Label |
Degree |
Type |
Faithful |
Conductor |
Field of Traces |
$\Q$-character |
Group |
Image |
Image Order |
Kernel |
Kernel Order |
Center |
Center Order |
Center Index |
Schur Index |
192.138.1a |
$1$ |
R |
|
$1$ |
\(\Q\) |
192.138.1a |
$C_{12}.D_8$ |
$C_1$ |
$1$ |
1.a1.a1 |
$192$ |
1.a1.a1 |
$192$ |
$1$ |
$1$ |
192.138.1b |
$1$ |
R |
|
$1$ |
\(\Q\) |
192.138.1b |
$C_{12}.D_8$ |
$C_2$ |
$2$ |
2.c1.a1 |
$96$ |
1.a1.a1 |
$192$ |
$1$ |
$1$ |
192.138.1c |
$1$ |
R |
|
$1$ |
\(\Q\) |
192.138.1c |
$C_{12}.D_8$ |
$C_2$ |
$2$ |
2.b1.a1 |
$96$ |
1.a1.a1 |
$192$ |
$1$ |
$1$ |
192.138.1d |
$1$ |
R |
|
$1$ |
\(\Q\) |
192.138.1d |
$C_{12}.D_8$ |
$C_2$ |
$2$ |
2.a1.a1 |
$96$ |
1.a1.a1 |
$192$ |
$1$ |
$1$ |
192.138.1e1 |
$1$ |
C |
|
$3$ |
\(\Q(\sqrt{-3}) \) |
192.138.1e |
$C_{12}.D_8$ |
$C_3$ |
$3$ |
3.a1.a1 |
$64$ |
1.a1.a1 |
$192$ |
$1$ |
$1$ |
192.138.1e2 |
$1$ |
C |
|
$3$ |
\(\Q(\sqrt{-3}) \) |
192.138.1e |
$C_{12}.D_8$ |
$C_3$ |
$3$ |
3.a1.a1 |
$64$ |
1.a1.a1 |
$192$ |
$1$ |
$1$ |
192.138.1f1 |
$1$ |
C |
|
$4$ |
\(\Q(\sqrt{-1}) \) |
192.138.1f |
$C_{12}.D_8$ |
$C_4$ |
$4$ |
4.b1.b1 |
$48$ |
1.a1.a1 |
$192$ |
$1$ |
$1$ |
192.138.1f2 |
$1$ |
C |
|
$4$ |
\(\Q(\sqrt{-1}) \) |
192.138.1f |
$C_{12}.D_8$ |
$C_4$ |
$4$ |
4.b1.b1 |
$48$ |
1.a1.a1 |
$192$ |
$1$ |
$1$ |
192.138.1g1 |
$1$ |
C |
|
$4$ |
\(\Q(\sqrt{-1}) \) |
192.138.1g |
$C_{12}.D_8$ |
$C_4$ |
$4$ |
4.b1.a1 |
$48$ |
1.a1.a1 |
$192$ |
$1$ |
$1$ |
192.138.1g2 |
$1$ |
C |
|
$4$ |
\(\Q(\sqrt{-1}) \) |
192.138.1g |
$C_{12}.D_8$ |
$C_4$ |
$4$ |
4.b1.a1 |
$48$ |
1.a1.a1 |
$192$ |
$1$ |
$1$ |
192.138.1h1 |
$1$ |
C |
|
$3$ |
\(\Q(\sqrt{-3}) \) |
192.138.1h |
$C_{12}.D_8$ |
$C_6$ |
$6$ |
6.c1.a1 |
$32$ |
1.a1.a1 |
$192$ |
$1$ |
$1$ |
192.138.1h2 |
$1$ |
C |
|
$3$ |
\(\Q(\sqrt{-3}) \) |
192.138.1h |
$C_{12}.D_8$ |
$C_6$ |
$6$ |
6.c1.a1 |
$32$ |
1.a1.a1 |
$192$ |
$1$ |
$1$ |
192.138.1i1 |
$1$ |
C |
|
$3$ |
\(\Q(\sqrt{-3}) \) |
192.138.1i |
