Learn more

Refine search


Results (1-50 of 57 matches)

Next   displayed columns for results
Label Degree Type Faithful Field of Traces $\Q$-character Group Image Image Order Kernel Kernel Order Center
192.138.1a $1$ R \(\Q\) 192.138.1a $C_{12}.D_8$ $C_1$ $1$ 1.a1.a1 $192$ 1.a1.a1
192.138.1b $1$ R \(\Q\) 192.138.1b $C_{12}.D_8$ $C_2$ $2$ 2.c1.a1 $96$ 1.a1.a1
192.138.1c $1$ R \(\Q\) 192.138.1c $C_{12}.D_8$ $C_2$ $2$ 2.b1.a1 $96$ 1.a1.a1
192.138.1d $1$ R \(\Q\) 192.138.1d $C_{12}.D_8$ $C_2$ $2$ 2.a1.a1 $96$ 1.a1.a1
192.138.1e1 $1$ C \(\Q(\sqrt{-3}) \) 192.138.1e $C_{12}.D_8$ $C_3$ $3$ 3.a1.a1 $64$ 1.a1.a1
192.138.1e2 $1$ C \(\Q(\sqrt{-3}) \) 192.138.1e $C_{12}.D_8$ $C_3$ $3$ 3.a1.a1 $64$ 1.a1.a1
192.138.1f1 $1$ C \(\Q(\sqrt{-1}) \) 192.138.1f $C_{12}.D_8$ $C_4$ $4$ 4.b1.b1 $48$ 1.a1.a1
192.138.1f2 $1$ C \(\Q(\sqrt{-1}) \) 192.138.1f $C_{12}.D_8$ $C_4$ $4$ 4.b1.b1 $48$ 1.a1.a1
192.138.1g1 $1$ C \(\Q(\sqrt{-1}) \) 192.138.1g $C_{12}.D_8$ $C_4$ $4$ 4.b1.a1 $48$ 1.a1.a1
192.138.1g2 $1$ C \(\Q(\sqrt{-1}) \) 192.138.1g $C_{12}.D_8$ $C_4$ $4$ 4.b1.a1 $48$ 1.a1.a1
192.138.1h1 $1$ C \(\Q(\sqrt{-3}) \) 192.138.1h $C_{12}.D_8$ $C_6$ $6$ 6.c1.a1 $32$ 1.a1.a1
192.138.1h2 $1$ C \(\Q(\sqrt{-3}) \) 192.138.1h $C_{12}.D_8$ $C_6$ $6$ 6.c1.a1 $32$ 1.a1.a1
192.138.1i1 $1$ C \(\Q(\sqrt{-3}) \) 192.138.1i $C_{12}.D_8$ $C_6$ $6$ 6.b1.a1 $32$ 1.a1.a1
192.138.1i2 $1$ C \(\Q(\sqrt{-3}) \) 192.138.1i $C_{12}.D_8$ $C_6$ $6$ 6.b1.a1 $32$ 1.a1.a1
192.138.1j1 $1$ C \(\Q(\sqrt{-3}) \) 192.138.1j $C_{12}.D_8$ $C_6$ $6$ 6.a1.a1 $32$ 1.a1.a1
192.138.1j2 $1$ C \(\Q(\sqrt{-3}) \) 192.138.1j $C_{12}.D_8$ $C_6$ $6$ 6.a1.a1 $32$ 1.a1.a1
192.138.1k1 $1$ C \(\Q(\sqrt{-1}) \) 192.138.1k $C_{12}.D_8$ $C_{12}$ $12$ 12.b1.b1 $16$ 1.a1.a1
192.138.1k2 $1$ C \(\Q(\sqrt{-1}) \) 192.138.1k $C_{12}.D_8$ $C_{12}$ $12$ 12.b1.b1 $16$ 1.a1.a1
192.138.1k3 $1$ C \(\Q(\sqrt{-1}) \) 192.138.1k $C_{12}.D_8$ $C_{12}$ $12$ 12.b1.b1 $16$ 1.a1.a1
192.138.1k4 $1$ C \(\Q(\sqrt{-1}) \) 192.138.1k $C_{12}.D_8$ $C_{12}$ $12$ 12.b1.b1 $16$ 1.a1.a1
192.138.1l1 $1$ C \(\Q(\sqrt{-1}) \) 192.138.1l $C_{12}.D_8$ $C_{12}$ $12$ 12.b1.a1 $16$ 1.a1.a1
192.138.1l2 $1$ C \(\Q(\sqrt{-1}) \) 192.138.1l $C_{12}.D_8$ $C_{12}$ $12$ 12.b1.a1 $16$ 1.a1.a1
192.138.1l3 $1$ C \(\Q(\sqrt{-1}) \) 192.138.1l $C_{12}.D_8$ $C_{12}$ $12$ 12.b1.a1 $16$ 1.a1.a1
192.138.1l4 $1$ C \(\Q(\sqrt{-1}) \) 192.138.1l $C_{12}.D_8$ $C_{12}$ $12$ 12.b1.a1 $16$ 1.a1.a1
192.138.2a $2$ R \(\Q\) 192.138.2a $C_{12}.D_8$ $D_4$ $8$ 8.a1.a1 $24$ 4.a1.a1
192.138.2b $2$ R \(\Q\) 192.138.2b $C_{12}.D_8$ $D_4$ $8$ 8.b1.a1 $24$ 4.a1.a1
