$ | 3A | 2K | $(2,4,6)(3,5)(7,8)(11,12)$ |
$D_6^2:C_2^2$ | 6S | $6$ | $12$ | $C_2^3\times C_6$ | 3A | 2L | $(2,4,6)(3,5)(7,8)(9,10)$ |
$D_6^2:C_2^2$ | 6T | $6$ | $12$ | $C_2^3\times C_6$ | 3A | 2M | $(2,4,6)(3,5)(7,8)(9,10)(11,12)$ |