$C_{12}.D_8$ |
$C_6$ |
$6$ |
6.b1.a1 |
$32$ |
1.a1.a1 |
$192$ |
$1$ |
$1$ |
192.138.1i2 |
$1$ |
C |
|
$3$ |
\(\Q(\sqrt{-3}) \) |
192.138.1i |
$C_{12}.D_8$ |
$C_6$ |
$6$ |
6.b1.a1 |
$32$ |
1.a1.a1 |
$192$ |
$1$ |
$1$ |
192.138.1j1 |
$1$ |
C |
|
$3$ |
\(\Q(\sqrt{-3}) \) |
192.138.1j |
$C_{12}.D_8$ |
$C_6$ |
$6$ |
6.a1.a1 |
$32$ |
1.a1.a1 |
$192$ |
$1$ |
$1$ |
192.138.1j2 |
$1$ |
C |
|
$3$ |
\(\Q(\sqrt{-3}) \) |
192.138.1j |
$C_{12}.D_8$ |
$C_6$ |
$6$ |
6.a1.a1 |
$32$ |
1.a1.a1 |
$192$ |
$1$ |
$1$ |
192.138.1k1 |
$1$ |
C |
|
$12$ |
\(\Q(\sqrt{-1}) \) |
192.138.1k |
$C_{12}.D_8$ |
$C_{12}$ |
$12$ |
12.b1.b1 |
$16$ |
1.a1.a1 |
$192$ |
$1$ |
$1$ |
192.138.1k2 |
$1$ |
C |
|
$12$ |
\(\Q(\sqrt{-1}) \) |
192.138.1k |
$C_{12}.D_8$ |
$C_{12}$ |
$12$ |
12.b1.b1 |
$16$ |
1.a1.a1 |
$192$ |
$1$ |
$1$ |
192.138.1k3 |
$1$ |
C |
|
$12$ |
\(\Q(\sqrt{-1}) \) |
192.138.1k |
$C_{12}.D_8$ |
$C_{12}$ |
$12$ |
12.b1.b1 |
$16$ |
1.a1.a1 |
$192$ |
$1$ |
$1$ |
192.138.1k4 |
$1$ |
C |
|
$12$ |
\(\Q(\sqrt{-1}) \) |
192.138.1k |
$C_{12}.D_8$ |
$C_{12}$ |
$12$ |
12.b1.b1 |
$16$ |
1.a1.a1 |
$192$ |
$1$ |
$1$ |
192.138.1l1 |
$1$ |
C |
|
$12$ |
\(\Q(\sqrt{-1}) \) |
192.138.1l |
$C_{12}.D_8$ |
$C_{12}$ |
$12$ |
12.b1.a1 |
$16$ |
1.a1.a1 |
$192$ |
$1$ |
$1$ |
192.138.1l2 |
$1$ |
C |
|
$12$ |
\(\Q(\sqrt{-1}) \) |
192.138.1l |
$C_{12}.D_8$ |
$C_{12}$ |
$12$ |
12.b1.a1 |
$16$ |
1.a1.a1 |
$192$ |
$1$ |
$1$ |
192.138.1l3 |
$1$ |
C |
|
$12$ |
\(\Q(\sqrt{-1}) \) |
192.138.1l |
$C_{12}.D_8$ |
$C_{12}$ |
$12$ |
12.b1.a1 |
$16$ |
1.a1.a1 |
$192$ |
$1$ |
$1$ |
192.138.1l4 |
$1$ |
C |
|
$12$ |
\(\Q(\sqrt{-1}) \) |
192.138.1l |
$C_{12}.D_8$ |
$C_{12}$ |
$12$ |
12.b1.a1 |
$16$ |
1.a1.a1 |
$192$ |
$1$ |
$1$ |
192.138.2a |
$2$ |
R |
|
$1$ |
\(\Q\) |
192.138.2a |
$C_{12}.D_8$ |
$D_4$ |
$8$ |
8.a1.a1 |
$24$ |
4.a1.a1 |
$48$ |
$4$ |
$1$ |
192.138.2b |
$2$ |
R |
|
$1$ |
\(\Q\) |
192.138.2b |
$C_{12}.D_8$ |
$D_4$ |
$8$ |
