Refine search
Results (34 matches)
Download displayed columns for resultsElements of the group are displayed as permutations of degree 16.
Group | Label | Order | Size | Centralizer | Powers | Representative |
---|---|---|---|---|---|---|
2P | ||||||
$(D_4\times C_2^3).Q_{16}$ | 1A | $1$ | $1$ | $(D_4\times C_2^3).Q_{16}$ | 1A | $()$ |
$(D_4\times C_2^3).Q_{16}$ | 2A | $2$ | $1$ | $(D_4\times C_2^3).Q_{16}$ | 1A | $(1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16)$ |
$(D_4\times C_2^3).Q_{16}$ | 2B | $2$ | $2$ | $C_2^5.C_4^2$ | 1A | $(5,6)(7,8)(9,10)(11,12)$ |
$(D_4\times C_2^3).Q_{16}$ | 2C | $2$ | $4$ | $(C_2\times \OD_{16}):D_4$ | 1A | $(13,14)(15,16)$ |
$(D_4\times C_2^3).Q_{16}$ | 2D | $2$ | $4$ | $C_2^5.D_4$ | 1A | $(9,10)(11,12)(13,14)(15,16)$ |
$(D_4\times C_2^3).Q_{16}$ | 2E | $2$ | $4$ | $(C_2\times \OD_{16}):D_4$ | 1A | $(5,6)(7,8)(9,10)(11,12)(13,14)(15,16)$ |
$(D_4\times C_2^3).Q_{16}$ | 2F | $2$ | $8$ | $C_2^4:Q_8$ | 1A | $(3,4)(5,6)(9,10)(13,14)$ |
$(D_4\times C_2^3).Q_{16}$ | 2G | $2$ | $8$ | $C_2^4:C_8$ | 1A | $(3,4)(7,8)(9,10)(13,14)$ |
$(D_4\times C_2^3).Q_{16}$ | 2H | $2$ | $16$ | $C_2^4:C_4$ | 1A | $(1,4)(2,3)(5,7)(6,8)(9,11)(10,12)(13,16)(14,15)$ |
$(D_4\times C_2^3).Q_{16}$ | 2I | $2$ | $32$ | $C_2^5$ | 1A | $(3,4)(5,7)(6,8)(9,11)(10,12)(15,16)$ |
$(D_4\times C_2^3).Q_{16}$ | 4A | $4$ | $8$ | $C_2^3.C_4^2$ | 2B | $(5,7,6,8)(9,11,10,12)(13,14)(15,16)$ |
$(D_4\times C_2^3).Q_{16}$ | 4B | $4$ | $8$ | $C_2^3.C_4^2$ | 2B | $(1,2)(3,4)(5,7,6,8)(9,11,10,12)(13,14)(15,16)$ |
$(D_4\times C_2^3).Q_{16}$ | 4C | $4$ | $8$ | $C_2^3.C_4^2$ | 2B | $(5,7,6,8)(9,11,10,12)$ |
$(D_4\times C_2^3).Q_{16}$ | 4D | $4$ | $8$ | $C_2^3.C_4^2$ | 2B | $(5,7,6,8)(9,12,10,11)(13,14)(15,16)$ |
$(D_4\times C_2^3).Q_{16}$ | 4E | $4$ | $16$ | $C_2^2\times C_4^2$ | 2A | $(1,3,2,4)(5,7,6,8)(9,11,10,12)(13,15,14,16)$ |
$(D_4\times C_2^3).Q_{16}$ | 4F1 | $4$ | $32$ | $C_2^2:C_8$ | 2G | $(1,16)(2,15)(3,14,4,13)(5,11)(6,12)(7,9,8,10)$ |
$(D_4\times C_2^3).Q_{16}$ | 4F-1 | $4$ | $32$ | $C_2^2:C_8$ | 2G | $(1,16)(2,15)(3,13,4,14)(5,11)(6,12)(7,10,8,9)$ |