192.138.2c1 $2$ R \(\Q(\sqrt{2}) \) 192.138.2c $C_{12}.D_8$ $D_8$ $16$ 16.e1.a1 $12$ 8.b1.a1
192.138.2c2 $2$ R \(\Q(\sqrt{2}) \) 192.138.2c $C_{12}.D_8$ $D_8$ $16$ 16.e1.a1 $12$ 8.b1.a1
192.138.2d1 $2$ C \(\Q(\sqrt{-2}) \) 192.138.2d $C_{12}.D_8$ $\SD_{16}$ $16$ 16.d1.a1 $12$ 8.b1.a1
192.138.2d2 $2$ C \(\Q(\sqrt{-2}) \) 192.138.2d $C_{12}.D_8$ $\SD_{16}$ $16$ 16.d1.a1 $12$ 8.b1.a1
192.138.2e1 $2$ C \(\Q(\sqrt{-2}) \) 192.138.2e $C_{12}.D_8$ $\SD_{16}$ $16$ 16.c1.a1 $12$ 8.a1.a1
192.138.2e2 $2$ C \(\Q(\sqrt{-2}) \) 192.138.2e $C_{12}.D_8$ $\SD_{16}$ $16$ 16.c1.a1 $12$ 8.a1.a1
192.138.2f1 $2$ C \(\Q(\sqrt{-3}) \) 192.138.2f $C_{12}.D_8$ $C_3\times D_4$ $24$ 24.a1.a1 $8$ 4.a1.a1
192.138.2f2 $2$ C \(\Q(\sqrt{-3}) \) 192.138.2f $C_{12}.D_8$ $C_3\times D_4$ $24$ 24.a1.a1 $8$ 4.a1.a1
192.138.2g1 $2$ C \(\Q(\sqrt{-3}) \) 192.138.2g $C_{12}.D_8$ $C_3\times D_4$ $24$ 24.b1.a1 $8$ 4.a1.a1
192.138.2g2 $2$ C \(\Q(\sqrt{-3}) \) 192.138.2g $C_{12}.D_8$ $C_3\times D_4$ $24$ 24.b1.a1 $8$ 4.a1.a1
192.138.2h1 $2$ S \(\Q(\sqrt{2}) \) 192.138.2h $C_{12}.D_8$ $Q_{16}$ $16$ 16.b1.a1 $12$ 8.a1.a1
192.138.2h2 $2$ S \(\Q(\sqrt{2}) \) 192.138.2h $C_{12}.D_8$ $Q_{16}$ $16$ 16.b1.a1 $12$ 8.a1.a1
192.138.2i1 $2$ C \(\Q(\sqrt{2}, \sqrt{-3})\) 192.138.2i $C_{12}.D_8$ $C_3\times D_8$ $48$ 48.e1.a1 $4$ 8.b1.a1
192.138.2i2 $2$ C \(\Q(\sqrt{2}, \sqrt{-3})\) 192.138.2i $C_{12}.D_8$ $C_3\times D_8$ $48$ 48.e1.a1 $4$ 8.b1.a1
192.138.2i3 $2$ C \(\Q(\sqrt{2}, \sqrt{-3})\) 192.138.2i $C_{12}.D_8$ $C_3\times D_8$ $48$ 48.e1.a1 $4$ 8.b1.a1
192.138.2i4 $2$ C \(\Q(\sqrt{2}, \sqrt{-3})\) 192.138.2i $C_{12}.D_8$ $C_3\times D_8$ $48$ 48.e1.a1 $4$ 8.b1.a1
192.138.2j1 $2$ C \(\Q(\sqrt{-2}, \sqrt{-3})\) 192.138.2j $C_{12}.D_8$ $C_3\times \SD_{16}$ $48$ 48.d1.a1 $4$ 8.b1.a1
192.138.2j2 $2$ C \(\Q(\sqrt{-2}, \sqrt{-3})\) 192.138.2j $C_{12}.D_8$ $C_3\times \SD_{16}$ $48$ 48.d1.a1 $4$ 8.b1.a1
192.138.2j3 $2$ C \(\Q(\sqrt{-2}, \sqrt{-3})\) 192.138.2j $C_{12}.D_8$ $C_3\times \SD_{16}$ $48$ 48.d1.a1 $4$ 8.b1.a1
192.138.2j4 $2$ C \(\Q(\sqrt{-2}, \sqrt{-3})\) 192.138.2j $C_{12}.D_8$ $C_3\times \SD_{16}$ $48$ 48.d1.a1 $4$ 8.b1.a1
192.138.2k1 $2$ C \(\Q(\sqrt{-2}, \sqrt{-3})\) 192.138.2k $C_{12}.D_8$ $C_3\times \SD_{16}$ $48$ 48.c1.a1 $4$ 8.a1.a1
192.138.2k2 $2$ C \(\Q(\sqrt{-2}, \sqrt{-3})\) 192.138.2k $C_{12}.D_8$ $C_3\times \SD_{16}$ $48$ 48.c1.a1 $4$ 8.a1.a1
192.138.2k3 $2$ C \(\Q(\sqrt{-2}, \sqrt{-3})\) 192.138.2k $C_{12}.D_8$ $C_3\times \SD_{16}$ $48$ 48.c1.a1 $4$ 8.a1.a1
192.138.2k4 $2$ C \(\Q(\sqrt{-2}, \sqrt{-3})\) 192.138.2k $C_{12}.D_8$ $C_3\times \SD_{16}$ $48$ 48.c1.a1 $4$ 8.a1.a1
Next   displayed columns for results