Properties

Label 192.138.3.a1.a1
Order $ 2^{6} $
Index $ 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_4.D_8$
Order: \(64\)\(\medspace = 2^{6} \)
Index: \(3\)
Exponent: \(8\)\(\medspace = 2^{3} \)
Generators: $a, b$ Copy content Toggle raw display
Nilpotency class: $3$
Derived length: $2$

The subgroup is characteristic (hence normal), maximal, a direct factor, nonabelian, a $2$-Sylow subgroup (hence nilpotent, solvable, supersolvable, a Hall subgroup, and monomial), a $p$-group (hence elementary and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $C_{12}.D_8$
Order: \(192\)\(\medspace = 2^{6} \cdot 3 \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Nilpotency class:$3$
Derived length:$2$

The ambient group is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.

Quotient group ($Q$) structure

Description: $C_3$
Order: \(3\)
Exponent: \(3\)
Automorphism Group: $C_2$, of order \(2\)
Outer Automorphisms: $C_2$, of order \(2\)
Nilpotency class: $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^3\times D_4^2$, of order \(512\)\(\medspace = 2^{9} \)
$\operatorname{Aut}(H)$ $C_2^2\times D_4^2$, of order \(256\)\(\medspace = 2^{8} \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_2^2\times D_4^2$, of order \(256\)\(\medspace = 2^{8} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(2\)
$W$$C_2^2:C_4$, of order \(16\)\(\medspace = 2^{4} \)

Related subgroups

Centralizer:$C_2\times C_6$
Normalizer:$C_{12}.D_8$
Complements:$C_3$
Minimal over-subgroups:$C_{12}.D_8$
Maximal under-subgroups:$C_4:Q_8$$C_4:C_8$$C_4:C_8$

Other information

Möbius function$-1$
Projective image$C_2^2:C_{12}$