$(D_4\times C_2^3).Q_{16}$ | 4G | $4$ | $64$ | $C_2^2\times C_4$ | 2F | $(1,15)(2,16)(3,14,4,13)(5,10,6,9)(7,12)(8,11)$ |
$(D_4\times C_2^3).Q_{16}$ | 4H | $4$ | $64$ | $C_2^2\times C_4$ | 2F | $(1,10)(2,9)(3,11,4,12)(5,16,6,15)(7,13)(8,14)$ |
$(D_4\times C_2^3).Q_{16}$ | 4I | $4$ | $64$ | $C_2^2\times C_4$ | 2F | $(1,8,2,7)(3,6)(4,5)(9,14,10,13)(11,15)(12,16)$ |
$(D_4\times C_2^3).Q_{16}$ | 4J1 | $4$ | $64$ | $C_2^2\times C_4$ | 2H | $(1,5,4,7)(2,6,3,8)(9,14,11,15)(10,13,12,16)$ |
$(D_4\times C_2^3).Q_{16}$ | 4J-1 | $4$ | $64$ | $C_2^2\times C_4$ | 2H | $(1,7,4,5)(2,8,3,6)(9,15,11,14)(10,16,12,13)$ |
$(D_4\times C_2^3).Q_{16}$ | 8A1 | $8$ | $32$ | $C_2^2\times C_8$ | 4C | $(5,9,7,11,6,10,8,12)(13,15)(14,16)$ |
$(D_4\times C_2^3).Q_{16}$ | 8A-1 | $8$ | $32$ | $C_2^2\times C_8$ | 4C | $(5,11,7,10,6,12,8,9)(13,15)(14,16)$ |
$(D_4\times C_2^3).Q_{16}$ | 8B1 | $8$ | $32$ | $C_2^2\times C_8$ | 4D | $(3,4)(5,9,7,12,6,10,8,11)(13,15,14,16)$ |
$(D_4\times C_2^3).Q_{16}$ | 8B-1 | $8$ | $32$ | $C_2^2\times C_8$ | 4D | $(3,4)(5,11,8,10,6,12,7,9)(13,16,14,15)$ |
$(D_4\times C_2^3).Q_{16}$ | 8C1 | $8$ | $32$ | $C_2^2\times C_8$ | 4D | $(3,4)(5,9,7,12,6,10,8,11)(13,16,14,15)$ |
$(D_4\times C_2^3).Q_{16}$ | 8C-1 | $8$ | $32$ | $C_2^2\times C_8$ | 4D | $(3,4)(5,11,8,10,6,12,7,9)(13,15,14,16)$ |
$(D_4\times C_2^3).Q_{16}$ | 8D1 | $8$ | $32$ | $C_2^2\times C_8$ | 4C | $(1,2)(3,4)(5,9,7,11,6,10,8,12)(13,15)(14,16)$ |
$(D_4\times C_2^3).Q_{16}$ | 8D-1 | $8$ | $32$ | $C_2^2\times C_8$ | 4C | $(1,2)(3,4)(5,11,7,10,6,12,8,9)(13,15)(14,16)$ |
$(D_4\times C_2^3).Q_{16}$ | 8E1 | $8$ | $64$ | $C_2\times C_8$ | 4F1 | $(1,11,16,5)(2,12,15,6)(3,9,14,8,4,10,13,7)$ |
$(D_4\times C_2^3).Q_{16}$ | 8E-1 | $8$ | $64$ | $C_2\times C_8$ | 4F-1 | $(1,5,16,11)(2,6,15,12)(3,7,13,10,4,8,14,9)$ |
$(D_4\times C_2^3).Q_{16}$ | 8E3 | $8$ | $64$ | $C_2\times C_8$ | 4F-1 | $(1,5,16,11)(2,6,15,12)(3,8,13,9,4,7,14,10)$ |
$(D_4\times C_2^3).Q_{16}$ | 8E-3 | $8$ | $64$ | $C_2\times C_8$ | 4F1 | $(1,11,16,5)(2,12,15,6)(3,10,14,7,4,9,13,8)$ |