8.b1.a1 |
$24$ |
4.a1.a1 |
$48$ |
$4$ |
$1$ |
192.138.2c1 |
$2$ |
R |
|
$8$ |
\(\Q(\sqrt{2}) \) |
192.138.2c |
$C_{12}.D_8$ |
$D_8$ |
$16$ |
16.e1.a1 |
$12$ |
8.b1.a1 |
$24$ |
$8$ |
$1$ |
192.138.2c2 |
$2$ |
R |
|
$8$ |
\(\Q(\sqrt{2}) \) |
192.138.2c |
$C_{12}.D_8$ |
$D_8$ |
$16$ |
16.e1.a1 |
$12$ |
8.b1.a1 |
$24$ |
$8$ |
$1$ |
192.138.2d1 |
$2$ |
C |
|
$8$ |
\(\Q(\sqrt{-2}) \) |
192.138.2d |
$C_{12}.D_8$ |
$\SD_{16}$ |
$16$ |
16.d1.a1 |
$12$ |
8.b1.a1 |
$24$ |
$8$ |
$1$ |
192.138.2d2 |
$2$ |
C |
|
$8$ |
\(\Q(\sqrt{-2}) \) |
192.138.2d |
$C_{12}.D_8$ |
$\SD_{16}$ |
$16$ |
16.d1.a1 |
$12$ |
8.b1.a1 |
$24$ |
$8$ |
$1$ |
192.138.2e1 |
$2$ |
C |
|
$8$ |
\(\Q(\sqrt{-2}) \) |
192.138.2e |
$C_{12}.D_8$ |
$\SD_{16}$ |
$16$ |
16.c1.a1 |
$12$ |
8.a1.a1 |
$24$ |
$8$ |
$1$ |
192.138.2e2 |
$2$ |
C |
|
$8$ |
\(\Q(\sqrt{-2}) \) |
192.138.2e |
$C_{12}.D_8$ |
$\SD_{16}$ |
$16$ |
16.c1.a1 |
$12$ |
8.a1.a1 |
$24$ |
$8$ |
$1$ |
192.138.2f1 |
$2$ |
C |
|
$3$ |
\(\Q(\sqrt{-3}) \) |
192.138.2f |
$C_{12}.D_8$ |
$C_3\times D_4$ |
$24$ |
24.a1.a1 |
$8$ |
4.a1.a1 |
$48$ |
$4$ |
$1$ |
192.138.2f2 |
$2$ |
C |
|
$3$ |
\(\Q(\sqrt{-3}) \) |
192.138.2f |
$C_{12}.D_8$ |
$C_3\times D_4$ |
$24$ |
24.a1.a1 |
$8$ |
4.a1.a1 |
$48$ |
$4$ |
$1$ |
192.138.2g1 |
$2$ |
C |
|
$3$ |
\(\Q(\sqrt{-3}) \) |
192.138.2g |
$C_{12}.D_8$ |
$C_3\times D_4$ |
$24$ |
24.b1.a1 |
$8$ |
4.a1.a1 |
$48$ |
$4$ |
$1$ |
192.138.2g2 |
$2$ |
C |
|
$3$ |
\(\Q(\sqrt{-3}) \) |
192.138.2g |
$C_{12}.D_8$ |
$C_3\times D_4$ |
$24$ |
24.b1.a1 |
$8$ |
4.a1.a1 |
$48$ |
$4$ |
$1$ |
192.138.2h1 |
$2$ |
S |
|
$8$ |
\(\Q(\sqrt{2}) \) |
192.138.2h |
$C_{12}.D_8$ |
$Q_{16}$ |
$16$ |
16.b1.a1 |
$12$ |
8.a1.a1 |
$24$ |
$8$ |
$2$ |
192.138.2h2 |
$2$ |
S |
|
$8$ |
\(\Q(\sqrt{2}) \) |
192.138.2h |
$C_{12}.D_8$ |
$Q_{16}$ |
$16$ |
16.b1.a1 |
$12$ |
8.a1.a1 |
$24$ |
$8$ |
$2$ |
192.138.2i1 |
$2$ |
C |
|
$24$ |
\(\Q(\sqrt{2}, \sqrt{-3})\) |
192.138.2i |
$C_{12}.D_8$ |
$C_3\times D_8$ |
$48$ |
48.e1.a1 |
$4$ |
8.b1.a1 |
$24$ |
$8$ |
$1$ |
192.138.2i2 |
$2$ |
C |
|
$24$ |
\(\Q(\sqrt{2}, \sqrt{-3})\) |
192.138.2i |
$C_{12}.D_8$ |
$C_3\times D_8$ |
$48$ |
48.e1.a1 |
$4$ |
8.b1.a1 |
$24$ |
$8$ |
$1$ |
192.138.2i3 |
$2$ |
C |
|
$24$ |
\(\Q(\sqrt{2}, \sqrt{-3})\) |
192.138.2i |
$C_{12}.D_8$ |
$C_3\times D_8$ |
$48$ |
48.e1.a1 |
$4$ |
8.b1.a1 |
$24$ |
$8$ |
$1$ |
192.138.2i4 |
$2$ |
C |
|
$24$ |
\(\Q(\sqrt{2}, \sqrt{-3})\) |
192.138.2i |
$C_{12}.D_8$ |
$C_3\times D_8$ |
$48$ |
48.e1.a1 |
$4$ |
8.b1.a1 |
$24$ |
$8$ |
$1$ |
192.138.2j1 |
$2$ |
C |
|
$24$ |
\(\Q(\sqrt{-2}, \sqrt{-3})\) |
192.138.2j |
$C_{12}.D_8$ |
$C_3\times \SD_{16}$ |
$48$ |
48.d1.a1 |
$4$ |
8.b1.a1 |
$24$ |
$8$ |
$1$ |
192.138.2j2 |
$2$ |
C |
|
$24$ |
\(\Q(\sqrt{-2}, \sqrt{-3})\) |
192.138.2j |
$C_{12}.D_8$ |
$C_3\times \SD_{16}$ |
$48$ |
48.d1.a1 |
$4$ |
8.b1.a1 |
$24$ |
$8$ |
$1$ |
192.138.2j3 |
$2$ |
C |
|
$24$ |
\(\Q(\sqrt{-2}, \sqrt{-3})\) |
192.138.2j |
$C_{12}.D_8$ |
$C_3\times \SD_{16}$ |
$48$ |
48.d1.a1 |
$4$ |
8.b1.a1 |
$24$ |
$8$ |
$1$ |
192.138.2j4 |
$2$ |
C |
|
$24$ |
\(\Q(\sqrt{-2}, \sqrt{-3})\) |
192.138.2j |
$C_{12}.D_8$ |
$C_3\times \SD_{16}$ |
$48$ |
48.d1.a1 |
$4$ |
8.b1.a1 |
$24$ |
$8$ |
$1$ |
192.138.2k1 |
$2$ |
C |
|
$24$ |
\(\Q(\sqrt{-2}, \sqrt{-3})\) |
192.138.2k |
$C_{12}.D_8$ |
$C_3\times \SD_{16}$ |
$48$ |
48.c1.a1 |
$4$ |
8.a1.a1 |
$24$ |
$8$ |
$1$ |
192.138.2k2 |
$2$ |
C |
|
$24$ |
\(\Q(\sqrt{-2}, \sqrt{-3})\) |
192.138.2k |
$C_{12}.D_8$ |
$C_3\times \SD_{16}$ |
$48$ |
48.c1.a1 |
$4$ |
8.a1.a1 |
$24$ |
$8$ |
$1$ |
192.138.2k3 |
$2$ |
C |
|
$24$ |
\(\Q(\sqrt{-2}, \sqrt{-3})\) |
192.138.2k |
$C_{12}.D_8$ |
$C_3\times \SD_{16}$ |
$48$ |
48.c1.a1 |
$4$ |
8.a1.a1 |
$24$ |
$8$ |
$1$ |
192.138.2k4 |
$2$ |
C |
|
$24$ |
\(\Q(\sqrt{-2}, \sqrt{-3})\) |
192.138.2k |
$C_{12}.D_8$ |
$C_3\times \SD_{16}$ |
$48$ |
48.c1.a1 |
$4$ |
8.a1.a1 |
$24$ |
$8$ |
$1$ |